向量模型在数学复习中的应用
高考数学一轮复习第7章立体几何第5节空间向量的运算及应用教学案理含解析北师大版

高考数学一轮复习第7章立体几何第5节空间向量的运算及应用教学案理含解析北师大版第五节 空间向量的运算及应用[考纲传真] 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.1.空间向量的有关概念 名称 定义空间向量 在空间中,具有大小和方向的量方向向量A 、B 是空间直线l 上任意两点,则称AB →为直线l 的方向向量法向量 如果直线l 垂直于平面α,那么把直线l 的方向向量n 叫作平面α的法向量共线向量(或平行向量) 表示空间向量的有向线段所在的直线互相平行或重合的向量 共面向量平行于同一个平面的向量(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λB .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +yB .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底.3.两个向量的数量积(1)非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).1.对空间任一点O ,若OP →=xOA →+yOB →(x +y =1),则P ,A ,B 三点共线.2.对空间任一点O ,若OP →=xOA →+yOB →+zOC →(x +y +z =1),则P ,A ,B ,C 四点共面. 3.平面的法向量的确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( ) (2)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0. ( ) (3)设{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.(4)两向量夹角的范围与两异面直线所成角的范围相同. ( )[答案] (1)√ (2)√ (3)× (4)×2.(教材改编)设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t =( )A .3B .4C .5D .6 C [∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0, ∴t =5.]3.(教材改编)在平行六面体ABCD A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB .12a +12b +c C .-12a -12b +cD .12a -12b +c A [BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .]4.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1) B .(1,-1,1) C.⎝ ⎛⎭⎪⎫-33,-33,-33 D .⎝⎛⎭⎪⎫33,33,-33 C [设n =(x ,y ,z )为平面ABC 的法向量,则⎩⎨⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.]5.(教材改编)已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________. 26 [∵a ⊥b ,∴a ·b =0,即-8+6+x =0,∴x =2. ∴b =(-4,2,2),∴|b |=16+4+4=2 6.]空间向量的线性运算1.如图所示,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.56[连接ON ,设OA →=a ,OB →=b ,OC →=c , 则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a +23⎝ ⎛⎭⎪⎫12b +12c -12a =16a +13b +13c . 又OG →=xOA →+yOB →+zOC →,所以x =16,y =13,z =13,因此x +y +z =16+13+13=56.]2.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,设用a ,b ,c 表示以下各向量: (1)AP →;(2)A 1N →;(3)MP →+NC 1→. [解] (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12B .(2)因为N 是BC 的中点,所以A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝ ⎛⎭⎪⎫a +c +12b =12a +12b +c , 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c =32a +12b +32c . [规律方法] 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 共线(共面)向量定理的应用【例1】 已知E ,F ,G ,H 分别为空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)求证:BD ∥平面EFGH .[证明] (1)连接BG ,EG ,则EG →=EB →+BG → =EB →+12⎝⎛⎭⎫BC →+BD →=EB →+BF →+EH → =EF →+EH →.所以E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →.所以EH ∥BD . 又EH 平面EFGH ,BD 平面EFGH ,所以BD ∥平面EFGH .[规律方法] (1)证明点共线问题可转化为证明向量共线问题,如证A ,B ,C 三点共线,即证AB →,AC →共线,只需证AB →=λAC →(λ≠0)即可.(2)证明点共面问题,可转化为证向量共面问题.如证P ,A ,B ,C 四点共面,只需证PA →=xPB →+yPC →或对空间任意一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC →(其中x +y +z =1)即可.(1)已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12B .-13,12C .-3,2D .2,2(2)已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于________.(1)A (2)657[(1)∵a ∥b ,∴设b =x a ,∴⎩⎪⎨⎪⎧x λ+1=6,2μ-1=0,2x =2λ,解得⎩⎪⎨⎪⎧μ=12,λ=2,或⎩⎪⎨⎪⎧μ=12,λ=-3.故选A.(2)∵a 与b 不共线,故存在实数x ,y 使得c =x a +y b ,∴⎩⎪⎨⎪⎧2x -y =7,-x +4y =5,3x -2y =λ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.故填657.]空间向量的数量积【例2】 如图,在平行六面体ABCD A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60° .(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值. [解] (1)设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66. [规律方法] (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.如图,已知直三棱柱ABC A 1B 1C 1,在底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的模;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M .[解] (1)如图,以点C 作为坐标原点O ,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.由题意得B (0,1,0),N (1,0,1), 所以|BN →| =1-02+0-12+1-02= 3.(2)由题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2),所以BA 1→=(1,-1,2),CB 1→=(0,1,2),BA 1→·CB 1→=3,|BA 1→|=6,|CB 1→|=5,所以cos 〈BA 1→,CB 1→〉=BA 1→·CB 1→|BA 1→||CB 1→|=3010. (3)证明:由题意得C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2,A 1B →=(-1,1,-2),C 1M →=⎝ ⎛⎭⎪⎫12,12,0,所以A 1B →·C 1M →=-12+12+0=0,所以A 1B →⊥C 1M →,即A 1B ⊥C 1M . 利用向量证明平行与垂直问题【例3】 如图所示,在四棱锥P ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角,求证:(1)CM ∥平面PAD ; (2)平面PAB ⊥平面PAD .[解] (1)证明:由题意知,CB ,CD ,CP 两两垂直,以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系C xyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4,∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP →=(0,-1,2),DA →=(23,3,0), CM →=⎝⎛⎭⎪⎫32,0,32.(1)设n =(x ,y ,z )为平面PAD 的一个法向量,由⎩⎨⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,令y =2,得n =(-3,2,1). ∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM平面PAD ,∴CM ∥平面PAD .(2)法一:由(1)知BA →=(0,4,0),PB →=(23,0,-2), 设平面PAB 的一个法向量为m =(x 0,y 0,z 0),由⎩⎨⎧BA →·m =0,PB →·m =0,即⎩⎨⎧4y 0=0,23x 0-2z 0=0,令x 0=1,得m =(1,0,3).又∵平面PAD 的一个法向量n =(-3,2,1), ∴m·n =1×(-3)+0×2+3×1=0,∴平面PAB ⊥平面PAD . 法二:取AP 的中点E ,连接BE , 则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A.又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →.∴BE ⊥D A. 又PA ∩DA =A , ∴BE ⊥平面PAD . 又∵BE 平面PAB , ∴平面PAB ⊥平面PAD .[规律方法] 1.利用向量法证明平行问题的类型及方法 (1)证明线线平行:两条直线的方向向量平行. (2)证明线面平行:①该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量线性表示. (3)证明面面平行:两个平面的法向量平行. 2.利用向量法证明垂直问题的类型及方法(1)证明线线垂直:两条直线的方向向量的数量积为0. (2)证明线面垂直:直线的方向向量与平面的法向量平行. (3)证明面面垂直:①根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直;②两个平面的法向量垂直.如图所示,在长方体ABCD A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.[解] 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.设AB =a .(1)证明:A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a2,1,-1. 因为B 1E →·AD 1→=-a2×0+1×1+(-1)×1=0, 因此B 1E →⊥AD 1→,所以B 1E ⊥AD 1.(2)存在满足要求的点P , 假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0), 再设平面B 1AE 的一个法向量为n =(x ,y ,z ). AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a2,1,0.因为n ⊥平面B 1AE ,所以n ⊥AB 1→,n ⊥AE →, 得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0,取x =1,则y =-a2,z =-a ,则平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a2,-a .要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.所以存在点P ,满足DP ∥平面B 1AE , 此时AP =12.。
2024届高考一轮复习数学教案(新人教B版):平面向量的综合应用

§5.4平面向量的综合应用题型一平面向量在几何中的应用例1(1)如图,在△ABC 中,cos ∠BAC =14,点D 在线段BC 上,且BD =3DC ,AD =152,则△ABC 的面积的最大值为________.答案15解析设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为BD =3DC ,AD →=14AB →+34AC →,又AD =152,cos ∠BAC =14,所以AD →214AB +34AC =116c 2+916b 2+38bc cos ∠BAC =116c 2+916b 2+332bc ,又154=116c 2+916b 2+332bc =14c 234b +332bc ≥2×14c ×34b +332bc =1532bc ,当且仅当c =3b 时,等号成立.所以bc ≤8,又sin ∠BAC =154,所以S △ABC =12bc sin ∠BAC ≤12×8×154=15.(2)(2022·天津)在△ABC 中,CA →=a ,CB →=b ,D 是AC 的中点,CB →=2BE →,试用a ,b 表示DE →为________,若AB →⊥DE →,则∠ACB 的最大值为________.答案32b -12a π6解析DE →=CE →-CD →=32b -12a ,AB →=CB →-CA →=b -a ,由AB →⊥DE →得(3b -a )·(b -a )=0,即3b 2+a 2=4a ·b ,所以cos ∠ACB =a ·b |a ||b |=3b 2+a 24|a ||b |≥23|a ||b |4|a ||b |=32,当且仅当|a |=3|b |时取等号,而0<∠ACB <π,所以∠ACB,π6.思维升华用向量方法解决平面几何问题的步骤平面几何问题――→设向量向量问题――→计算解决向量问题――→还原解决几何问题.跟踪训练1(1)在△ABCBC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为()A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案A解析AB →|AB →|,AC →|AC →|分别表示AB →,AC →方向上的单位向量,AB →|AB →|+AC →|AC →|在∠A 的角平分线上,BC →=0,∴|AB →|=|AC →|,又AB →|AB →|·AC →|AC →|=12,∴cos 〈AB →,AC →〉=AB →|AB →|·AC →|AC →|=12,则AB →与AC →的夹角为60°,即∠BAC =60°,可得△ABC 是等边三角形.(2)在△ABC 中,AC =9,∠A =60°,D 点满足CD →=2DB →,AD =37,则BC 的长为()A .37B .36C .33D .6答案A解析因为CD →=2DB →,所以AD →=AB →+BD →=AB →+13BC→=AB →+13(AC →-AB →)=23AB →+13AC →,设AB =x ,则AD →2+13AC ,得37=49x 2+49×x ×9cos 60°+19×92,即2x 2+9x -126=0,因为x >0,故解得x =6,即AB =6,所以|BC →|=|AC →-AB →|=|AB →|2+|AC →|2-2|AB →|·|AC →|cos 60°=62+92-2×6×9×12=37.题型二和向量有关的最值(范围)问题命题点1与平面向量基本定理有关的最值(范围)问题例2如图,在△ABC 中,点P 满足2BP →=PC →,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若AM →=xAB →,AN →=yAC →(x >0,y >0),则2x +y 的最小值为()A .3B .32C .1 D.13答案A解析由题意知,AP →=AB →+BP →=AB →+BC →3=AB →+AC →-AB →3=2AB →3+AC →3,又AM →=xAB →,AN →=yAC →(x >0,y >0),∴AP →=2AM →3x +AN →3y,由M ,P ,N 三点共线,得23x +13y =1,∴2x +y =(2x +y =53+2x 3y +2y 3x ≥53+22x 3y ·2y3x=3,当且仅当x =y 时等号成立.故2x +y 的最小值为3.命题点2与数量积有关的最值(范围)问题例3已知在边长为2的正△ABC 中,M ,N 分别为边BC ,AC 上的动点,且CN =BM ,则AM →·MN→的最大值为________.答案-43解析建立如图所示的平面直角坐标系,则B (-1,0),C (1,0),A (0,3),则BC →=(2,0),CA →=(-1,3),设BM →=tBC →(0≤t ≤1),则CN →=tCA →(0≤t ≤1),则M (2t -1,0),N (1-t ,3t ),∴AM →=(2t -1,-3),MN →=(2-3t ,3t ),∴AM →·MN →=(2t -1)×(2-3t )+(-3)×(3t )=-6t 2+4t -2=--43,当t =13时,AM →·MN →取得最大值-43.命题点3与模有关的最值(范围)问题例4已知a ,b 是单位向量,a ·b =0,且向量c 满足|c -a -b |=1,则|c |的取值范围是()A .[2-1,2+1]B .[2-1,2]C .[2,2+1]D .[2-2,2+2]答案A解析a ,b 是单位向量,a ·b =0,设a =(1,0),b =(0,1),c =(x ,y ),|c -a -b |=|(x -1,y -1)|=(x -1)2+(y -1)2=1,∴(x -1)2+(y -1)2=1,|c |表示以(1,1)为圆心,1为半径的圆上的点到原点的距离,故12+12-1≤|c |≤12+12+1,∴2-1≤|c |≤2+1.思维升华向量求最值(范围)的常用方法(1)利用三角函数求最值(范围).(2)利用基本不等式求最值(范围).(3)建立坐标系,设变量构造函数求最值(范围).(4)数形结合,应用图形的几何性质求最值.跟踪训练2(1)已知平行四边形ABCD 的面积为93,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF →=λAB →+56AD →,则|AF →|的最小值为()A.11B .3 C.7D.5答案D解析设|AB →|=x ,|AD →|=y ,则S =x ·y ·sin 2π3=32xy =93,∴xy =18.∵AF →=λAB →+56AD →=λ(AE →+EB →)+56AD →=λAE →,∵E ,F ,D 三点共线,∴λ+56-λ2=1⇒λ=13,∴AF →=13AB →+56AD →,∴|AF →|2=19|AB →|2+59AB →·AD →+2536|AD →|2=19x 2+59xy +2536y 2≥-5+219·2536·x 2·y 2=5,当且仅当x =52y 时,等号成立.∴|AF →|的最小值为5.(2)(2023·苏州模拟)已知△ABC 为等边三角形,AB =2,△ABC 所在平面内的点P 满足|AP →-AB →-AC →|=1,则|AP →|的最小值为()A.3-1B .22-1C .23-1D.7-1答案C解析因为|AB →+AC →|2=AB →2+AC →2+2AB →·AC→=|AB →|2+|AC →|2+2|AB →|·|AC →|cos π3=12,所以|AB →+AC →|=23,由平面向量模的三角不等式可得|AP →|=|(AP →-AB →-AC →)+(AB →+AC →)|≥||AP →-AB →-AC →|-|AB →+AC →||=23-1.当且仅当AP →-AB →-AC →与AB →+AC →方向相反时,等号成立.因此|AP →|的最小值为23-1.(3)(2022·北京)在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA →·PB →的取值范围是()A .[-5,3]B .[-3,5]C .[-6,4]D .[-4,6]答案D解析以C 为坐标原点,CA ,CB 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则A (3,0),B (0,4).设P (x ,y ),则x 2+y 2=1,PA →=(3-x ,-y ),PB →=(-x ,4-y ),所以PA →·PB →=x 2-3x +y 2-4y+(y -2)2-254.又+(y -2)2表示圆x 2+y 2=1圆心(0,0)离为52,所以PA →·PB →-254,-254,即PA →·PB →∈[-4,6],故选D.课时精练1.四边形ABCD 中,AD →=BC →,(AB →+AD →)·(AB →-AD →)=0,则这个四边形是()A .菱形B .矩形C .正方形D .等腰梯形答案A解析由题意,AD →=BC →,即|AD |=|BC |且AD ∥BC ,故四边形ABCD 为平行四边形,又(AB →+AD →)·(AB →-AD →)=AC →·DB →=0,故AC ⊥BD 即四边形ABCD 为菱形.2.(多选)如图,点A ,B 在圆C 上,则AB →·AC →的值()A .与圆C 的半径有关B .与圆C 的半径无关C .与弦AB 的长度有关D .与点A ,B 的位置有关答案BC解析如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB →·AC →的值与圆C 的半径无关,只与弦AB 的长度有关.3.如图,在△ABC 中,BD →=23BC →,E 为线段AD 上的动点,且CE →=xCA →+yCB →,则1x +3y 的最小值为()A .8B .9C .12D .16答案D解析由已知得CB →=3CD →,∴CE →=xCA →+yCB →=xCA →+3yCD →,∵E 为线段AD 上的动点,∴A ,D ,E 三点共线,∴x +3y =1且x >0,y >0,∴1x +3y =1x +3y (x +3y )=10+3y x +3xy ≥10+23y x ·3xy=16,当且仅当x =y =14时,等号成立.故1x +3y的最小值为16.4.在△ABC 中,A =π3,G 为△ABC 的重心,若AG →·AB →=AG →·AC →=6,则△ABC 外接圆的半径为()A.3 B.433C .2D .23答案C解析由AG →·AB →=AG →·AC →,可得AG →·(AB →-AC →)=AG →·CB →=0,则有AG ⊥BC ,又在△ABC 中,A =π3,G 为△ABC 的重心,则△ABC 为等边三角形.则AG →·AB →=23×12(AB →+AC →)·AB→|2+|AB →|2cos =12|AB →|2=6,解得|AB →|=23,则△ABC 外接圆的半径为12×|AB →|sin π3=12×2332=2.5.在平行四边形ABCD 中,AB =1,AD =2,AB ⊥AD ,点P 为平行四边形ABCD 所在平面内一点,则(PA →+PC →)·PB →的最小值是()A .-58B .-12C .-38D .-14答案A解析建立如图所示的平面直角坐标系,设P (x ,y ),则A (0,0),B (1,0),C (1,2),所以PB →=(1-x ,-y ),PA →+PC →=(-x ,-y )+(1-x ,2-y )=(1-2x ,2-2y ),故(PA →+PC →)·PB →=(1-2x )(1-x )+(2-2y )(-y )=+-58,所以当x =34,y =12时,(PA →+PC →)·PB →取得最小值-58.6.设向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c ·(a +b -c )=0,则|c |的最大值等于()A .1B .2C .1+52D.5答案D解析向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,不妨设a =(1,0),b =(0,2),c =(x ,y ),∵c ·(a +b -c )=0,∴(x ,y )·(1-x ,2-y )=x (1-x )+y (2-y )=0,即x 2+y 2-x -2y =0,整理可得+(y -1)2=54,则|c |,半径为52的圆上的点到原点的距离,则|c |+52= 5.7.(多选)(2022·珠海模拟)已知点O 在△ABC 所在的平面内,则以下说法正确的有()A .若OA →+OB →+OC →=0,则点O 为△ABC 的重心B .若OA →OB →0,则点O 为△ABC 的垂心C .若(OA →+OB →)·AB →=(OB →+OC →)·BC →=0,则点O 为△ABC 的外心D .若OA →·OB →=OB →·OC →=OC →·OA →,则点O 为△ABC 的内心答案AC解析选项A ,设D 为BC 的中点,由于OA →=-(OB →+OC →)=-2OD →,所以O 为BC 边上中线的三等分点(靠近点D ),同理可证O 为AB ,AC 边上中线的三等分点,所以O 为△ABC 的重心,选项A 正确;选项B ,向量AC →|AC →|,AB →|AB →|分别表示在边AC 和AB 上的单位向量,设为AC ′—→和AB ′—→,则它们的差是向量B ′C ′———→,则当OA →0,即OA →⊥B ′C ′———→时,点O 在∠BAC 的角平分线上,同理由OB →0,知点O 在∠ABC 的角平分线上,故O 为△ABC 的内心,选项B 错误;选项C ,由(OA →+OB →)·AB →=0,得(OA →+OB →)·(OB →-OA →)=0,即OB →2=OA →2,故|OA →|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心,选项C 正确;选项D ,由OA →·OB →=OB →·OC →,得OA →·OB →-OB →·OC →=0,所以OB →·(OA →-OC →)=0,即OB →·CA →=0,所以OB →⊥CA →,同理可证OA →⊥CB →,OC →⊥AB →,所以OB ⊥CA ,OA ⊥CB ,OC ⊥AB ,即点O 是△ABC 的垂心,选项D 错误.8.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,每逢新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图①是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图②中正六边形ABCDEF 的边长为2,圆O 的圆心为正六边形的中心,半径为1,若点P 在正六边形的边上运动,MN 为圆的直径,则PM →·PN →的取值范围是()A .[1,2]B .[2,3]C.32,4 D.32,3答案B解析如图所示,取AF 的中点Q ,根据题意,△AOF 是边长为2的正三角形,易得|OQ |=3,又PM →·PN →=(PO →+OM →)·(PO →+ON →)=|PO →|2+PO →·ON →+PO →·OM →+OM →·ON →=|PO →|2+PO →·(ON →+OM →)-1=|PO →|2-1,根据图形可知,当点P 位于正六边形各边的中点时,|PO |有最小值为3,此时|PO →|2-1=2,当点P 位于正六边形的顶点时,|PO |有最大值为2,此时|PO →|2-1=3,故PM →·PN →的取值范围是[2,3].9.(2022·晋中模拟)已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|2PA →+3PB →|的最小值为________.答案7解析以D 为坐标原点,DA →,DC →分别为x ,y 轴的正方向建立平面直角坐标系,如图所示,设C (0,a ),P (0,b ),B (1,a ),A (2,0),0≤b ≤a ,则2PA →+3PB →=2(2,-b )+3(1,a -b )=(7,3a -5b ),|2PA →+3PB →|=49+(3a -5b )2≥7,当且仅当b =3a 5时取得最小值7.10.已知P 是边长为4的正△ABC 所在平面内一点,且AP →=λAB →+(2-2λ)AC →(λ∈R ),则PA →·PC→的最小值为________.答案5解析取BC 的中点O ,∵△ABC 为等边三角形,∴AO ⊥BC ,则以O 为坐标原点建立如图所示的平面直角坐标系,则B (-2,0),C (2,0),A (0,23),设P (x ,y ),∴AP →=(x ,y -23),AB →=(-2,-23),AC →=(2,-23),∴AP →=λAB →+(2-2λ)AC →=(4-6λ,23λ-43)x =4-6λ,y =23λ-23,∴P (4-6λ,23λ-23),∴PA →=(6λ-4,43-23λ),PC →=(6λ-2,23-23λ),∴PA →·PC →=(6λ-4)(6λ-2)+(43-23λ)(23-23λ)=48λ2-72λ+32,由二次函数性质知,当λ=34时,PA →·PC →取得最小值5.11.(2022·广州模拟)在△ABC 中,D 为AC 上一点且满足AD →=13DC →,若P 为BD 上一点,且满足AP →=λAB →+μAC →,λ,μ为正实数,则λμ的最大值为________.答案116解析∵λ,μ为正实数,AD →=13DC →,故AC →=4AD →,∴AP →=λAB →+4μAD →,又P ,B ,D 三点共线,∴λ+4μ=1,∴λμ=14·λ·4μ=116,当且仅当λ=12,μ=18时取等号,故λμ的最大值为116.12.(2022·浙江)设点P 在单位圆的内接正八边形A 1A 2…A 8的边A 1A 2上,则PA →21+P A →22+…+PA →28的取值范围是______________.答案[12+22,16]解析以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,如图所示,则A 1(0,1),AA 3(1,0),AA 5(0,-1),A-22A 7(-1,0),A -22,设P (x ,y ),于是PA →21+PA →22+…+PA →28=8(x 2+y 2)+8,因为cos 22.5°≤|OP |≤1,所以1+cos 45°2≤x 2+y 2≤1,故PA →21+PA →22+…+PA →28的取值范围是[12+22,16].。
高考数学一轮复习专题八立体几何5空间向量及其在立体几何中的应用应用篇课件新人教A版

设直线MN与平面PAB所成角为θ, DN =λ DC(λ∈[0,1]),
则 MN
= MA
+ AD
+ DN
=(λ+1,2λ-1,-1),
又平面PAB的一个法向量为n=(1,0,0),
| λ 1|
则sin θ=|cos< MN ,n>|=
( λ 1)2 (2 λ 1) 2 1
( λ 1) 2
=
,
2
5λ 2 λ 3
1
( λ 1)2
t2
5
令λ+1=t(t∈[1,2]),则 2
= 2
=
≤ ,
2
7
5 λ 2 λ 3 5t 12t 10 10 1 12 1 5
5
∴sin θ≤ 35 ,当t= ,即λ= 2 时,等号成立,
7
3
系有关的存在性问题;(2)与空间角有关的存在性问题.解决方案有两种:①
根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,然后
加以证明,得出结论;②假设所求的点或线存在,并设定参数表达已知条
件,根据题目进行求解,若能求出参数的值且符合已知限定的范围,则存在
这样的点或线,否则不存在.向量法是解决此类问题的常用方法,它可以将
(2)因为DE⊥平面ABCD,
所以∠EBD就是BE与平面ABCD所成的角,
即∠EBD=60°,所以 ED = 3 .
BD
由AD=3,四边形ABCD是正方形,得BD=3 2 ,
则DE=3 6 ,所以AF= 6 .
如图,分别以DA,DC,DE所在直线为x轴,y轴,z轴建立空间直角坐标系,
高中数学新教材高一下期末复习第一讲 平面向量及其应用(解析版)

平面向量及其应用单元复习一知识结构图二.学法指导1.向量线性运算的基本原则和求解策略(1)基本原则:向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量.因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.(2)求解策略:向量是一个有“形”的几何量,因此在进行向量线性运算时,一定要结合图形,这是研究平面向量的重要方法与技巧.2. 向量数量积的求解策略(1)利用数量积的定义、运算律求解.在数量积运算律中,有两个形似实数的完全平方公式在解题中的应用较为广泛,即(a+b)2=a2+2a·b+b2,(a-b)2=a2-2a·b+b2,上述两公式以及(a+b)·(a-b)=a2-b2这一类似于实数平方差的公式在解题过程中可以直接应用.(2)借助零向量.即借助“围成一个封闭图形且首尾相接的向量的和为零向量”,再合理地进行向量的移项以及平方等变形,求解数量积.(3)借助平行向量与垂直向量.即借助向量的拆分,将待求的数量积转化为有垂直向量关系或平行向量关系的向量数量积,借助a⊥b,则a·b =0等解决问题.(4)建立坐标系,利用坐标运算求解数量积. 3.解三角形的一般方法(1)已知两角和一边,如已知A ,B 和c ,由A +B +C =π求C ,由正弦定理求a ,b .(2)已知两边和这两边的夹角,如已知a ,b 和C ,应先用余弦定理求c ,再应用正弦定理先求较短边所对的角,然后利用A +B +C =π,求另一角.(3)已知两边和其中一边的对角,如已知a ,b 和A ,应先用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c ,要注意解可能有多种情况.(4)已知三边a ,b ,c ,可应用余弦定理求A ,B ,C .三.知识点贯通知识点1 平面向量的线性运算首尾相接用加法的三角形法则,如AB →+BC →=AC →;共起点两个向量作差用减法的几何意义,如OB →-OA →=AB →.例题1.如图,梯形ABCD 中,AB ∥CD ,点M ,N 分别是DA ,BC 的中点,且DCAB =k ,设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →.【答案】DC →=k e 2.BC →=e 1+(k -1)e 2. MN →==k +12e 2.【解析】∵AB →=e 2,且DCAB=k ,∴DC →=kAB →=k e 2.∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-D A →=-AB →+DC →+AD →=e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →,∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC →=k +12e 2.知识点二 平面向量数量积的运算2121cos ||||y y x x b a b a +==⋅θ例题2:如图,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,AM →=2MD →.若AC →·BM →=-3,则AB →·AD →= .【答案】32【解析】因为AC →·BM →=⎝ ⎛⎭⎪⎫AD →+12AB →·⎝ ⎛⎭⎪⎫-AB →+23AD →=-2-23AB →·AD →=-3,所以AB →·AD →=32.知识点三 平面向量的坐标运算若a =(a 1,a 2),b =(b 1,b 2),则①a +b =(a 1+b 1,a 2+b 2); ②a -b =(a 1-b 1,a 2-b 2); ③λa =(λa 1,λa 2); ④a ·b =a 1b 1+a 2b 2; ⑤a ∥b ⇔a 1=λb 1,a 2=λb 2(λ∈R ),或a 1b 1=a 2b 2(b 1≠0,b 2≠0);⑥a ⊥b ⇔a 1b 1+a 2b 2=0; ⑦|a |=a ·a =a 21+a 22;⑧若θ为a 与b 的夹角,则 cos θ=a ·b |a ||b |=a 1b 1+a 2b 2a 21+a 22b 21+b 22.例题3 .设a =(2,0),b =(1,3).①若(λa -b )⊥b ,求λ的值;②若m =λa +μb ,且|m |=23,〈m ,b 〉=π6,求λ,μ的值.【答案】①λ=2.②λ=1,μ=1或λ=-1,μ=2.【解析】 ①因为a =(2,0),b =(1,3),所以λa -b =(2λ,0)-(1,3)=(2λ-1,-3).又(λa -b )⊥b ,所以(λa -b )·b =0,即(2λ-1,-3)·(1,3)=0, 所以2λ-1-3=0.所以λ=2.②因为a =(2,0),b =(1,3),m =λa +μb =λ(2,0)+μ(1,3)=(2λ+μ,3μ). 因为|m |=23,〈m ,b 〉=π6,所以⎩⎪⎨⎪⎧(2λ+μ)2+(3μ)2=(23)2,cos π6=(2λ+μ,3μ)·(1,3)23×2,即⎩⎪⎨⎪⎧ λ2+λμ+μ2=3,λ+2μ=3.解得⎩⎪⎨⎪⎧ λ=1,μ=1,或⎩⎪⎨⎪⎧λ=-1,μ=2, 所以λ=1,μ=1或λ=-1,μ=2. 知识点四 平面向量的平行与垂直问题 1.证明共线问题常用的方法(1)向量a ,b (a ≠0)共线⇔存在唯一实数λ,使b =λa . (2)向量a =(x 1,y 1),b =(x 2,y 2)共线⇔x 1y 2-x 2y 1=0. (3)向量a 与b 共线⇔|a ·b |=|a ||b |.(4)向量a 与b 共线⇔存在不全为零的实数λ1,λ2,使λ1a +λ2b =0. 2.证明平面向量垂直问题的常用方法a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0, 其中a =(x 1,y 1),b =(x 2,y 2).例题4. (1)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-1(2)设A ,B ,C ,D 为平面内的四点,且A (1,3),B (2,-2),C (4,1). ①若AB →=CD →,求D 点的坐标.②设向量a =AB →,b =BC →,若k a -b 与a +3b 平行,求实数k 的值. (1)【答案】B【解析】因为m +n =(2λ+3,3),m -n =(-1,-1),且(m +n )⊥(m -n ),所以(m +n )·(m -n )=-2λ-3-3=0,解得λ=-3.故选B 。
高三数学一轮复习6空间向量在立体几何中的应用

| nm| | nm| = -arccos 或θ =arcsin 。 2 | n || m | | n || m |
9
康成高三数学
态度决定高度 细节决定成败
1.已知直线a的方向向量为a,平面α的法向 量为n,下列结论成立的是( C ) A.若a∥n,则a∥α B.若a· n=0,则a⊥α C.若a∥n,则a⊥α D.若a· n=0,则a∥α
的关系是_____________,即 cos _____________.两条异面直线所成角的范
围是________. (四)用平面的法向量证明两个平面平行或垂直 设 n1, n2 分 别 是 平 面 , 的 法 向 量 , 则 / / 或 与 重 合
_________________; _____________ _____________.
_____________.
(2)已知两个不共线向量 v1 , v2 与平面 共面,直线 l 的一个方向向量为 v ,则
l / / 或 l 在 内 __________________________________.
(3) 已 知两 个不 共线 的向量 v1 , v2 与 平面 共 面 ,则 / / 或 与 重 合
2 6 3 2 6 3 , , - 或 - , - , 7 7 7 7 7 7
一个法向量 n 1, 2, 2
4
康成高三数学
态度决定高度 细节决定成败
1.了解直线的方向向量与平面的法向 量的概念;能用向量语言表达线线、线 面、面面的垂直与平行关系;能用向量 方法证明有关线、面位置关系的一些定 理(包括三垂线定理). 2.能用向量法求空间角,体会向量法 在研究立体几何中的工具性作用.
向量模型在数学复习中的应用

向量模型在数学复习中的应用无锡市第三高级中学 顾晓骅 214026向量是数学中非常重要的概念,在新课标中,向量以两个不同的层次平面向量与空间向量进入教材,向量的应用非常广泛,它是三角、代数、解析几何、立体几何等多种学科联系的纽带。
作为一种数学或物理模型,具有很强的工具性。
向量不仅是一个数学运算的对象,更是一种数学模型,一种数学观念。
引进向量来处理问题,有时很快捷,也很简洁明了。
在历年的高考中,向量多次作为被考察的对象,地位逐年上升,形式也产生变化。
教育部考试中心任子朝先生指出“向量已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的必不可少的工具。
” 因此,高三数学复习要重视向量的这种模型作用。
本文结合多年的高三复习经验,谈一点个人的想法。
(1) 向量知识在代数中的应用利用向量数量积的一个重要性质||·|||·|b a b a ≤,变形为222||·|||·|b a b a ≤可以解决不等式中一类含有乘积之和或乘方之和的式子的题目,采用构造向量去解往往能化难为易,同时有效地提高学生的观察分析能力和想象能力。
例1:设()()()2332244,,y x y x y x R y x +≥++∈求证分析 不等式左边可以看作两向量()()y x y x ,,,22==模平方的积,不等式右边可看作两向量()()y xy x,,,22==内积的平方,所以有()()()()22442233cos y x y x y x++=≤=⋅=+θ例2:设的值域。
求函数11,22+--++=∈x x x x y R x分析: 由函数的结构,可将其变形为向量模的形式,然后再利用向量模的性质进行解题:,2321232111222222⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+--++=x x x x x x y 构建向量⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛+=23,21,23,21xb xa则有y -=().10,1=<=-<=-y 所以因为所以()。
2015届高考数学总复习第八章立体几何初步第6课时空间向量在立体几何中的应用教学案(含最新模拟试题改编)
第八章 立体几何初步第6课时 空间向量在立体几何中的应用第九章(对应学生用书(理)113~115页)考情分析考点新知理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.能用向量语言表述线线、线面、面面的垂直和平行关系.体会向量方法在研究几何问题中的作用.能用向量方法判断一些简单的空间线面的平行和垂直关系;能用向量方法解决线线、线面、面面的夹角的计算问题.1. (选修21P 97习题14改编)若向量a =(1,λ,2),b =(2,-1,2)且a 与b 的夹角的余弦值为89,则λ=________.答案:-2或255解析:由已知得89=a·b|a||b|=2-λ+45+λ2·9,∴ 85+λ2=3(6-λ),解得λ=-2或λ=255.2. (选修21P 89练习3)已知空间四边形OABC ,点M 、N 分别是OA 、BC 的中点,且 OA →=a, OB →=b, OC →=c ,用a ,b ,c 表示向量 MN →=________.答案:12(b +c -a )解析:如图, MN →=12( MB →+ MC →)=12·[( OB →- OM →)+(OC →- OM →)]=12( OB →+ OC →-2 OM →)=12( OB →+ OC →- OA →)=12(b +c -a ).3. (选修21P 101练习2改编)已知l ∥α,且l 的方向向量为(2,m ,1),平面α的法向量为⎝⎛⎭⎫1,12,2,则m =________. 答案:-8解析:(2,m ,1)·⎝⎛⎭⎫1,12,2=0,得m =-8.4. (选修21P 86练习3改编)已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三个向量共面,则实数λ等于________.答案:657解析:由于a 、b 、c 三个向量共面,所以存在实数m 、n 使得c =m a +n b ,即有(7,5,λ)= m(2,-1,3)+n(-1,4,-2),即(7,5,λ)=(2m -n ,-m +4n ,3m -2n),∴ ⎩⎪⎨⎪⎧7=2m -n ,5=-m +4n ,λ=3m -2n ,解得m =337,n =177,λ=657. 5. (选修21P 110例4改编)在正方体ABCDA 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________.答案:23解析:以A 为原点建立平面直角坐标系,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D(0,1,0),∴ A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的法向量为n 1=(1,y ,z),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴ ⎩⎪⎨⎪⎧y =2,z =2. ∴ n 1=(1,2,2).∵ 平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为23.1. 直线的方向向量与平面的法向量(1) 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量.(2) 如果表示非零向量n 的有向线段所在直线垂直于平面α,那么称向量n 垂直于平面α,记作n ⊥α.此时把向量n 叫做平面α的法向量.2. 线面关系的判定直线l 1的方向向量为e 1=(a 1,b 1,c 1),直线l 2的方向向量为e 2=(a 2,b 2,c 2),平面α的法向量为n 1=(x 1,y 1,z 1),平面β的法向量为n 2=(x 2,y 2,z 2).(1) 如果l 1∥l 2,那么e 1∥e 2Ûe 2=λe 1Ûa 2=λa 1,b 2=λb 1,c 2=λc 1.(2) 如果l 1⊥l 2,那么e 1⊥e 2Ûe 1·e 2=0a 1a 2+b 1b 2+c 1c 2=0.(3) 若l 1∥α,则e 1⊥n 1Ûe 11a 1x 1+b 1y 1+c 1z 1=0.(4) 若l 1⊥α,则e 1∥n 1Ûe 1=k n 1Ûa 1=kx 1,b 1=ky 1,c 1=kz 1. (5) 若α∥β,则n 1∥n 2Ûn 1=k n 2Ûx 1=kx 2,y 1=ky 2,z 1=kz 2. (6) 若α⊥β,则n 1⊥n 2Ûn 1·n 2=0x 1x 2+y 1y 2+z 1z 2=0.3. 利用空间向量求空间角(1) 两条异面直线所成的角①范围:两条异面直线所成的角θ的取值范围是⎝⎛⎤0,π2.②向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为φ,则有cos θ=|cos φ|. (2) 直线与平面所成的角①范围:直线和平面所成的角θ的取值范围是⎣⎡⎤0,π2.②向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.(3) 二面角①二面角的取值范围是[0,π]. ②二面角的向量求法:(ⅰ) 若AB 、CD 分别是二面角αl β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图①).(ⅱ) 设n 1、n 2分别是二面角αl β的两个面α、β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).[备课札记]题型1 空间向量的基本运算例1 如图,在平行六面体ABCDA 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则BM →=________.答案:-12a +12b +c解析:BM →=BB 1→+B 1M →=12()AD →-AB →+AA 1→=-12a +12b +c . 备选变式(教师专享)已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a =AB →,b =AC →. (1) 求a 和b 的夹角θ;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.解:∵A(-2,0,2),B(-1,1,2),C(-3,0,4),a =AB →,b =AC →,∴a =(1,1,0),b =(-1,0,2).(1)∵cosθ=a·b |a ||b |=-1+0+02×5=-1010,∴a 和b 的夹角为arccos ⎝⎛⎭⎫-1010.(2)∵k a +b =k(1,1,0)+(-1,0,2)=(k -1,k ,2), k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ), ∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8 =2k 2+k -10=0,解得k =-52或2.题型2 空间中的平行与垂直例2 如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:(1) AM ∥平面BDE ; (2) AM ⊥平面BDF.证明:(1) 建立如图所示的空间直角坐标系,设AC ∩BD =N ,连结NE.则N ⎝⎛⎭⎫22,22,0,E(0,0,1),A(2,2,0),M ⎝⎛⎭⎫22,22,1.∴ NE →=⎝⎛⎭⎫-22,-22,1,AM →=⎝⎛⎭⎫-22,-22,1.∴ NE →=AM →且NE 与AM 不共线.∴ NE ∥AM. ∵ NE Ì平面BDE ,AM Ë平面BDE , ∴ AM ∥平面BDE.(2) 由(1)知AM →=⎝⎛⎭⎫-22,-22,1,∵ D(2,0,0),F(2,2,1),∴ DF →=(0,2,1),∴ AM →·DF →=0,∴ AM ⊥DF.同理AM ⊥BF. 又DF ∩BF =F ,∴ AM ⊥平面BDF. 变式训练如右图,在棱长为a 的正方体ABCDA 1B 1C 1D 1中,G 为△BC 1D 的重心, (1) 试证:A 1、G 、C 三点共线; (2) 试证:A 1C ⊥平面BC 1D ;证明:(1) CA 1→=CB →+BA →+AA 1→=CB →+CD →+CC 1→,可以证明:CG →=13(CB →+CD →+CC 1→)=13CA 1→,∴ CG →∥CA 1→,即A 1、G 、C 三点共线.(2) 设CB →=a ,CD →=b ,CC 1→=c ,则|a|=|b|=|c|=a ,且a·b =b·c =c·a =0,∵ CA 1→=a +b +c ,BC 1→=c -a ,∴ CA 1→·BC 1→=(a +b +c )·(c -a )=c 2-a 2=0,∴ CA 1→⊥BC 1→,即CA 1⊥BC 1,同理可证:CA 1⊥BD ,因此A 1C ⊥平面BC 1D. 题型3 空间的角的计算例3 (2013·苏锡常镇二模)如图,圆锥的高PO =4,底面半径OB =2,D 为PO 的中点,E 为母线PB 的中点,F 为底面圆周上一点,满足EF ⊥DE.(1) 求异面直线EF 与BD 所成角的余弦值; (2) 求二面角OOFE 的正弦值.解:(1) 以O 为原点,底面上过O 点且垂直于OB 的直线为x 轴,OB 所在的线为y 轴,OP 所在的线为z 轴,建立空间直角坐标系,则B(0,2,0),P(0,0,4),D(0,0,2),E(0,1,2).设F(x 0,y 0,0)(x 0>0,y 0>0),且x 20+y 20=4, 则EF →=(x 0,y 0-1,-2),DE →=(0,1,0),∵ EF ⊥DE ,即EF →⊥DE →,则EF →·DE →=y 0-1=0,故y 0=1.∴ F(3,1,0),EF →=(3,0,-2),BD →=(0,-2,2).设异面直线EF 与BD 所成角为α,则cos α=⎪⎪⎪⎪⎪⎪EF →·BD →|EF →||BD →|=47×22=147. (2) 设平面ODF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥OD →,n 1⊥OF →,即⎩⎨⎧z 1=0,3x 1+y 1=0.令x 1=1,得y 1=-3,平面ODF 的一个法向量为n 1=(1,-3,0). 设平面DEF 的法向量为n 2=(x 2,y 2,z 2),同理可得平面DEF 的一个法向量为n 2=⎝⎛⎭⎫1,0,32.设二面角ODFE 的平面角为β,则|cos β|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|=17=77.∴ sin β=427.备选变式(教师专享)(2013·江苏卷)如图所示,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1) 求异面直线A 1B 与C 1D 所成角的余弦值;(2) 求平面ADC 1与平面ABA 1所成二面角的正弦值.解:(1) 以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2) 设平面ADC 1的法向量为n 1=(x ,y ,z),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量. 取平面AA 1B 的一个法向量为n 2=(0,1,0), 设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.1. 设A 1、A 2、A 3、A 4、A 5是空间中给定的5个不同的点,则使MA 1→+MA 2→+MA 3→+MA 4→+MA 5→=0成立的点M 的个数为________.答案:1 个解析:设A 1、A 2、A 3、A 4、A 5坐标分别为(x 1,y 1,z 1),(x 2,y 2,z 2),(x 3,y 3,z 3),(x 4,y 4,z 4)(x 5,y 5,z 5),设M 坐标为(x ,y ,z).由MA 1→+MA 2→+MA 3→+MA 4→+MA 5→=0得方程(x 1-x)+(x 2-x)+(x 3-x)+(x 4-x)+(x 5-x)=0, (y 1-y)+(y 2-y)+(y 3-y)+(y 4-y)+(y 5-y)=0, (z 1-z)+(z 2-z)+(z 3-z)+(z 4-z)+(z 5-z)=0,解得x =(x 1+x 2+x 3+x 4+x 5)5,y =(y 1+y 2+y 3+y 4+y 5)5,z =(z 1+z 2+z 3+z 4+z 5)5.故有唯一的M 满足等式. 2. (2013·连云港模拟)若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为________.答案:41133解析:cos 〈n ,a 〉=n·a|n||a|=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133.3. (2013·新课标全国卷Ⅱ)如图所示,直三棱柱ABCA 1B 1C 1中,D 、E 分别是AB 、BB 1的中点,AA 1=AC =CB =22AB.(1) 证明:BC 1∥平面A 1CD ; (2) 求二面角DA 1CE 的正弦值.(1) 证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF. 因为DF Ì平面A 1CD ,BC 1Ë平面A 1CD , 所以BC 1∥平面A 1CD.(2) 由AC =CB =22AB 得AC ⊥BC. 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA =2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 为平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n·m|n||m|=33,故sin 〈n ,m 〉=63.即二面角D-A 1C-E 的正弦值为63.4. (2013·重庆)如图所示,四棱锥PABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB.(1) 求PA 的长;(2) 求二面角B-AF-D 的正弦值.解:(1) 如图,连结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD.以O 为坐标原点,OB →、OC →、AP →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系Oxyz ,则OC =CDcos π3=1,而AC =4,得AO =AC -OC =3.又OD=CDsin π3=3,故A(0,-3,0),B(3,0,0),C(0,1,0),D(-3,0,0).因为PA ⊥底面ABCD ,可设P(0,-3,z),由F 为PC 边中点,得F ⎝⎛⎭⎫0,-1,z 2,又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|PA →|=2 3.(2) 由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2).由n 1·AD →=0,n 1·AF →=0, 得⎩⎨⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2). 由n 2·AB →=0,n 2·AF →=0, 得⎩⎨⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2). 从而向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B-AF-D 的正弦值为378.5. (2013·连云港调研)在三棱锥SABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 恰是AC 的中点,侧棱SB 和底面成45°角.(1) 若D 为侧棱SB 上一点,当SDDB为何值时,CD ⊥AB ;(2) 求二面角S-BC-A 的余弦值大小.解:以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系O-xyz.由题意知∠SBO =45°,SO =3.O(0,0,0),C(0,3,0),A(0,-3,0),S(0,0,3),B(3,0,0).(1) 设BD →=λBS →(0≤λ≤1),则OD →=(1+λ)OB →+λOS →=(3(1+λ),0,3λ),所以CD →=(3(1-λ),-3,3λ).因为AB →=(3,3,0),CD ⊥AB ,所以CD →·AB →=9(1-λ)-3=0,解得λ=23.故SD DB =12时, CD ⊥AB. (2) 平面ACB 的法向量为n 1=(0,0,1),设平面SBC 的法向量n 2=(x ,y ,z),则n 2·SB→=0,n 2·SC →=0,则⎩⎨⎧3x -3z =0,3y -3z =0,解得⎩⎨⎧x =z ,y =3z , 取n 2=(1,3,1),所以cos 〈n 1,n 2〉=3×0+1×0+1×112+12+(3)2·1=55.又显然所求二面角的平面角为锐角,故所求二面角的余弦值的大小为55.1. 在直四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2,底面是边长为1的正方形,E 、F 分别是棱B 1B 、DA 的中点.(1) 求二面角D 1-AE-C 的大小; (2) 求证:直线BF ∥平面AD 1E.(1) 解:以D 为坐标原点,DA 、DC 、DD 1分别为x 、y 、z 轴建立空间直角坐标系如图.则相应点的坐标分别为D 1(0,0,2),A(1,0,0),C(0,1,0),E(1,1,1),∴ED 1→=(0,0,2)-(1,1,1)=(-1,-1,1),AE →=(1,1,1)-(1,0,0)=(0,1,1), AC →=(0,1,0)-(1,0,0)=(-1,1,0).设平面AED 1、平面AEC 的法向量分别为m =(a ,b ,1),n =(c ,d ,1).由⎩⎪⎨⎪⎧ED 1→·m =0,AE →·m =0Þ⎩⎪⎨⎪⎧-a -b +1=0,b +1=0Þ⎩⎪⎨⎪⎧a =2,b =-1, 由⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0Þ⎩⎪⎨⎪⎧-c +d =0,d +1=0Þ⎩⎪⎨⎪⎧c =-1,d =-1, ∴m =(2,-1,1),n =(-1,-1,1),∴cos m ,n =m·n |m |·|n |=-2+1+16×3=0,∴二面角D 1AEC 的大小为90°.(2) 证明:取DD 1的中点G ,连结GB 、GF.∵E 、F 分别是棱BB 1、AD 的中点, ∴GF ∥AD 1,BE ∥D 1G 且BE =D 1G ,∴四边形BED 1G 为平行四边形,∴D 1E ∥BG . 又D 1E 、D 1A Ì平面AD 1E ,BG 、GF 平面AD 1E , ∴BG ∥平面AD 1E ,GF ∥平面AD 1E.∵GF 、GB Ì平面BGF ,∴平面BGF ∥平面AD 1E. ∵BF 平面AD 1E ,∴直线BF ∥平面AD 1E.(或者:建立空间直角坐标系,用空间向量来证明直线BF ∥平面AD 1E ,亦可)2. (2013·苏州调研)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,A 1A =3.D 是BC 的中点.(1) 求直线DB 1与平面A 1C 1D 所成角的正弦值; (2) 求二面角B 1-A 1D-C 1的正弦值.解:(1) 由题意,A(0,0,0),B(2,0,0),C(0,4,0),D(1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3).A 1D →=(1,2,-3),A 1C 1→=(0,4,0).设平面A 1C 1D 的一个法向量为n =(x ,y ,z).∵ n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0. ∴ x =3z ,y =0.令z =1,得x =3.n =(3,0,1). 设直线DB 1与平面A 1C 1D 所成角为θ,∵ DB 1→=(1,-2,3),∴ sin θ=|cos 〈DB 1→·n 〉|=3×1+0×(-2)+1×310×14=33535.(2) 设平面A 1B 1D 的一个法向量为m =(a ,b ,c). A 1B 1→=(2,0,0),∵ m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, ∴ a =0,2b =3c.令c =2,得b =3.m =(0,3,2). 设二面角B 1A 1DC 1的大小为α,∴ |cos α|=cos|〈m ,n 〉|=|m·n||m|·|m|=|0×3+3×0+2×1|13×10=265,则sin α=3765=345565.∴ 二面角B 1A 1DC 1的正弦值为345565.3. (2013·南通二模)如图,在三棱柱ABCA 1B 1C 1中,A 1B ⊥平面ABC ,AB ⊥AC ,且AB=AC =A 1B =2.(1) 求棱AA 1与BC 所成的角的大小;(2) 在棱B 1C 1上确定一点P ,使二面角P -AB -A 1的平面角的余弦值为255.解:(1) 如图,以A 为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A 1(0,2,2),B 1(0,4,2),AA 1→=(0,2,2),BC →=B 1C 1→=(2,-2,0).cos 〈AA 1→,BC →〉=AA 1→·BC →|AA 1→|·|BC →|=-48·8=-12,故AA 1与棱BC 所成的角是π3.(2) P 为棱B 1C 1中点,设B 1P →=λB 1C 1→=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB 的法向量为n 1=(x ,y ,z),AP →=(2λ,4-2λ,2),则⎩⎪⎨⎪⎧n 1·AP →=0,n 1·AB →=0.⎩⎪⎨⎪⎧λx +2y -λy +z =0,2y =0.⎩⎪⎨⎪⎧z =-λx ,y =0. 故n 1=(1,0,-λ),而平面ABA 1的法向量是n 2=(1,0,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=11+λ2=255,解得λ=12,即P 为棱B 1C 1中点,其坐标为P(1,3,2).4. (2013广东韶关第二次调研)如图甲,在平面四边形ABCD 中,已知∠A =45°,∠C =90°,∠ADC =105°,AB =BD ,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC(如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1) 求证: DC ⊥平面ABC ;(2) 求BF 与平面ABC 所成角的正弦值; (3) 求二面角B -EF -A 的余弦值.解:(1) ∵ 平面ABD ⊥平面BDC ,又∵ AB ⊥BD ,∴ AB ⊥平面BDC ,故AB ⊥DC ,又∵ ∠C =90°,∴ DC ⊥BC ,BC ÍABC 平面ABC ,DC Ë平面ABC ,故DC ⊥平面ABC.(2) 如图,以B 为坐标原点,BD 所在的直线为x 轴建立空间直角坐标系如下图示, 设CD =a ,则BD =AB =2a ,BC =3a ,AD =22a ,可得B(0,0,0),D(2a ,0,0),A(0,0,2a),C ⎝⎛⎭⎫32a ,32a ,0,F(a ,0,a),∴ CD →=⎝⎛⎭⎫12a ,-32a ,0,BF →=(a ,0,a).设BF 与平面ABC 所成的角为θ, 由(1)知DC ⊥平面ABC ,∴ cos ⎝⎛⎭⎫π2-θ=CD →·BF →|CD →|·|BF →|=12a 2a ·2a =24,∴ sin θ=24. (3) 由(2)知 FE ⊥平面ABC, 又∵ BE Ì平面ABC ,AE Ì平面ABC ,∴ FE ⊥BE ,FE ⊥AE ,∴ ∠AEB 为二面角B -EF -A 的平面角 .在△AEB 中,AE =BE =12AC =12AB 2+BC 2=72a ,∴ cos ∠AEB =AE 2+BE 2-AB 22AE ·BE=-17,即所求二面角B-EF -A 的余弦为-17.1. 类比平面向量,掌握空间向量的线性运算、空间向量的数量积、空间向量的坐标运算.2. 用空间向量解答立体几何问题的一般步骤:(1) 几何问题向量化:线线、线面、面面的平行、垂直、夹角等位置关系问题,利用立体几何中直线与平面有关判定定理和性质定理,将问题转化为直线的方向向量或平面的法向量之间的平行、垂直、夹角关系;(2) 进行向量运算:通常需通过建立空间直角坐标系将问题转化为空间向量的坐标运算.(3) 回归几何问题.如利用法向量求二面角时,要注意两平面的法向量的方向,确定求得的角是二面角还是其补角.请使用课时训练(A)第6课时(见活页).[备课札记]。
空间向量及应用课件-2023届高三数学一轮复习
如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯
p=xa+yb+zc
一的有序实数组(x,y,z),使得____________.
3.空间向量的数量积
(1)两向量的夹角
①已知两个非零向量a,b,在空间任取一点O,作OA=a,OB=b,
则________叫做向量a,b的夹角,记作〈a,b〉.
第五节 空间向量及应用
【课标标准】 1.了解空间直角坐标系,会用空间直角坐标系刻画
点的位置,会简单应用空间两点间的距离公式.2.了解空间向量的概念,
了解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标
表示.3.掌握空间向量的线性运算、数量积及其坐标表示.能用向量的
数量积判断向量的共线和垂直.4.理解直线的方向向量与平面的法向
7 = 2m − n
∴ 6 = m + 2n ,
λ = −3m + 3n
解得λ=-9.
5.(易错)在正方体ABCD -
1
A1B1C1D1中,1 = 1 1 ,AE=xAA1 +
4
1
1
y(AB + AD),则x=______,y=________.
4
解析:由向量加法的三角形法则得AE=AA1 +1 ,由平行四边形法则得:
(1)求证:PA⊥平面ABCD;
(2)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出
F点的位置,并证明;若不存在,说明理由.
专题突破❼
与球有关的切、接问题
[常用结论]
1.长方体的外接球
(1)球心:体对角线的交点;
a2 +b2 +c2
(a,b,c为长方体的长、宽、高).
高三数学新课标总复习立体几何-理科-向量的用法
【新知识梳理与重难点点睛】1.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定量对空间任意两个向量a ,b (b ≠0),b 与a 共线的充要条件是存在实数λ,使得b =λa .推论 如图所示,点P 在l 上的充要条件是:OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP →=OA →+tAB →或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM →+yOA →+zOB →,其中x +y +z =1.(3)空间向量基本定理如果三个向量e 1,e 2,e 3不共面,那么对空间任一向量p ,存在惟一的有序实数组(x ,y ,z ),使得p =x e 1+y e 2+z e 3.2.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a⊥b.②两向量的数量积已知空间两个非零向量a ,b 则|a||b|cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b 即a·b =|a||b|cos 〈a ,b 〉.(2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 3.空间向量的坐标表示及应用 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ),a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量)(3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a ·a =a 21+a 22+a 23,cos 〈a ,b 〉=a ·b |a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB →|=a 2-a 12+b 2-b 12+c 2-c 124.直线的方向向量与平面的法向量(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量:可利用方程组求出,设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.5.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. 6.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 立体几何中的向量方法(Ⅱ)——求空间角1.设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|. 2.设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.3.求二面角的大小a .如图①,AB 、CD 是二面角α -l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.b .如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.考点一 异面直线所成的角|(基础送分型考点——自主练透)[必备知识]两条异面直线所成角的求法设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).[提醒] 注意向量的夹角与异面直线所成角的区别当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[题组练透]1.(2014·新课标全国卷Ⅱ)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110 B.25 C.3010D.22解析:选C 建立如图所示的空间直角坐标系C -xyz ,设BC =2, 则B (0,2,0),A (2,0,0),M (1,1,2), N (1,0,2),所以BM =(1,-1,2),AN =(-1,0,2),故BM 与AN 所成角θ的余弦值cos θ=|BM ·AN ||BM |·|AN |=36×5=3010. 2.(2015·石家庄模拟)在正三棱柱ABC -A 1B 1C 1中,已知AB =2,CC 1=2,则异面直线AB 1和BC 1所成角的正弦值为( )A .1 B.77 C.12D.32∴可以以1OB ,1OC ,解析:选A 取线段A 1B 1,AB 的中点分别为O ,D ,则OC 1⊥平面ABB 1A 1,OD 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz ,如图,则A (-1,0,2),B 1(1,0,0),B (1,0,2),C 1(0,3,0),∴1AB =(2,0,-2),1BC =(-1,3,-2),因为1AB ·1BC =(2,0,-2)·(-1,3,-2)=0,所以1AB⊥1BC,即异面直线AB1和BC1所成角为直角,则其正弦值为1.故选A.[类题通法]1.向量法求异面直线所成的角的方法:(1)基向量法:利用线性运算.(2)坐标法:利用坐标运算.2.注意向量法求异面直线所成角与向量夹角的区别,尤其是取值范围.考点二直线与平面所成的角|(重点保分型考点——师生共研)[必备知识]直线和平面所成的角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.[提醒]向量法求线面角时是转化方向求向量与平面法向量间的夹角,但它不是线面角,注意联系与区别.[典题例析](2014·陕西高考)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角θ的正弦值.解:(1)证明:由该四面体的三视图可知,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1.由题设,BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形.又∵AD⊥DC,AD⊥BD,∴AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.(2)法一:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B (2,0,0),C (0,2,0),DA =(0,0,1),BC =(-2,2,0),BA =(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),∵EF ∥AD ,FG ∥BC ,∴n ·DA =0,n ·BC =0, 得⎩⎪⎨⎪⎧z =0,-2x +2y =0,取n =(1,1,0), ∴sin θ=|cos 〈BA ,n 〉|=⎪⎪⎪⎪⎪⎪BA ·n |BA ||n |=25×2=105.法二:如图,以D 为坐标原点建立空间直角坐标系, 则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别为BD ,DC 的中点,得 E ⎝⎛⎭⎫1,0,12,F (1,0,0),G (0,1,0). ∴FE =⎝⎛⎭⎫0,0,12,FG =(-1,1,0),BA =(-2,0,1). 设平面EFGH 的法向量n =(x ,y ,z ),则n ·FE =0,n ·FG =0,得⎩⎪⎨⎪⎧12z =0,-x +y =0,取n =(1,1,0), ∴sin θ=|cos 〈BA ,n 〉|=⎪⎪⎪⎪⎪⎪BA ·n |BA ||n |=25×2=105. [类题通法]利用平面的法向量求线面角时注意事项(1)求出直线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角即为所求.(2)若求线面角的余弦值,要注意利用平方关系sin 2θ+cos 2θ=1求出其值.不要误为直线的方向向量与平面的法向量所夹角的余弦值为所求.[演练冲关]AB =1,AA 1=2,D(2015·郑州一检)在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1为矩形,为AA 1的中点,BD 与AB 1交于点O ,CO ⊥侧面ABB 1A 1.(1)证明:BC ⊥AB 1;(2)若OC =OA ,求直线C 1D 与平面ABC 所成角的正弦值. 解:(1)证明:由题意tan ∠ABD =AD AB =22,tan ∠AB 1B =AB BB 1=22,注意到0<∠ABD ,∠AB 1B <π2,所以∠ABD =∠AB 1B ,所以∠ABD +∠BAB 1=∠AB 1B +∠BAB 1=π2,所以AB 1⊥BD ,又CO ⊥侧面ABB 1A 1,所以AB 1⊥CO .又BD 与CO 交于点O ,所以AB 1⊥平面CBD ,又BC ⊂平面CBD ,所以BC ⊥AB 1.(2)如图,以O 为原点,分别以OD ,OB 1,OC 所在的直线为x ,y ,z 轴,建立空间直角坐标系O -xyz , 则A ⎝⎛⎭⎫0,-33,0,B ⎝⎛⎭⎫-63,0,0, C ⎝⎛⎭⎫0,0,33,B 1⎝⎛⎭⎫0,233,0,D ⎝⎛⎭⎫66,0,0,又1CC =2AD ,所以C 1⎝⎛⎭⎫63,233,33. 所以AB =⎝⎛⎭⎫-63,33,0,AC =⎝⎛⎭⎫0,33,33, 1DC =⎝⎛⎭⎫66,233,33. 设平面ABC 的法向量为n =(x ,y ,z ),则⎩⎨⎧AB ·n =0,AC ·n =0,即⎩⎨⎧-63x +33y =0,33y +33z =0,令x =1,可得n =(1,2,-2)是平面ABC 的一个法向量,设直线C 1D 与平面ABC 所成的角为α, 则sin α=|cos 〈1DC ,n 〉|=|1DC ·n ||1DC ||n |=35555.考点三 二面角|(题点多变型考点——全面发掘)[必备知识]二面角的求法(1)如图①,AB ,CD 是二面角α -l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图②③,n 1,n 2分别是二面角α -l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉或π-〈n 1,n 2〉.[提醒] 求二面角时要注意判断其平面角是锐角还是钝角时,若不能判断二面角的平面角是锐角还是钝角时,要利用法向量的方向来判断法向量的夹角与二面角之间的关系是相等还是互补.[一题多变](2014·湖南高考)如图,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA =60°,求二面角C 1-OB 1-D 的余弦值.[解] (1)证明:因为四边形ACC 1A 1为矩形,所以CC 1⊥AC ,同理DD 1⊥BD ,因为CC 1∥DD 1,所以CC 1⊥BD ,而AC ∩BD =O ,因此CC 1⊥底面ABCD .由题设知,O 1O ∥C 1C ,故O 1O ⊥底面ABCD .(2)法一:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.如图,以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系O -xyz .不妨设AB =2,因为∠CBA =60°,所以OB =3,OC =1.于是相关各点的坐标为:O (0,0,0),B 1(3,0,2),C 1(0,1,2).易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量. 设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量, 则⎩⎪⎨⎪⎧n 2·1OB =0,n 2·1OC =0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23, 所以n 2=(2,23,-3),设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角, 于是cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2319=25719. 故二面角C 1-OB 1-D 的余弦值为25719.法二:如图,过O 1作O 1H ⊥OB 1于H ,连接HC 1.2,y=2,∴设二面角C1-OB·OM由cos 〈n 1,n 2〉=12知mm 2+73=12,∴34m 2=712,∴m 2=79(m >0),即m =73,∴M ⎝⎛⎭⎫0,1,73. 即在线段CC 1上存在一点M 且CM =73,使二面角M -OB 1-D 的大小为60°.[类题通法]利用法向量求二面角时应注意(1)对于某些平面的法向量要注意题中隐含着,不用单独求.(2)注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论失误考点一 空间向量法解决探索性问题|(常考常新型考点——多角探明)[多角探明]探索存在性问题在立体几何综合考查中是常考的命题角度,也是考生感觉较难,失分较多的问题,归纳起来立体几何中常见的探索性问题有:(1)探索性问题与平行结合; (2)探索性问题与垂直相结合; (3)探索性问题与空间角相结合.角度一:探索性问题与平行相结合1.(2015·北京西城二模)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,AB ⊥BC ,AB =2CD =2BC ,EA ⊥EB .(1)求证:AB ⊥DE ;(2)求直线EC 与平面ABE 所成角的正弦值;(3)线段EA 上是否存在点F ,使EC ∥平面FBD ?若存在,求出EFEA ;若不存在,请说明理由.解:(1)证明:取AB 的中点O ,连接EO ,DO . 因为EB =EA ,所以EO ⊥AB . 因为四边形ABCD 为直角梯形. AB =2CD =2BC ,AB ⊥BC ,所以四边形OBCD 为正方形,所以AB ⊥OD . 因为EO ∩DO =O ,所以AB ⊥平面EOD ,所以AB ⊥ED .(2)因为平面ABE ⊥平面ABCD ,且EO ⊥AB , 所以EO ⊥平面ABCD ,所以EO ⊥OD .由OB ,OD ,OE 两两垂直,建立如图所示的空间直角坐标系O -xyz . 因为三角形EAB 为等腰直角三角形, 所以OA =OB =OD =OE , 设OB =1,所以O (0,0,0),A (-1,0,0),B (1,0,0),C (1,1,0), D (0,1,0),E (0,0,1).所以EC =(1,1,-1), 平面ABE 的一个法向量为OD =(0,1,0). 设直线EC 与平面ABE 所成的角为θ, 所以sin θ=|cos 〈EC ,OD 〉|=|EC ·OD ||EC ||OD |=33,即直线EC 与平面ABE 所成角的正弦值为33. (3)存在点F ,且EF EA =13时,有EC ∥平面FBD .证明如下:由EF =13EA =⎝⎛⎭⎫-13,0,-13, F ⎝⎛⎭⎫-13,0,23,所以FB =⎝⎛⎭⎫43,0,-23,BD =(-1,1,0). 设平面FBD 的法向量为v =(a ,b ,c ), 则有⎩⎨⎧v ·BD =0,v ·FB =0,所以⎩⎪⎨⎪⎧-a +b =0,43a -23c =0,取a =1,得v =(1,1,2).因为EC ·v =(1,1,-1)·(1,1,2)=0, 且EC ⊄平面FBD ,所以EC ∥平面FBD , 即点F 满足EF EA =13时,有EC ∥平面FBD .角度二:探索性问题与垂直相结合2.已知正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC 的值;如果不存在,请说明理由.解:(1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB ,又AB ⊄平面DEF ,EF ⊂平面DEF ,所以AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系D -xyz ,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).易知平面CDF 的法向量为DA =(0,0,2),设平面EDF 的法向量n =(x ,y ,z ),则⎩⎨⎧DF ·n =0,DE ·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA ,n 〉=DA ·n | DA ||n |=217,所以二面角E -DF -C 的余弦值为217. (3)存在.设P (s ,t,0),则AP ·DE =(s ,t ,-2)·(0,3,1)=3t -2=0,∴t =233, 又BP =(s -2,t,0),PC =(-s,23-t,0), ∵BP ∥PC ,∴(s -2)(23-t )=-st , ∴3s +t =2 3.把t =233代入上式得s =43,∴BP =13BC ,∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13. 角度三:探索性问题与空间角相结合3.(2015·广东七校联考)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,E ,F 分别为PC ,BC 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC ;(3)在线段AB 上是否存在点G ,使得二面角C -PD -G 的余弦值为13?说明理由.解:(1)证明:如图,连接AC ,交BD 于点F ,底面ABCD 为正方形, F 为AC 中点,E 为PC 中点. 所以在△CP A 中,EF ∥P A . 又P A ⊂平面P AD ,EF ⊄平面P AD , 所以EF ∥平面P AD .(2)证明:因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD . 底面ABCD 为正方形,CD ⊥AD ,CD ⊂平面ABCD ,所以CD ⊥平面P AD .又P A ⊂平面P AD ,所以CD ⊥P A . 又P A =PD =22AD ,所以△P AD 是等腰直角三角形,且∠APD =π2,即P A ⊥PD . 又CD ∩PD =D ,且CD ,PD ⊂平面PDC ,所以P A ⊥平面PDC . 又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC .(3)如图,取AD 的中点O ,连接OP ,OF ,因为P A =PD ,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,而O ,F 分别为AD ,BD 的中点,所以OF ∥AB , 又底面ABCD 是正方形,故OF ⊥AD ,以O 为原点,建立空间直角坐标系O -xyz 如图所示,则有A (1,0,0),C (-1,2,0),F (0,1,0),D (-1,0,0),P (0,0,1),若在AB 上存在点G ,使得二面角C -PD -G 的余弦值为13,连接PG ,DG ,设G (1,a,0)(0≤a ≤2),则DP =(1,0,1),GD =(-2,-a,0),由(2)知平面PDC 的一个法向量为PA =(1,0,-1), 设平面PGD 的法向量为n =(x ,y ,z ).则⎩⎨⎧n ·DP =0,n ·GD =0,即⎩⎪⎨⎪⎧x +z =0,-2x -ay =0,解得⎩⎨⎧z =a2y ,x =-a2y .令y =-2,得n =(a ,-2,-a ),所以|cos 〈n ,PA 〉|=|n ·PA ||n ||PA |=2a 2×4+2a 2=13,解得a =12⎝⎛⎭⎫舍去-12. 所以,在线段AB 上存在点G ⎝⎛⎭⎫1,12,0⎝⎛⎭⎫此时AG =14AB ,使得二面角C -PD -G 的余弦值为13. [类题通法]解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能推导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若推导出与条件或实际情况相矛盾的结论,则说明假设不成立,即不存在.(2)探索线段上是否存在点时,注意三点共线条件的应用.考点二 空间向量的综合应用|(重点保分型考点——师生共研)[典题例析](2014·江西高考)如图,四棱锥P -ABCD 中,ABCD 为矩形,平面P AD ⊥平面ABCD . (1)求证:AB ⊥PD ;(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P -ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.解:(1)证明:ABCD 为矩形,故AB ⊥AD ;又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,所以AB ⊥平面P AD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG . 故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG . 在Rt △BPG 中,PG =233,GC =263,BG =63.设AB =m ,则OP =PG 2-OG 2= 43-m 2, 故四棱锥P -ABCD 的体积为 V =13·6·m ·43-m 2=m38-6m 2.因为m 8-6m 2=8m 2-6m 4= -6⎝⎛⎭⎫m 2-232+83, 故当m =63,即AB =63时,四棱锥P -ABCD 的体积最大.B⎝⎛⎭⎫63,-63,0,此时,建立如图所示的坐标系,各点的坐标为O (0,0,0),C ⎝⎛⎭⎫63,263,0,D ⎝⎛⎭⎫0,263,0,P ⎝⎛⎭⎫0,0,63, 故PC =⎝⎛⎭⎫63,263,-63,BC =(0,6,0), CD =⎝⎛⎭⎫-63,0,0, 设平面BPC 的一个法向量n 1=(x ,y,1),则由n 1⊥PC ,n 1⊥BC 得⎩⎪⎨⎪⎧63x +263y -63=0,6y =0,解得x =1,y =0,n 1=(1,0,1).同理可求出平面DPC 的一个法向量n 2=⎝⎛⎭⎫0,12,1.从而平面BPC 与平面DPC 夹角θ的余弦值为 cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105. [类题通法]立体几何的综合应用问题中常涉及最值问题,处理时常用如下两种方法(1)结合条件与图形恰当分析取得最值的条件; (2)直接建系后,表示出最值函数,转化为求最值问题.[演练冲关](2015·山西模拟)如图,在几何体ABCDEF 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF =1.(1)求证:平面FBC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为θ(θ≤90°),试求cos θ的取值范围.解:(1)证明:在四边形ABCD 中,∵AB ∥CD ,AD =DC =CB =1,∠ABC =60°,∴AB =2, ∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, ∴AB 2=AC 2+BC 2,∴BC ⊥AC .∵平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC ⊂平面ABCD ,∴BC ⊥平面ACFE . 又因为BC ⊂平面FBC ,所以平面FBC ⊥平面ACFE .(2)由(1)知可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系C -xyz ,令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),∴AB =(-3,1,0),BM =(λ,-1,1). 设n 1=(x ,y ,z )为平面MAB 的法向量,由⎩⎨⎧n 1·AB =0,n 1·BM =0,得⎩⎨⎧-3x +y =0,λx -y +z =0,取x =1,则n 1=(1,3,3-λ). ∵n 2=(1,0,0)是平面FCB 的一个法向量, ∴cos θ=|n 1·n 2||n 1|·|n 2|=11+3+(3-λ)2=1(3-λ)2+4.∵0≤λ≤3,∴当λ=0时,cos θ有最小值77, 当λ=3时,cos θ有最大值12,∴cos θ∈⎣⎡⎦⎤77,12.【新方法、新技巧练习与巩固】(一)1.(2015·云南模拟)如图,在正方体ABCD-A1B1C1D1中,E为AB的中点.(1)求直线AD和直线B1C所成角的大小;(2)求证:平面EB1D⊥平面B1CD.2.(2014·北京高考)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若P A⊥底面ABCDE,且P A=AE.求直线BC与平面ABF所成角的大小,并求线段PH的长.3.(2014·新课标全国卷Ⅰ)如图三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.B卷:增分提能1.(2015·深圳一调)如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB=2A1B1=2DD1=2a.(1)求异面直线AB1与DD1所成角的余弦值;(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1;(3)在(2)的条件下,求二面角F-CC1-B的余弦值.2.(2014·山东高考)如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.3.(2015·兰州模拟)如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若二面角P-AC-E的余弦值为63,求直线P A与平面EAC所成角的正弦值.答案A 卷:夯基保分1.解:不妨设正方体的棱长为2个单位长度,以DA ,DC ,DD 1分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系D -xyz .根据已知得:D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),B 1(2,2,2).(1)∵DA =(2,0,0),1CB =(2,0,2),∴cos 〈DA ,1CB 〉=DA ·1CB |DA ||1CB |=22.∴直线AD 和直线B 1C 所成角为π4.(2)证明:取B 1D 的中点F ,得F (1,1,1),连接EF . ∵E 为AB 的中点,∴E (2,1,0), ∴EF =(-1,0,1),DC =(0,2,0), ∴EF ·DC =0,EF ·1CB =0, ∴EF ⊥DC ,EF ⊥CB 1.∵DC ∩CB 1=C ,∴EF ⊥平面B 1CD .又∵EF ⊂平面EB 1D ,∴平面EB 1D ⊥平面B 1CD . 2.解:(1)证明:在正方形AMDE 中, 因为B 是AM 的中点,所以AB ∥DE . 又因为AB ⊄平面PDE , 所以AB ∥平面PDE .因为AB ⊂平面ABF ,且平面ABF ∩平面PDE =FG , 所以AB ∥FG .(2)因为P A ⊥底面ABCDE ,所以P A ⊥AB ,P A ⊥AE .如图建立空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC =(1,1,0). 设平面ABF 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·AB =0,n ·AF =0,即⎩⎪⎨⎪⎧x =0,y +z =0. 令z =1,得y =-1,所以n =(0,-1,1). 设直线BC 与平面ABF 所成角为α,则 sin α=|cos 〈n ,BC 〉|=⎪⎪⎪⎪⎪⎪n ·BC |n ||BC |=12.因此直线BC 与平面ABF 所成角的大小为π6.设点H 的坐标为(u ,v ,w ).因为点H 在棱PC 上,所以可设PH =λPC (0<λ<1), 即(u ,v ,w -2)=λ(2,1,-2), 所以u =2λ,v =λ,w =2-2λ.因为n 是平面ABF 的法向量,所以n ·AH =0, 即(0,-1,1)·(2λ,λ,2-2λ)=0.解得λ=23,所以点H 的坐标为⎝⎛⎭⎫43,23,23. 所以PH =⎝⎛⎭⎫432+⎝⎛⎭⎫232+⎝⎛⎭⎫-432=2.3.解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点. 又AB ⊥B 1C ,所以B 1C ⊥平面ABO . 由于AO ⊂平面ABO ,故B 1C ⊥AO . 又B 1O =CO ,故AC =AB 1.(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO .又因为AB =BC ,所以△BOA ≌△BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两相互垂直.以O 为坐标原点,OB ,1OB ,OA 的方向为x 轴,y 轴,z 轴的正方向,|OB |为单位长,建立如图所示的空间直角坐标系O -xyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形. 又AB =BC ,则A ⎝⎛⎭⎫0,0,33,B (1,0,0),B 1⎝⎛⎭⎫0,33,0,C ⎝⎛⎭⎫0,-33,0.1AB =⎝⎛⎭⎫0,33,-33,11A B =AB =⎝⎛⎭⎫1,0,-33, 11B C =BC =⎝⎛⎭⎫-1,-33,0. 设n =(x ,y ,z )是平面AA 1B 1的法向量,则⎩⎪⎨⎪⎧n ·1AB =0,n ·11A B =0,即⎩⎨⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量,则⎩⎪⎨⎪⎧m ·11A B =0,m ·11B C =0.同理可取m =(1,-3,3). 则cos 〈n ,m 〉=n ·m |n ||m |=17.所以二面角A -A 1B 1-C 1的余弦值为17.B 卷:增分提能1.解:以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系D -xyz ,则A (2a ,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ), ∴|cos 〈1AB ,1DD 〉|=⎪⎪⎪⎪⎪⎪1AB ·1DD |1AB |·|1DD |=33, ∴异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0,1FB ·BC =0,∴FB 1⊥BB 1,FB 1⊥BC .∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.(3)由(2)知,1FB 为平面BCC 1B 1的一个法向量. 设n =(x 1,y 1,z 1)为平面FCC 1的法向量, ∵1CC =(0,-a ,a ),FC =(-a,2a,0),∴⎩⎨⎧n ·1CC =0,n ·FC =0,得⎩⎪⎨⎪⎧-ay 1+az 1=0,-ax 1+2ay 1=0.令y 1=1,则n =(2,1,1), ∴cos 〈1FB ,n 〉=1FB ·n|1FB |·|n |=33,∵二面角F -CC 1-B 为锐角, ∴二面角F -CC 1-B 的余弦值为33. 2.解:(1)证明:因为四边形ABCD 是等腰梯形,且AB =2CD ,所以AB ∥DC ,又由M是AB 的中点,因此CD ∥MA 且CD =MA .连接AD 1,在四棱柱ABCD -A 1B 1C 1D 1中,因为CD ∥C 1D 1,CD =C 1D 1,可得C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形,因此C 1M∥D 1A . 又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1,所以C 1M ∥平面A 1ADD 1.(2)法一:连接AC ,MC ,由(1)知CD ∥AM 且CD =AM , 所以四边形AMCD 为平行四边形. 可得BC =AD =MC ,由题意知∠ABC =∠DAB =60°,所以△MBC 为正三角形,因此AB =2BC =2,CA =3,因此CA ⊥CB .以C 为坐标原点,建立如图所示空间直角坐标系C -xyz . 所以A (3,0,0),B (0,1,0),D 1(0,0,3). 因此M ⎝⎛⎭⎫32,12,0,所以1MD =⎝⎛⎭⎫-32,-12,3,11D C =MB =⎝⎛⎭⎫-32,12,0.设平面C 1D 1M 的法向量n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·11D C =0,n ·1MD =0,得⎩⎨⎧3x -y =0,3x +y -23z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1). 又1CD =(0,0,3)为平面ABCD 的一个法向量. 因此cos 〈1CD ,n 〉=1CD ·n |1CD ||n |=55.所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 法二:由(1)知平面D 1C 1M ∩平面ABCD =AB ,过C 向AB 引垂线交AB 于N ,连接D 1N .由CD 1⊥平面ABCD ,可得D 1N ⊥AB ,因此∠D 1NC 为二面角C 1-AB -C 的平面角.在Rt △BNC 中,BC =1,∠NBC =60°, 可得CN =32.所以ND 1=CD 21+CN 2=152. 在Rt △D 1CN 中,cos ∠D 1NC =CN D 1N =32152=55.所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 3.解:(1)证明:∵PC ⊥底面ABCD ,∴PC ⊥AC , ∵底面ABCD 是直角梯形,且AB =2AD =2CD =2, ∴AC =2,BC = 2. ∴AB 2=AC 2+BC 2, ∴AC ⊥BC ,∵PC ∩BC =C ,∴AC ⊥平面PBC , ∵AC ⊂平面EAC , ∴平面EAC ⊥平面PBC .C (1,1,0),E ⎝⎛⎭⎫12,32,a 2,(2)建立如图所示的空间直角坐标系A -xyz .设PC =a ,则A (0,0,0),P (1,1,a ),B (0,2,0).∴AC =(1,1,0),AE =⎝⎛⎭⎫12,32,a 2,AP =(1,1,a ),BC =(1,-1,0).设平面EAC 的法向量为v =(x ,y ,z ),则⎩⎨⎧v ·AC =0,v ·AE =0,即⎩⎪⎨⎪⎧x +y =0,x +3y +az =0,令x =1,则v =⎝⎛⎭⎫1,-1,2a , ∵BC ⊥平面P AC ,∴平面P AC 的一个法向量为u =BC =(1,-1,0), 设二面角P -AC -E 的大小θ,则cos θ=v ·u |v |·|u |=1×1+(-1)×(-1)+0×2a 2× 2+4a 2=63,解得a =2,∴直线P A 与平面EAC 所成角的正弦值为 cos 〈v ,AP 〉=v ·AP |v |·|AP |=1×1+1×(-1)+2×13×6=23。
空间向量的复习与应用
空间向量的复习与应用教案主题:空间向量的复习与应用说明:本教案旨在对高中数学课程中的空间向量进行复习,并通过实际应用场景展示空间向量的作用。
教案共分为以下几个小节,分别介绍空间向量的基本概念、向量的运算、向量的坐标表示、向量的模和方向以及向量的应用。
通过这些内容的学习,学生将能够更好地理解和应用空间向量。
一、引入教师可以通过引用一个贴近学生生活的例子,如描述一个用空间向量来计算的问题,引起学生的兴趣和好奇心。
例如,描述一个飞机在空中沿不同方向飞行的场景,探讨如何利用空间向量计算飞机的位移。
二、空间向量的基本概念1. 向量的定义:通过引用实际例子,介绍向量的定义,以及向量的起点和终点的概念。
2. 向量的表示:通过几何图形和坐标表示,展示如何表示一个空间向量。
3. 向量的相等:引入向量的相等概念,即相同方向和相同大小的向量。
三、向量的运算1. 向量的加法:通过图形和坐标表示,介绍向量的加法规则,包括平行四边形法则和三角形法则。
2. 向量的减法:通过图形和坐标表示,介绍向量的减法规则,即加上负向量。
3. 向量的数量积:引入向量的数量积的概念,以及数量积的性质和计算方法。
四、向量的坐标表示1. 坐标系:介绍直角坐标系和空间直角坐标系,以及坐标表示的方法。
2. 向量的坐标计算:通过例子演示如何利用向量的起点和终点的坐标计算向量的坐标。
五、向量的模和方向1. 向量的模:介绍向量的模的概念和计算方法,并通过实际例子展示求解过程。
2. 向量的方向角:引入向量的方向角的概念,以及通过坐标表示和计算方向角的方法。
六、向量的应用1. 平面向量的投影:通过实际问题,介绍如何利用空间向量的投影计算,如飞机在空中的水平飞行距离。
2. 向量的垂直和平行关系:通过实际问题,介绍如何通过向量的数量积判断向量的垂直和平行关系,如判断两个物体的运动方向是否相互垂直。
七、总结与拓展教师可以对本节课所学内容进行总结,并给学生提供一些拓展问题,让学生继续思考和应用空间向量的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解(2):由题意知,直线l的方程为y=kx+a,代入x2=4ay得x2 -4akx-4a2=0 设A(x1,y1),B(x2,y2),则x1+x2=4ak,x1x2= -4a2。 ∴y1+y2=(kx1+a)+(kx2+a)=k(x1+x2)+2a=4ak2+2a, y1y2=(kx1+a)(kx2+a)=k2x1x2+ak(x1+x2)+a2=
此题由角的范围想到角的余弦值的正负,进而想到向量的数量积公
式,转化为直线和圆锥曲线的关系,思路可谓自然。在此过程中,向量
连接起三角与解析几何,起到了桥梁的作用。
在数学的复习中,教师要有意识地以向量的知识为抓手,精心组织
起以向量为中心的知识的交汇网络,在教材中充分挖掘素材,让学生在
运用中逐渐感知、理解、掌握。
(3) 向量知识在解析几何中的应用 高考命题中对知识综合性的考查,往往在知识网络交汇点上设计试 题,注重学科的内在联系和综合,而向量则是三角函数、解析几何等多 学科知识的交汇点。因此也是高考的命题热点。
例 已知定点F为(0,a)(a≠0),点PM分别在x,y轴上,满足,
4 点N满足。 (1) 求点N的轨迹方程C (2) 过F作一条斜率为k的直线l,l与曲线C交于AB两点, 设G(0,a),,求证:0<
向量模型在数学复习中
的应用
无锡市第三高级中学 顾晓骅 214026
向量是数学中非常重要的概念,在新课标中,向量以两个不同的 层次平面向量与空间向量进入教材,向量的应用非常广泛,它是三角、 代数、解析几何、立体几何等多种学科联系的纽带。作为一种数学或物 理模型,具有很强的工具性。向量不仅是一个数学运算的对象,更是一 种数学模型,一种数学观念。引进向量来处理问题,有时很快捷,也很 简洁明了。在历年的高考中,向量多次作为被考察的对象,地位逐年上 升,形式也产生变化。教育部考试中心任子朝先生指出“向量已经由前 几年只是在解决问题中的辅助地位上升为分析和解决问题时的必不可少 的工具。” 因此,高三数学复习要重视向量的这种模型作用。本文结 合多年的高三复习经验,谈一点个人的想法。 (1) 向量知识在代数中的应用
现行立体几何最大的变化是引进空间向量,空间向量已是立体几何
中的重要内容,它改变了以往立体几何中单一的逻辑证明的思维方法和 解题方法,因为用向量来运算避免了繁琐的定性分析,使问题得到了大 大简化。
例3: 如图,三棱柱ABC-中,, (1)求AO与BC所成的角; (2) 分析: 已知条件集中在A处,故选择一组基底。 解:(1)设 所以 又 故 所以cos< > = (2,变形为可以解决不等式中一类含 有乘积之和或乘方之和的式子的题目,采用构造向量去解往往能化难为 易,同时有效地提高学生的观察分析能力和想象能力。
例1:设 分析 不等式左边可以看作两向量模平方的积,不等式右边可看作两 向量内积的平方,所以有 例2:设 分析: 由函数的结构,可将其变形为向量模的形式,然后再利用向 量模的性质进行解题: 构建向量则有 所以 (2)向量知识在立体几何中的应用
-4a2k2+4a2k2+a2=a2. ∵G(0,-a),∴=(x1,y1+a),=(x2,y2+a).
∴=x1x2+(y1+a)(y2+a)=x1x2+y1y2+a(y1+y2)+a2 =-4a2+a2+a(4ak2+2a)+a2=4a2k2 0.
即cos0,∴cos0,∴0.
又点G(0,-a)不在直线l上,∴A,B,G三点不共线.∴0<.