舰载机纵向自动着舰控制

舰载机纵向自动着舰控制
舰载机纵向自动着舰控制

世界各国航母舰载机指挥手语图解

世界各国航母舰载机指挥手语图解 由于飞机起降时声音巨大,所有的口令都是通过手势来表达。在一个起落架次中,记者就看到了30多种手势。有关人士对各种手势的含义作了详细的解答。双臂上举,食指上指,做圆周运动。“这是命令偏流板升起。” 一条手臂从头顶垂直方向扫向水平方向,再回到头顶。“这是着舰区甲板引导员给出的甲板畅通手势。” 图为中国航母起飞助理的起飞手势,中国海军飞行助理的规范手势显然模仿了美军。 起飞助理对着飞行员向上伸出拇指。“这是示意飞行员检查完毕,一切正常。” 飞行助理下蹲屈身,右手臂迅速上扬,“这是示意放下止动轮挡和偏流板,飞机起飞。因其姿势酷似举枪射击,因此飞行助理又被戏称为‘射手’。” “飞行员头靠座椅后枕,抬起右手行礼,这是向起飞助理示意可以起飞。” 战斗机在航母上起飞,离不开航母特装人员的紧密配合。仅完成起飞动作,就需要65个流程,任何一个流程都容不得差错。在着舰起飞过程中,飞行员无法感知外界因素。“因此,

我们的手势要求及时、准确、规范。”有关人士称,“为了达到这个要求,大家都刻苦练习,经常累得手都抬不起来。” 图为俄罗斯海军舰载机起飞时,起飞助理的手势,请注意他只是站起身做了一个简单的手势。 图为美军舰载战斗机起飞,当飞行员敬礼表示准备妥当,弹射指挥官面向前面,再转身对着飞机,蹲下,手向前指,他的手按在甲版上的同时,发射员按下发射按钮,弹射器压力快速加大,扣在前起落架后面的扣子松开,飞机在剎那间向前冲。 舰载机准备着舰前,身着七种颜色服装的舰面人员排着紧密的两行队形,从飞行甲板一端走向另外一端反复检查甲板,如同七色彩虹在甲板上延伸。 在舰面上,各战位的人员都身着五颜六色的服装,这与传统军舰上统一颜色的着装要求产生了极大的差别。“你看,这些官兵头盔、马甲、长袖套衫的不同颜色以及他们背后不同的图案和符号,表明了他们的战位和职责,外行看起来,仿佛在甲板上看到了七彩的‘彩虹’,因此我们也称之为‘甲板彩虹服’。”李晓勇详细介绍了每一种颜色的含义,“紫色代表燃油

舰载机着舰训练

舰载机有固定翼飞机和旋翼飞机,这里要谈到的舰载机着舰是指固定翼飞机。大家知道,舰载飞机的起降主要以航空母舰为基地,那么它就需要适应航母这个海上“移动的陆地”。在此,拟通过对舰载飞机着舰过程与陆基飞机着陆过程的分析比较,一窥舰载机着舰的突出特点,以及整个着舰过程对各种主要相关结构、装置、设施的特殊要求。 “移动的陆地” 说到舰载机,我们不妨先简单谈淡航空母舰。航空母舰出勤时,是一个海上六自由度运动的平台,它不仅在海平面上作平面运动,而且在海浪的作用下还会产生纵向和横向的摇动以及升沉运动。航母上的大气紊流情况也比较复杂,除了陆地机场通常存在的大气紊流以外,由于航母庞大的舰体以及自身的运动还会在舰首产生上洗气流,并在舰尾处形成较强的公鸡尾状的尾流。另外还需要特别指出的是,航母虽然庞大,但是可供舰载机起飞、着舰的跑道长度是很有限的。目前世界上大型的航母甲板总长度也不过300多米,而能够提供舰载机起飞、着舰使用的只有其中的100米左右。如美国的“尼米兹”级航母首舰“尼米兹” 号航母,该舰长332.1米,宽40.8米;飞行甲板长338,8米,宽76.8米。 图集详情:舰载机着舰航母相当于每小时300公里坠毁在航母甲板上,每一次降落和起飞都是一次生命的挑战,都是对舰载战斗机飞行员从身体极限、飞行技术、意志品质、到心理素质的极端考验。航空母舰 (以下简称“航母”) 是一种巨大而复杂的海上作战平台, 是海上移动的机场。飞机着舰与着陆的物理环境有很大差别, 主要表现在甲板尺寸受限, 航母处于运动状态, 存在甲板风和舰尾气流以及驾驶员的视景受限。正是这些差别, 使得飞机着舰难度更大, 不安全因素更多, 撞机、撞舰、坠海事故时有发生。因此, 着舰安全一直是世界各国航母发展和使用中的重大课题。(来源:环球网) 危险性和复杂性 飞机的起飞着陆通常是事故多发状况,而舰载机的着舰比陆基飞机着陆还具危险性和复杂性。首先,舰载机着舰进场速度小,受舰上扰流因素影响相对较大,客观上使得舰载机轨迹稳定性变差。然而舰载机着舰条件要求反而相对苛刻(如前所述:着舰可用甲板长度有限,作为着舰平台的航母自身是六自由度运动体,以及出舰海上作战的技战术要求等),恰恰又要求飞机进舰下滑时的轨迹稳定性比陆基飞机还要高,这个矛盾对舰载机初期的发展形成了较大的制约。60年代以前,舰载机着舰的事故率是很高的,以后随着着舰下滑引导技术及其它辅助着舰技术的发展,事故率才有所下降,但相比陆基飞机着陆事故率仍然较高。舰载机在下滑着舰时,对垂直平面内下滑航迹控制要求很高,而气流、海面状况等一些客观不确定

全方位移动平台控制系统设计

全方位移动平台控制系统设计 全方位移动平台可实现二维平面内任意方向的移动功能,可实现在狭小空间运送集装物资和长大物资,以及对大件零部件精确定位与安装、装配维修等应用目的。本文提出一种全方位移动平台控制系统方案,使其灵活应用在空间有限、机动性要求高的场合。 1 控制系统整体设计方案 控制系统由手持遥控器和平台控制器两大部分组成,致力于操作者与移动平台的人机交互控制,遥控器加平台控制器的局部自主系统组成完整的控制系统。遥控器和平台控制器均选用*****07系列微处理器为控制核心,控制系统整体框架如图1所示。 系统选用Zigbee网络技术进行无线通讯传输,它是一种新型的短距离无线接入技术,与Wi-Fi、Bluerooth无线技术相比,Zigbee技术具有低成本、低复杂度、低功耗、时延短、组网方便、网络容量大、安全玎靠优势。 针对全方位移动平台在平面上可三自由度运动的移动特性,遥控器端选取通过操纵三轴工业手柄来对应前后、左右平移、中心转向及其复合运动。遥控器端搭载OLED屏用来显示信息,OLED屏相对于LED屏具有抗震性能更好,响应时间短,发光效率高,能耗低等特点。遥控器通过AD采集获取三轴工业手柄模拟量数值,进行均值滤波、模数转换等处理获取当前控制信息,以扫描方式读取遥控器的开关获得当前运行模式、速度等级等控制状态,将相应数据内容同首尾字节、校验码封装成帧,通过串口发送到無线通信模块,将其转发给平台控制器;同时将当前状态发送到遥控器OLED显示屏。 平台控制器的无线通信模块将接收到的信息通过串口转发给控制器,控制器收到的一帧完整、无错误指令后,根据制定的通信协议内容,执行相应功能,同时运算出各电机转速,及电机转向,将其通过CAN总线网络分别发送给相应电机驱动器,驱动电机来完成车体

舰载机着舰导航与定位技术

舰载机着舰导航与定位技术 郝帅,程咏梅,马旭,王小旭 (西北工业大学自动化学院,陕西西安710072) 摘要:首先介绍了舰载机的重要性及舰载机安全着舰的困难性、复杂性,并详细论述了早期舰载机所使用的着舰技术,其中包括人工着舰引导和光学助降技术。然后对舰载机安全着舰的关键技术——舰载机导航和定位技术进行了分析,其中主要包括舰载机捷联惯导传递对准、组合导航,以及舰载机相对航母雷达的跟踪定位、视觉辅助定位等技术,并总结了目前国内外对舰载机导航和定位技术的研究成果及动态。最后,指出了舰载机着舰导航与定位技术未来的研究方向。 关键词:舰载机;着舰技术;导航与定位;视觉导航;组合导航 中途分类号:U666.1 文献标识码:A Carrier-based Aircraft Landing Navigation and Positioning Technology HAO Shuai,CHENG Yong-mei,MA Xu,W ANG Xiao-xu (College of Automation, Northwestern Polytechnical University, 710072, Xi’an, China) ABSTRACT:First, the importance of carrier-based aircraft and difficulty, complexity of safe landing technology are introduced and the early landing technique is introduced in detail, including artificial landing guidance and optical auxiliary landing technology. Then carrier-based aircraft safe landing key technology is analyzed which includes carrier-based aircraft landing navigation and positioning technology. The research content mainly includes the strapdown inertial navigation transfer alignment technology of carrier-based aircraft, integrated navigation, tracking and location of carrier-based aircraft relative to aircraft carrier radar and visual auxiliary positioning. And research result and status of carrier-based aircraft navigation and positioning are concluded. Finally, carrier-based aircraft landing navigation and positioning technology in the future is pointed out. KEYWORDS:carrier-based aircraft; landing technology; navigation and positioning; vision-based navigation; integrated navigation 1 引言 航空母舰是当今世界上拥有最强大综合战斗力的海上“钢铁堡垒”,拥有全面的作战打击能力,凭借舰载机的强大作战能力可以使舰队的作战半径扩大到数百公里,对压制敌方空中和海上力量有着重要意义。舰载机飞行员被认为是从事世界上最危险的职业,当舰载机执行完作战、训练、侦查等任务后,安全顺利着舰是件惊心动魄的工作,在广袤无垠的大海上航空母舰犹如一片树叶,所以想在有限的空间内安全着舰对飞行员个人技术及生命都是巨大的挑战。与陆基飞机着陆相比,舰载飞机在甲板上着舰更为困难,这是因为航空母舰是一个长度有限的海上浮动平台,当舰载机下滑着舰时,对垂直平面内下滑航迹控制要求很高,而气流、海面状况等一些客观不确定因素,以及航母着舰引导、飞行员驾驶等也存在主观不确定因素,这些都可能导致航迹控制不当而未能在预定着舰点着舰,最终导致着舰失败,甚至引发严重事故。 舰载机着舰过程如图1所示。图中的着舰方式为目视着舰,能见度超过5千米以上。当舰载机进行着舰时,在航母上空按长方形航线进行左回旋飞行,此时的航母位于长方形的右边线的中心,记为PL1;第二、三、四个边线中心分别记为PL2、PL3和PL4。 图1 舰载机着舰示意图 基金项目:研究得到航空科学基金资助(项目编号:20100853010)。

移动机器人控制系统的发展方向

移动机器人控制系统的发展方向 摘要随着计算机技术、传感器技术的不断发展,对于机器人领域的发展具有一定的促进作用。而由于移动机器人具有能够自治与移动的特征,在机器人领域处于核心地位。在复杂、危险的环境中,移动机器人所发挥的作用是有目共睹的。对此,对当前国内外较为常见的移动机器人控制系统进行剖析,并在此基础上论述了该领域的未来发展方向。 【关键词】移动机器人控制系统发展方向 移动机器人属于能够自动执行工作任务的机器,不但能够按照事先编译的程序运行,同时人类还可对其指挥。当前主要被运用在生产业、建筑业以及航空航天领域,而该领域的发展情况直接关系到国家综合实力的提升速度,对此加强对移动机器人控制系统的发展情况,以及未来发展方向的研究势在必行。 1 国内外常见的移动机器人控制系统 相对于国内在移动机器人的研究状况,能够看出国外在该领域的研究是较早的,其中具有代表性的有Saphira、TeamBots以及ISR。而在国内方面,代表性的有OSMOR、ZJMR以及Agent。下面,便对较为常用的控制系统进行介绍:

1.1.1 Saphira控制系统 Saphira控制系统是移动机器人领域中最早的系统,是有SRI国际人工智能中心在1990年所研发的,此系统是基于本地感知空间的共享内存与黑板,来实现协调与通信进程。由于Saphira是采用C语言来进行开发的,同时支持Windows 与Unix系统,因此具有文档资料相对完整、系统资源占用少等特征。但是需注意的是,由于Saphira系统在定位方面无法达到当前的实际需求,因此运用是相对较少的。 1.1.2 TeamBots控制系统 本系统是基于Java包与Java应用程序而构建的,经过20余年的发展后,此系统截止到目前已经被运用到多种类型的机器人平台当中。除此之外,在适用的操作系统方面,其中具有代表性的有Windows、MacOS以及Linux等,因此其运用的范围是更加广泛的。 1.1.3 ISR控制系统 ISR是基于行为的控制模式,其中是有任务执行层、反映层以及推理层所构成的,是有CAS研究中心所研发的。其中,任务执行层的作用是执行推理层所传输的指令;反映层其中包含资源、控制器以及行为;推理层的功能是根据用户的指令来对决策进行制定。此外,ISR控制系统仅能够在Linux中进行操作,并且没有公开化使用。

五大移动终端操作系统比较

五大移动终端操作系统比较 摘要: 随着五大移动终端操作系统浮出水面,让我们来领略一下五大移动终端操作系统各自的优劣势。移动信息时代正在来临,在这样的情况下,移动终端的形式和功能也处在不断的开发和扩展中,因此,在对移动终端的研究的研究中我对五大操作系统进行比较,以便更好的发挥操作系统的优势。 关键词:操作系统Linux SymbianAndroidWindows webOS 正文: 1.Linux:是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。它能运行主要的UNIX工具软件、应用程序和网络协议。它支持32位和64位硬件。Linux继承了Unix以网络为核心的设计思想,是一个性能稳定的多用户网络操作系统。它主要用于基于Intel x86系列CPU的计算机上。这个系统是由全世界各地的成千上万的程序员设计和实现的。其目的是建立不受任何商品化软件的版权制约的、全世界都能自由使用的Unix兼容产品。 Linux【1】以它的高效性和灵活性著称,Linux模块化的设计结构,使得它既能在价格昂贵的工作站上运行,也能够在廉价的PC机上实现全部的Unix特性,具有多任务、多用户的能力。Linux是在GNU 公共许可权限下免费获得的,是一个符合POSIX标准的操作系统。Linux操作系统软件包不仅包括完整的Linux操作系统,而且还包括

了文本编辑器、高级语言编译器等应用软件。它还包括带有多个窗口管理器的X-Windows图形用户界面,如同我们使用Windows NT 一样,允许我们使用窗口、图标和菜单对系统进行操作。 Linux的基本思想有两点:第一,一切都是文件;第二,每个软件都有确定的用途。其中第一条详细来讲就是系统中的所有都归结为一个文件,包括命令、硬件和软件设备、操作系统、进程等等对于操作系统内核而言,都被视为拥有各自特性或类型的文件。至于说Linux是基于Unix的,很大程度上也是因为这两者的基本思想十分相近。 Linux进入到移动终端操作系统近一年多时间,就以其开放源代码的优势吸引了越来越多的终端厂商和运营商对它的关注,包括摩托罗拉和NTT DoCoMo等知名的厂商。已经开发出的基于Linux的手机有摩托罗拉的A760、A768、CEC的e2800、三星的i519等。2004年6月在日本东京BIG SIGHT展览馆举办的“LinuxWorld Expo/Tokyo 2004”博览会上,日本手机大厂商NEC则展示了其采用Linux操作系统的手机。我国的大唐电信也于7月宣布将Linux 作为其TD-SCDMA 3G手机操作系统。 Linux与其它操作系统相比是个后来者,但Linux具有二个其它操作系统无法比拟的优势。其一,Linux具有开放的源代码,能够大大降低成本。其二,既满足了手机制造商根据实际情况有针对性地开发自己的Linux手机操作系统的要求,又吸引了众多软件开发商对内容应

一着惊海天——目击我国航母舰载战斗机首架次成功着舰 优秀教案

一着惊海天——目击我国航母舰载战斗机首架次成功着舰 【学情分析】 八年级的学生是第一次学习通讯,在教学中老师除了帮助学生了解新闻“六要素”以外,还需要求学生了解消息和通讯的区别,感受通讯独特的写作特点。同时八年级的学生已具备一定的阅读能力,所以要更进一步培养学生的阅读能力。 【教学目标】 ①能根据新闻的结构理清内容、层次,初步感知通讯语言的准确、简洁。 ②学习文章的写作方法,赏析文章的精彩语段。 ③培养学生的爱国热情和民族自豪感。 【教学重难点】 ①学习文章写作方法,赏析文章的精彩语段。 ②培养学生的爱国热情和民族自豪感。 【教学方法】 ①圈点勾划法:预习生字词,在文中圈点勾划重点词句。 ②查阅资料法:查阅有关辽宁舰的资料以及“航母战斗机英雄试飞员”戴明盟的资料。 ③讨论探究法:品味文章的语言特色时,运用自主、合作、探究的学习方式,来解决课堂教学中出现的教学重难点。 【教学过程】 (一)导入新课 1.老师展示辽宁舰舰载机起降视频和辽宁舰的相关图片资料。 2.同学们!在观看完我国“辽宁”舰航母舰载机首架次着舰成功的视频后,你们有什么感想呢?(学生讨论并发言) 分享完大家的感想后,老师想说我国“辽宁”舰航母舰载机首架次着舰成功的现场,记者亲身感受并记录了这一精彩感动的瞬间,让我们走进今天的课文《一着惊海天》,一起去感受我们祖国伟大的军事力量。 (二)整体感知 1.教师检查预习情况

(1)学生对重点字词的落实情况。 (2)学生对课文的预习效果以及相关资料的查阅情况。 2.学生快速浏览课文,用简明的语言概括本文的主要内容。 讨论并归纳:本文记叙了我国“辽宁”舰航母舰载战斗机首架次着舰试验并取得重大成功的过程。 3.能根据新闻的结构理清内容、层次,初步感知通讯语言的准确、简洁。 (1)(1—4):介绍了时间、地点及事件的重要意义和风险。 (1—2):检查甲板,做好着舰前最后一次准备。 (3—4):交代这次舰机着舰的重要意义和风险。 (2)(5—19):详细报道了舰载机成功着舰的过程。 (5—16):记叙了舰、机默契配合。 (17—19):展现了舰载机成功着舰。 (3)(20—27):描写了舰载机着舰成功的重大意义以及人们的激动喜悦心情。 (三)问题探究: 1.声如千骑疾,气卷万山来。惊心动魄的一幕出现了:9时08分,伴随震耳欲聋的喷气式发动机的轰鸣声,眨眼之间,舰载机的两个主轮触到航母甲板上,机腹后方的尾钩牢牢地挂住了第二道阻拦索。刹那间,疾如闪电的舰载机在阻拦索系统的作用下,滑行数十米后,稳稳地停了下来。(试从表达技巧和表达效果的角度来进行赏析) 答案示例: (1)运用细节描写,生动形象地描写舰载战斗机着舰时的情景。 (2)运用对偶和比喻的修辞手法,“声如千骑疾,气卷万山来”生动形象地表现了战斗机着舰时的浩大声势,同时增强文章气势,具有感染力。 思路解析:此句的解析可以从两个方面来进行分析:一是表达技巧,抓住本句的一些关键词进行赏析:从“震耳欲聋”、“轰鸣”、“眨眼之间”、“刹那间”、“疾如闪电”等可以看出作者主要运用了细节描写,从“声如千骑疾,气卷万山来”可以看出作者运用了对偶、比喻的修辞手法。二是分析其表达效果。细节描写的作用在于生动地展示,增强语言的感染力。对偶和比喻的运用在于增强文章气势和使描写生动形象。 2.某大国一名上将曾说:“我们可以把航空母舰送给你们,但是,十年之内,你们不可能让舰载机上舰!”(试从表达效果的角度分析此句在全文中的作用) 答案示例:运用引用的修辞,表现出某国上将对我国海军建设的歧视,暗示当时我国航母舰载机着舰面对的困难之大,同时这也更加激发了我国科研人员自主创新、为国争光的斗志,

移动机器人控制系统设计

? 197 ? ELECTRONICS WORLD?技术交流 移动机器人控制系统设计 广东工业大学 侯晓磊 随着移动机器人在人们社会生活中的地位不断提高,设计一种 可靠、稳定的机器人控制系统越发的变得重要起来,以NI公司的MyRIO控制器以其安全可靠、编程开发简单而脱颖而出。本文基于上述控制器、L298N电机驱动芯片Labview设计一种移动机器人控制软硬件系统系统,经验证,该系统运行稳定、可靠、高效。 1.前言 新一轮科技革命引发新一轮产业革命。“互联网+制造”构建工业4.0,智能制造成为我国由制造大国向制造强国转变的关键一步,移动机器人作为智能制造中的一个组成部分,作用越发的变得举足轻重。本文给出一种以MyRIO+L298N+Labivew的移动机器人控制系统。 2.IN MyRIO控制器 NI myRIO是NI最新设计的嵌入式系统设计平台。NI myRIO中内含双核ARM Cortex-A9,实时性高,并且还可以便捷定制FPGA I/ O,给开发设计人员提供更好的设计复杂系统的平台。 NI myRIO作为可重配置控制器具有以下重要特点: 易于上手使用:引导性安装和启动界面可使开发人员更快地熟悉操作,协助开发人员快速了解工程概念,完成设计任务。编程设计简单,利用实时应用、内置WiFi等功能,开发人员可以实现远程部署应用,“无线”操控。 板载资源众多:有丰富的数字I/O接口,提供SPI串行外设接口、PWM脉宽调制输出端口、正交编码器输入端口、UART异步收发器端口和I2C总线接口、多个单端模拟输入、差分模拟输入和带参考的模拟输入等可供选择的资源。 另外,NI MyRIO还提供可靠性能较好的控制器保护电路,防止由于意外操作造成控制器不可恢复性损坏,总之,NI MyRIO为开发人员提供了一个编程简易,设计电路方便,不用刻意担心意外操作而影响控制器使用的平台。 3.L298N电机控制芯片 L298N是一种用来驱动电机的集成电路,可以较稳定的输出平稳电流和较强的功率。工作均电流为2A,最高可达4A,最高输出电压为50V,能够带动带有感性元件的负载。控制器可以直接通过输入输出口与电机驱动芯片联接,从而方便控制驱动芯片的输出。如将芯片驱动直流电机时,可以直接与步进电机相联接,通过调节控制器输出实现步进电机的的正反转功能当控制直流电机时,可以通过调节控制芯片的电压信号的极性,PWM波的占空比,从而实现直流电机转速和转向的调节。4.系统硬件部分设计 系统采用MyRIO整体框架,外围增设电机驱动电路、避障驱动电路、里程计电路、液晶显示电路、陀螺仪电路。通过MyRIO主控制发送控制信号驱动移动机器人运动,实时通过外围传感器获取位置信息反馈给主控制 器,然后控制器通过闭环系统调节当前位置以保证对目标位置的追踪。 图1 5.系统软件部分设计 系统软件部分采用经典控制理论的闭环控制系统,将电机、主控制器和外设传感器构成闭环系统,通过调节闭环统的参数,来使 移动机器人以较小偏差追踪按照预定轨迹。 图2 6.结束语 本文介绍了基于NI MyRIO控制器设计移动机器人控制系统,通过仿真和实物测试,能较好的完成对任务的追踪踪。 参考:From Student to Engineer:Preparing Future Innova-tors With the NI LabVIEW RIO Architecture https://www.360docs.net/doc/535414309.html,.2014-04-01;王曙光,袁立行,赵勇.机器人原理与设计.人民邮电出版社,2013 。

移动终端管理系统(管理平台)使用手册范本

移动终端管理系统(管理平台) 使用说明书 国家统计局 2014年9月

目录 1 登录 (4) 2 区划管理(本调查不需要此操作) (5) 2.1信息查看 (5) 2.2导入普查小区 (5) 2.3区划管理 (6) 2.4管理员管理 (6) 3 上传管理 (8) 3.1上传应用 (8) 3.2上传文件、地图、底册与制度包 (11) 4 推送管理 (13) 4.1 应用分发 (13) 4.2 文件、地图、底册、制度包推送管理 (16) 5 消息管理 (18) 6 推送统计 (19) 7 终端管理 (20)

概述 为了配合以移动终端设备为终端和载体的数据采集任务,提高数据采集的整体质量,开发了移动终端管理系统。本系统将对国家统计局移动终端数据采集设备从运行状态、数据推送和软件安装(卸载)等情况进行统一管理;以支撑第三次全国经济普查和国家统计局利用移动终端的数据统计工作。 移动终端管理系统简称MDM系统,主要实现由管理员对移动设备(手机,PDA)等的远程管理。本系统与数据采集程序紧密结合,对操作系统为安卓的智能终端进行管理。管理容主要包括对设备的注册、注销管理、PDA的安全管理、推送管理等。 本系统有两个部分组成,一是安装在PDA上的移动终端管理客户端程序(简称MDM 客户端程序),另外一个是部署在服务器上,各级管理员根据权限进行管理和使用的移动终端管理平台(简称MDM平台)。 本手册主要介绍移动终端管理系统管理平台端的各项功能。移动终端管理客户端程序各项功能见《移动终端管理系统(客户端程序)使用说明书》。

1 登录 管理员使用移动终端管理系统时,需要通过登录验证用户身份。目前系统中已生成到区县级的各级管理员用户,用户名规则为本地地址码(省级两位地址码,地市级4位地址码,区县级6位地址码),初始密码请向各级管理员获取,第一次登录后请及时修改密码。 1、在IE浏览器里输入域名https://219.235.129.237 登录MDM管理平台,由于采用https方式访问,如果浏览器弹出如下提示时,点击“继续浏览此”即可。如图1-1: 图1-1 2、在登录界面输入相应的管理员用户名/密码,进入管理界面,图1-2: 图1-2 管理平台主界面由左侧的区划树和上侧的功能菜单组成,选择各功能菜单或区划树上的任一节点,可对其进行相应的操作,具体使用请见以下章节。

分层式移动平台运动控制系统设计

分层式移动平台运动控制系统设计 为达到移动机器人可以实现对特殊环境进行高速、高精度稳定可靠的运行目标,基于分层式模式的移动机器人运动控制系统能够充分运用PC端,文章制定了PC+STM32的分层式移动控制机器人的总体设计方案,并完成了该运动控制系统的车体位姿求解算法。此外,文章完成了分层式人机界面操作系统设计,对样机进行了实验系统搭建,为移动、监控、自动化工厂等提供平台。就智能移动机器人系统控制的姿态求解进行实验测试,实验结果表明:所研制的远程操作车体具有控制系统可靠稳定、响应迅速、定位准确的特点。 标签:移动机器人;分层式;运动控制系统 Abstract:In order to achieve the goal of high speed,high precision,stability and reliability,the mobile robot can operate in special environment. The motion control system of mobile robot based on hierarchical mode can make full use of PC. In this paper,the overall design scheme of the hierarchical mobile control robot based on PC+STM32 is worked out,and the algorithm for solving the vehicle posture of the motion control system is completed. In addition,the paper completes the design of the layered man-machine interface operating system. The experimental system of the prototype is built,which provides a platform for mobile,monitoring,automation factory and so on. The attitude solution of intelligent mobile robot system is tested experimentally. The experimental results show that the control system is reliable and stable,the response is rapid and the positioning is accurate. Keywords:mobile robot;hierarchical;motion control system 1 智能移動机器人的控制系统体系架构设计 1.1 简介 移动机器人是一类能够通过传感器感知环境和自身状态,实现在有障碍物的环境中面向目标自主运动,从而完成一定功能的机器人系统[6],智能机器人所面向的环境是现实世界中复杂的动态环境,如何利用自身受限的感知和行为能力,引导机器人顺利完成复杂的任务,是智能机器人控制系统需要解决的主要问题[10],但在目前全自主移动机器人还大多处于实验阶段,进入实用的多为半自主移动机器人,通过人的干预在特定环境中执行各种任务,而遥控机器人则完全离不开人的干预[5],移动机器人是目前科学技术发展最活跃的领域之一。 针对移动机器人的结构特点和运动特性,车体结构采用轮式车体,主要包括车轮车架,传动装置和驱动电机等部分。为达到移动机器人可以实现对特殊环境进行高速、高精度稳定可靠的运行目标[9],智能移动机器人需要对操作控制系统、位姿反馈算法等展开阐述。本文主要集中于控制系统的设计,提出一套开放式的分布式运动控制系统,开放式机器人运动控制系统因具有可互操作性、可移

学习笔记——舰载机进舰着舰过程仿真建模_王延刚

舰载机进舰着舰过程仿真建模_王延刚 收稿日期:2007-07-17 修回日期:2008-11-24 第20 卷第24 期系统仿真学报 摘要:航母—舰载机—起落架,多体动力学系统,进舰着舰系统仿真模型,驾驶员和LSO 的行为特征,考虑风场扰动,海浪等因素。该模型不仅适于航母-舰载机适配性问题,还可研究进舰着舰任务中LSO 对驾驶员行为的影响。通过仿真示例验证该模型的合理性和可行性。引言:首先介绍舰载机进舰着舰的基本过程,并从飞行动力学的角度出发,阐述涉及的相关问题,然后对仿真系统各模块进行分析,并提出相应建模方法,最后给出数字仿真结果,以验证其合理性。 1、舰载机进舰着舰过程描述 ?菲涅尔透镜光学助降系统(Fresnel Lens Optical Landing System, FLOLS); ?舰载机沿下滑道保持大约-3.5°的航迹角下滑; ?平行于下滑道的5层光束,最中间为橙色,为理想航迹; ?LSO综合甲板运动、飞机特性、驾驶员技术要求调整飞行状态或者复飞。 ?常规飞机着陆:拉平;舰载机:助降系统引导,撞击式着舰,通过拦阻系统强制飞机在50——70m内减速止动,有时LSO警告驾驶员做逃逸机动。 2、建模方法 2.1航母运动建模 ?海上运动包括前向行驶运动和海浪造成的扰动运动,工程实践中,前者按定常直线运动处理,而后者采用平稳随机过程理论描述。 ?文献[10]提供一种拟合窄带平稳随机过程频谱的实用有效的工程方法——成形滤波器法,以白噪声输入一个拟合的航母运动近似传递函数,得到航母扰动运动,再叠加航母行驶运动最终得到用于仿真的舰船运动。 图1舰载机着舰示意图 2.2航母扰流建模 ?航空母舰扰流的模拟方式有频域法、数据库法和工程化方法三种,仿真模拟较为普遍采用的是第三种方法。 ?该方法主要是根据航母扰流的物理特性和成因建立模型,以美军标1797A推荐的模型较为完善,给出的航母舰尾流(包括稳态分量、自由紊流分量、周期性分量以及随机分量)扰动速度的空间分布,能满足工程需要。 ?航母舰尾流(包括稳态分量、自由紊流分量、周期性分量以及随机分量),同舰尾流对舰载机着舰轨迹和动态响应的影响研究_胡国才中舰尾流模型一致。

简单说一下舰载机着舰的过程

简单说一下舰载机着舰的过程 为了保证舰载机能够正确的返航和着舰,一般航母都配备有战术空中导航系统、空中交通管制系统和着舰引导系统多个系统,对舰载机进行引导,在现代航母上,这些系统已经能够通过数据总线有机相接,形成综合导航和引导系统,同时还可以与航母编队指挥与战术数据处理系统进行联接,实现资源的共享和作战、归航等作业的更好的协调,一航而言,航母的战术空中导航系统在300公里左右为归航的舰载机提供指挥引导,到了距离母舰100公里处,由空管雷达接手,对返航的飞机进行编组,确定着舰的顺序,然后舰载机进入等待着舰阶段,舰载机按进场队形逆航母前进方向平行于航母的右舷飞行,然后转弯飞跃舰艏,转入顺风段,一直到距离航母大约30公里,在这个阶段由航母上的战术空中导航系统进行引导,到达距离母舰大约10公里处,由舰上的自动着舰系统开始引导,一直到距离母舰大约3公里处,进入舰上光学助降系统工作区域,然后据此着舰,由此可见舰载机着舰短短数分钟内,涉及到众多的系统、人员,要想相关系统和人员能够快速、熟练的工作,需要频繁的训练和演练。 舰载机着舰基本方式是目视方式,主要用于晴朗气象、能见度好的情况下,飞行员进入等待区后,由航母飞行指挥控制室引导,进入等待航线,这个航线是一个直径为5海里的逆时针圆形航线,不同的飞机等待高度不同,最低的等待高度大约在600米左右,舰载机每次经过航母上空的时候,与着舰指挥官进行联系,以便获得着舰许可,考虑到有些飞机执行任务回来后有可能燃料不足,所以在高空还安排了加油机给燃料不足的飞机进行空中加油,在接收到着舰的命令以后,舰载机在距离母舰10公里左右的地方脱离等待航线,高度下降到300米左右,航母后方5公里处进入着舰航线,然后根据着舰飞机的多少,以水平转弯曲或者盘旋动作进入下滑航线,进入下滑航母前,舰载机需要关闭武器系统,确认飞机的重量符合航母着舰的标准,然后打开减速板、放下拦阻钩及起落架等,表示要着舰,飞机在航母左侧一海里外,再次转弯,到达着舰中心延长线的后方,进入光学助降系统的工作范围,然后开始下滑降落。如果气象不佳,如云层高度较低,那么飞机在进入航母战术空中导航系统的作用范围后,由后者进行引导至距离航母大约15公里处,如果能够目视发现航母,则转入目视着舰方式,如果气侯条件恶化,则进入全自动着舰系统引导模式。在这个模式下,可以允许舰载机的方位与母舰有大约30度的偏离,等待航线飞行大约需要6分钟,其中两个180度转弯需要1分钟,两边飞行各需要2分钟,当飞机被航母精密跟踪转达截获以后,即 可转入全自动引导着舰模式。 自动着舰系统有多种工作模式,可以供飞行员或者着舰指挥官进行选择或者切换,其中模式1是全自动着舰模式,它是利用数据链联接航空母舰和舰载机,由后者根据前者传递来的信息进行自动着舰,需要指出的是航母自动着舰的控制信息不是由航母上的作战中心发出的,而是由航母空中交通控制中心负责,目前美国航母空中交通控制中心凭借数据链可以同时控制2架飞机在相隔30秒钟内相继在航母上着舰,需要指出的是美国航空自动着舰系统采用的数据链并不是现在美国海军和空军大量装备的LINK-16,而是上一代LINK-4A型数据链,并且在工作中中使用LINK-4A的单向通信模式,实际上美国研制数据链的最初目的就是为自动着舰配套,随着LINK-16数据链的完善和发展,预计2015年以后,LINK-4才会完全被LINK-16所替代。模块2与模式1基本上相同,只是在距离母舰1公里左右之后,舰载机开始接受光学助降系统的引导,模式3属于所谓的半自动着舰方式,在这种方式下,自动着舰系统与舰载机的自动着舰系统并不交联,而是通过仪表或者显示器向飞行进行显示相关数据,由飞行员根据这些信息操纵飞机下滑着舰,最后一种是人工方式,由着舰指挥官观察雷达显示屏,对舰载机位置进行确定,然后获得舰载机的方位和高低角误差,然后用语音告诉飞行员进行修正,直到转动光学助降系统的工作范围,进入新世纪美国海军对于自动着

多移动机器人编队控制

基于Multi-Agent的多机器人编队控制 摘要:多移动机器人协调是当前机器人技术的一个重要发展方向。多移动机器人之间的协调与 合作将大大提高机器人行为的智能化程度,完成由单个机器人难以完成的更加复杂的作业。多 移动机器人协调技术的研究对提高机器人的智能化水平及加快机器人的实用化进程具有重要的 理论研究意义和实用价值。本文结合多智能体技术对多机器人编队控制进行了研究,同时根据 具体的多机器人系统,进行了仿真实验。验证了多智能体技术在机器人编队控制系统中的应用,完成了小规模的编队控制。 关键词:多智能体;多机器人;编队控制;协调控制;模糊控制 Multi-robot Formation Control Based on Multi - Agent Abstract :The problem of multi-robot cooperation and coordination is central to mobile robotics. Cooperation and coordination will improve the intelligent performance of robots and can complete lots of impossible missions for single robot.The research on multi-robot cooperation and coordination is of great academic and applied significance. The multi-robot formation is developed combined with the multi-agent technology in this dissertation, and the simulation is done with the multi-robot system. The application of multi-agent is verified in the multi-robot formation control through a small system adopt the fomation control. Key words: Multi-agent ;Multi-robot ;Formation control;Coordination control;Fuzzy control 1. 国内外机器人系统发展现状 自80年代末以来,基于多智能体系统理论研究多机器人协作受到了普遍的关注,从军事领域到工业与民用领域,从星际探险到海底考察,从比赛到教学,都取得了不同程度的进步。近年来,在IEEE R&A,IROS等著名的国际机器人学术会议上,几乎每次会议都有多智能体协作机器人系统的专题。一些机器人学术刊物出版了有关多智能体机器人的研究专辑。一些研究项目,如ACTRESS,CEBOT,GOFER,SWARM等,已进行了多年[1]。 目前,国内关于群体机器人系统的研究刚刚起步,基本上还处于基础技术的研究阶段,这方面的研究成果报道比较少。中科院沈阳自动化所机器人开放研究实验室是国内研究多机器人技术较早也较全面的科研单位。 (1)CEBOT(Cellular Robotic System) CEBOT是一种自重构机器人系统(Self-Reconfigurable Robotic System),它的研究是受生物细胞结构的启发,将系统中众多的具有相同和不同功能的机器人视为细胞元,这些细胞元可以移动,寻找和组合。 根据任务或环境的变化,细胞元机器人可以自组织成器官化机器人,多个器官化机器人可以进一步自组织,形成更加复杂的机器人系统。细胞结构机器人系统强调是单元体的组合如何根据任务和环境的要求动态重构。因此,系统具有多变的构型,可以具有学习和适应的系统智能(Group Intelligence),并具有分布式的体系结构[3]。 (2)ALLANCE/L-ALLANCE系统

舰载机如何着舰

原文载自《航空周刊》请勿随意转载,劲风收集制作 对舰载机飞行员来讲,在航母上着舰是能展示自己高超的驾驶技术并使大伙略英雄本色的最佳机会.因航母上的着舰难度极高,甚至有人说在航母上的着舰是"人为控制的坠落".现在每个舰载机驾驶员都以自己的着舰次数来作为证明自己过硬本领的依据.这里就对大家感到好奇的着舰方式进行详细的叙述. VF-154 在大海中驰骋的“跑道”上降落,比“登天”还难 对航母舰载机驶员来讲,弹射起飞并不难。因为弹射器的压力调整、弹射等几乎所有的操作是由飞行甲板上的弹射器小组来负责进行。难的是着舰.着舰时驾驶员需要从很远处发现航母,确认着舰装置的状态.并与其他着舰机相互进行飞行状态的沟通。随着航母的航行而时刻变动的飞行航线。不断摇晃的着舰甲板……,地上飞机驾驶员是无法想像飞行甲板上的着舰难度的。对飞行员来讲,远离陆上机场在一望无际的大海中进行的着舰是一个沉重的压力。

弹射起飞中的雄猫 着舰过程 根据离航母的距离可分为引导一待机一进场三个阶段。 着舰机从作战空域返回航母时,首先要接到来自E-2C预警机的指示。但是E-2C的主要任务是在作战空域里的警戒监视一旦E-2C忙于进行空中预警时,舰载机是无法受到E-2C的导航服务的,此时根据作战空域到航母的距离。增派一架E-2C预警机担当“导航参谋”的任务,以协助舰载机返航。舰载机从E-2C预警机得到的情报主要是离所属航母的位置和周边空中交通状况。 tomcat 如果舰载机驾驶员发现自己的飞机出现燃料不足或机械故障.可直接与航母通话.使航母调整着舰机的着舰顺序.另外还能根据情况的需要,接受空中加油或通过航母与陆上基地取得联系进行紧急着陆.在正常状态下着舰时,着舰机在离航母200海里(1海里=1.85千米)远处接受航空飞行管制中心的航行管制和指挥,航空飞行管制中心设置在着舰甲板的舰桥下方的战斗指挥所的一角.航空飞行管制中心操作台的显示器上的黄色标志,是通过雷达捕捉到的航母周围200海里半径内的画面.从这里直接向着舰机或其他的己方飞机提供情报.

【科技】归家的明灯——浅谈舰载机着舰下滑引导系统

【科技】归家的明灯——浅谈舰载机着舰下滑引导系统 14-01-25 作者:佚名编辑:石腾 从“辽宁”号服役至今,它的一举一动都是国人关注的焦点,然而本文先要把时间拉回到2012年11月24日这个历史性的时刻,在这一天,歼-15舰载机顺利完成了第一次拦 阻着舰,并在随后进行了滑跃起飞。我们知道,相比于滑跃起飞,着舰的意义更大。航母着舰引导系统这盏“归家明灯”的作用更是难以低估。 从“示牌进场”到镜面光学助降系统 1917年,英国把大型巡洋舰“暴怒”号改装成世界上第一艘简易航母。但由于舰上高耸的 塔式桅杆和烟囱的阻碍,飞机只能从舰上起飞而无法降落。1917年8月2日,英海军少校邓宁冒险驾驶“幼犬”战斗机进行着舰,他凭借高超的驾驶技术用侧滑着陆的方式艰难地将飞机降落在航行中的“暴怒”号前甲板上,这是人类第一次将飞机降落在航行中的军舰上。但在几天后的重复降落时,邓宁不幸遇难。从此舰载机在执行完作战、训练、侦察等任务后,着舰便成了一件惊心动魄的工作。承担着这项危险任务的飞行员需要从很远处发现航母平台,确认着舰装置的状态,并与其他着舰机互相进行飞行状态的沟通。另外,在跌宕起伏的大海上,航母时时刻刻的六自由度扰动(纵摇、横摇、首摇、起伏、纵荡和横荡)、异常复杂的大气紊流(海面无遮挡,海风往往较强,航母庞大的舰体以及自身运动的特点,还会在舰首产生上洗气流,并在舰尾处形成较强的公鸡尾状的尾流),以及极其有限的甲板长度等等(美国满载排水量近10万吨的核动力超级航母甲板总长度也不过300多米,而能够提供舰载机起飞、着舰使用的跑道只有其中点的100多米),这些都对舰载机着舰提出了更高的要求。舰载机着舰进场速度小。受舰上扰流因素影响相对较大,客观上使得舰载机轨迹稳定性变差。然而舰载机着舰条件要求反而相对苛刻、恰恰又要求飞机下滑时的轨迹稳定性比陆基飞机还要高,这一切使得舰载机着舰引导问题成为航母战斗力发挥的关键技术之一。舰载机要降落在航母的甲板上,必须依靠一系列完备的着舰辅助技术手段。除了早已有之的拦阻索和拦阻网外,着舰下滑引导系统是着舰降落中最为关键的重中之重。

相关文档
最新文档