数学期望和方差的应用

合集下载

数学期望及方差的实际应用论文

数学期望及方差的实际应用论文

例说数学期望与方差的实际应用【摘要】数学期望作为概率分布中重要的数字特征之一,反应的是随机变量取值的平均水平,方差则是反应随机变量取值在其平均值附近的离散程度。

利用概率论中数学期望与方差的思想可以计算出实际生活中的许多问题的最大可能值以及该事件发生的偏差的大小,从而为实际决策提供更具体的参考。

[关键词]数学期望方差最佳决策数学期望反应的是随机变量取值的平均水平,而方差则是反应随机变量取值在其平均值附近的离散程度。

现代实际生活中,越来越多的决策需要应用数学期望与方差这思想来对事件发生大小的可能性进行评估,通过计算分析可以比较科学地得出各个方案的预期效果及出现偏差的大小,从而决定要选择的最佳方案。

在当前社会生产中,更多商家等追求的是效益最大化,以下我将就现实生活中的种种问题,利用离散型随机变量的期望和方差的思想对实际问题进行分析计算,并通过各个方案的比较得出最佳方案。

首先介绍一些基本概念知识:(1)概率分布,(i=1,2,3,、、、,n,、、、,),离散型随机变量的概设离散型随机变量为i率为Pi,其概率分布如下:(1)数学期望根据(1)的概率分布,即P(ξ=i χ)=i P ,i =1,2,…,n,…,称和数∑ii χiP 为随机变量ξ的数学期望,简称期望,记作E(ξ),则E(ξ)=1χp 1+2χp 2+…+n χp n +…。

(3)方差由(2)推出数学期望E (ξ)存在时,如果E[ξ-E(ξ)]2存在,则称E[ξ-E(ξ)]2为随机变量ξ的方差,记为D(ξ),有D(ξ)=E[ξ-E(ξ)]2=E(2ξ)-E 2(ξ)。

1、数学期望与方差在投资风险程度分析中的应用在市场经济条件下,要想获得较高的期望收益,必须把资金投向几种不同的收益不同风险的金融资产上,而这将为投资者选择投资方案提供一定的理论依据和数字参考,以便于投资者选择可行的投资决策方案。

下面以两个例子进行说明: 例1、某投资者有10万元,现有两种投资方案:一是购买股票,二是存入银行获取利息。

数学期望和方差

数学期望和方差
8 50
12
9
7 50
10
15 50
12
11
10 50
12
10 50
则这 50 个零件的平均直径为
D k P( X k ) kpk 10.14
k 8 k 8
称之为这 5 个数字的加权平均,数学期望的 概念源于此.
第四章
数学期望和方差
数学期望的定义
定义1.1 设离散型随机变量X 的概率分布为


证明 令g ( x ) x f ( x ).
g(x)是奇函数.
t f ( t )dt g ( t )dt .

( x ) f ( x )dx (令t x )


( x ) f ( x )dx f ( x )dx
E ( X ) xf ( x)dx


注意:随机变量的数学期望的本质就是加权 平均数,它是一个数,不再是随机变量。
第四章
数学期望和方差
常见连续型分布的数学期望 (5)指数分布E()
随机变量X的密度为:
第四章
数学期望和方差
第四章
数学期望和方差
定理1 设X的数学期望有限, 概率密度f (x) 关于
8 8
9 10 11 12 7 15 10 10 50
则这 50 个零件的平均直径为
8 8 9 7 1015 1110 1210 50 10.14cm
第四章
数学期望和方差
换个角度看,从这50个零件中任取一个,它 的尺寸为随机变量X , 则X 的概率分布为 X P 8
对称, f ( x ) f ( x ), 则E ( X ) .

高中数学备课教案概率与统计中的期望与方差

高中数学备课教案概率与统计中的期望与方差

高中数学备课教案概率与统计中的期望与方差高中数学备课教案主题:概率与统计中的期望与方差导语:概率与统计是数学中的一个重要分支,它帮助我们理解随机事件的发生规律,并能够对未知事件进行预测。

在本次备课教案中,我们将重点关注概率与统计中的期望与方差,深入探讨其概念、计算方法和实际应用。

1. 期望的概念和计算方法1.1 期望的定义期望是一种统计指标,常用于衡量一个随机变量的平均取值水平。

1.2 期望的计算方法(这里可以根据教学需要,结合具体题型讲述计算方法,例如离散型随机变量的期望计算公式、连续型随机变量的期望计算公式等)1.3 期望的实际应用(这里可以介绍期望在实际问题中的应用,如游戏中的期望值、股票投资中的期望收益等)2. 方差的概念和计算方法2.1 方差的定义方差是衡量一个随机变量的取值偏离其期望值的程度。

2.2 方差的计算方法(这里可以介绍方差的计算公式及其推导过程,例如离散型随机变量的方差计算公式、连续型随机变量的方差计算公式等)2.3 方差的实际应用(这里可以介绍方差在实际问题中的应用,如风险评估中的方差、品质控制中的方差等)3. 期望与方差的联系3.1 期望与方差的关系期望和方差是概率与统计中两个重要的概念,它们在一定程度上反映了随机事件的特征。

3.2 期望和方差的计算方法比较(这里可以比较期望和方差的计算方法,分析它们的异同点,并结合具体例题进行讲解)3.3 期望与方差的实例分析(这里可以通过一个具体的实例,让学生理解期望和方差的联系和应用,如某种产品销售量的期望和方差,通过分析期望和方差可以得到该产品的销售趋势等)结语:概率与统计中的期望和方差是数学中重要的概念和工具,在实际应用中具有广泛的意义。

通过本节课的学习,学生将深入了解期望和方差的概念和计算方法,并能够将其运用到实际问题中。

希望本教案能够帮助学生更好地掌握概率与统计中的期望和方差知识,并提升他们的数学思维能力和应用能力。

概率分布中的期望与方差计算技巧

概率分布中的期望与方差计算技巧
定性
质量控制:在生产 过程中,方差用于 衡量产品质量的一 致性和稳定性,通 过控制产品质量指 标的方差来提高产
品质量
社会科学研究: 在社会科学研究 中,方差用于分 析调查数据的变 异性和不确定性, 以及比较不同样
本之间的差异
期望与方差在金融领域的应用
风险评估:用于衡量投资组合的风 险和预期收益
资本资产定价模型(CAPM):用 于确定资产的预期收益率,并评估 市场风险
定义:离散概率 分布的方差是各 个可能结果与期 望值的差的平方 的期望值。
计算公式:方差 = Σ (p(x) * (x μ)²),其中p(x) 是概率,μ是期 望值。
举例:假设一个随 机变量X只取两个 值,X=0的概率为 0.5,X=1的概率 为0.5,则方差 = (0.5 * (0 - μ)² + 0.5 * (1 - μ)²)。
添加标题
添加标题
添加标题
添加标题
资产定价:为金融资产(如股票、 债券等)定价,以确定其内在价值
投资组合优化:通过期望和方差等 参数,选择最佳投资组合以最大化 预期收益并最小化风险
感谢您的观看
汇报人:XX
方差的定义
方差是衡量数据点与平均值之间离散程度的统计量。
方差计算公式为:方差 = Σ((数据点 - 平均值)^2) / 数据点个数。
方差的值越小,说明数据点越接近平均值,离散程度越小;方差的值越大,说明数据点离散程度越 大。
方差在概率分布中表示随机变量取值的不确定性程度。
离散概率分布的方差计算
注意事项:可能不是整数
连续概率分布的期望值计算
定义:连续概率分 布的期望值是所有 可能取值的加权平 均值,其中每个取 值的权重为其概率 密度函数在该点的

常用分布的数学期望及方差

常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。

数学期望与方差

数学期望与方差
因此,在对随机变量的研究中,确定某些数 字特征是重要的 .在这些数字特征中,最常用的是 数学期望、方差、协方差和相关系数
第四章 随机变量Biblioteka 数字特征第一节 随机变量的 数学期望
一、数学期望的概念
二、随机变量函数的数学期望 三、数学期望的性质
四、应用实例
下 回

一、数学期望的概念
1. 问题的提出 1654年, 一个名叫德.梅尔的贵族就“两个 赌徒约定赌若干局, 且谁先赢 c 局便算赢家, 若 在一赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便 终止赌博, 问应如何分赌本” 为题求教于帕斯 卡, 帕斯卡与费马通信讨论这一问题, 于1654 年 共同建立了概率论的第一个基本概念 — 数学 期望
0 . 3 0 .1 0 . 6
8 9 10
乙射手
0 .2 0 .5 0 .3
试问哪个射手技术较好?
解 运动员的水平是通过其平均水平来衡量的, 因而甲、乙两射手的平均水平分别为
甲 : 8 0.3 9 0.1 10 0.6 9.3(环) , 乙 : 8 0.2 9 0.5 10 0.3 9.1(环), 故甲射手的技术比较好.
若级数 xk pk 绝对收敛, 即 xk pk , 则称
级数 xk pk 的和为随机变量 X 的数学期望,
k 1 k 1
k 1

PX xk pk , k 1,2,.

记为EX, 即 E X
k 1
xk pk .

比如
X的分布律为
正态分布 指数分布

1 λ
λe λx , x 0 p x x0 0,

高二数学概率与统计中的期望与方差的应用

高二数学概率与统计中的期望与方差的应用

高二数学概率与统计中的期望与方差的应用概率与统计作为数学的重要分支之一,在高中数学课程中占据着重要的地位。

而其中的期望与方差更是概率与统计中的重要概念,具有广泛的应用价值。

本文将探讨高二数学概率与统计中的期望与方差的应用。

一、期望的应用期望是指一个随机变量所有可能取值的加权平均值。

在实际生活中,期望有许多应用。

首先,期望可以用来计算平均值。

例如,在一次掷骰子的实验中,骰子有6个面,每个面上的数字分别为1、2、3、4、5、6,每个数字出现的概率相等。

那么,掷一次骰子,出现的数字的期望就是(1+2+3+4+5+6)/6=3.5。

这意味着在多次重复的实验中,出现的数字的平均值接近于3.5。

其次,期望可以用来评估投资的回报率。

假设某股票有两种可能的收益,收益1的概率为0.6,收益2的概率为0.4,对应的收益分别为100元和200元。

那么,这只股票的期望收益就是0.6 * 100 + 0.4 * 200 = 160元。

这意味着在多次投资中,每次投资的平均回报为160元。

此外,期望还可以应用于赌博的分析。

例如,在轮盘赌中,轮盘共有36个数字,其中18个为红色,18个为黑色。

假设赌徒每次下注5元,并且下注的数字与轮盘最终停在的数字相同,则赌徒获胜,获得10元的收益;反之,输掉下注的5元。

那么,赌徒在一次下注中的期望收益就是(18/36 * 10) + (18/36 * (-5)) = 0元。

这意味着在多次下注中,赌徒每次下注的平均回报为0元。

二、方差的应用方差是衡量随机变量离其期望值有多远的统计量。

在实际问题中,方差也有着广泛的应用。

首先,方差可以用来度量一个样本的离散程度。

例如,在某考试中,某班级的学生总成绩对应的随机变量为X,其期望值为E(X),方差为Var(X)。

在这个班级中,学生的总成绩越分散,说明学生之间的差异越大,方差就越大。

而方差越小,则说明学生的总成绩越接近平均水平,差异性越小。

其次,方差可以用于风险评估。

期望与方差的关系

期望与方差的关系

期望与方差的关系
方差与期望的关系公式:DX=E(X^2-2XEX+(EX)^2)。

方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。

概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。

统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。

它反映随机变量平均取值的大小。

需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。

期望值是该变量输出值的平均数。

期望值并不一定包含于变量的输出值集合里。

— 1 —。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2QQ2±:箜!塑工-学术-理论现代衾案一数学期望和方差的应用陈奕宏张鑫(武警广州指挥学院广东广州510440)摘要:本文主要讨论随机变量的数学期望和方差的性质,利用随机变量的对称性可简化求数学期望和方差的计算过程:关键词:对称性数学期望方差在教学过程中,由于很多同学对概牢论巾的定义和性质认识不深刻,冈此对概率论巾的问题存在许多认识误区,进一步影响了计算、证明能力。

性质l对随机变量x和y,则有E(nn簟Ⅸ+Ey①性质2设随机变量x和y相互独立,贝咿育层陇n=Ex·Ey②定义l设X是一个随机变量,若EI肛删Iz存在,则称其为X的方差,记为Dx。

即Dx=坦Ix—Ex】2③显然可得:们,-ElX一以】2=E瞄2—2xEX+(踊2]=麟z一(删):④性质3设随机变量x和y相互独立,则有层孵y:净E孵·Ey2⑤证明:设随机变量X和y的联合分布密度为m砂),|jl《为x和y相互独立,有“r,y)=^(掌)。

,r(y).’.E(x2y2)=J一。

J一。

工2y2“r,j,)d膏咖=eex2y2以(r)厂r(y)如咖=Cx2^(工)如Cy2加)咖:Ex2E】,2⑥性质4设随机变量x和l,,n和西为常数,则有E(口X2+6y2)=n露x2+6曰y2(D证明:设随机变量x和l,的联合分布密度为厂(x,j,),则有E似x2+6y2)=J+。

J一。

(口工2+6j,2)“r,j,)d_咖=e仁nx2flx,,Mxdy+e仁b矿fIx,yⅪxdy=n\一。

\一亭2fIx,如dxd,+b1.。

1一。

旷fIx,,Ⅺxdy=口f)2【e№j,)dy】dr拍ej,2【C“础)dx协=口仁量2【e,(Ⅵ)dyJdx柏ej,2【C,(础)dx坳=n尽2以(r)dy拍D2加)dy=口EX2+西Ey2掣狮,=∥茗引m,=驴㈣’翟引求E伍2+y2)。

解:E(x2+y2)=Ex2+Eyz(南公式⑦)=I:一4r3出+炒.12y2(1+y)咖《性质5设随机变量x和y卡H互独立,则有D(x的=Dx·Dy+(E幻2·Dl,+(层y)2·Dx⑧证明:ODⅨy)=层(xy)2一IE(xy)J=E(X2y2)一(EX)2(E】,)2南公式⑤,所以D(Xn=EX2Ey2一(EX)2(E”2=曰x2El,2一(E的2EP+(E的2(El,)2一(E抑2僻y)2=【层x2一(EX)2】EP+(Ex)2【(E】,)2一(日y)2】矗剪陋妒+(雕净汗钮曙(联)辚苦帮=n碰Iy+(EY)2Dy+(Ey)2蹦显然,若随机变量x和y独立,则可得D(xn>Dx·Dy⑨例设随机变量x和l,相互独立,均服从Ⅳ(O,1)分布,f=x—y,叩=xy,试求1)D叩;2)p£。

解:1)方法一OX和y相互独立.‘.D即=D(xy)=E(xl,)2一【层(x聊】2=E(r—l,)2一(以E的2=E舻EP(由公式⑤)=【脚“(E的2】【Dy;(E玢2】=1方法二0X和y相互独立.·.Dq=D(x】,)=似Dy+(E柳2Dy+(目】,)2Dx=l(由公式⑧)2)op。

:』业q厩丽又OcoV(f,'7)=层【(f—Ef)('7一露77)j=层(x2y)一E(xP)(把f=x—y,’7=xy代人)曲(南x与r鹃对称性)综上所述,本文主要讨论连续型随机变量的数字特征的性质,结合对随机变量的对称性可解决存概率论巾一些常见的求数[字特征的问题。

参考文献:…盛骤等编概率论与数理统计高等教育出版社2001.12口现代企业教育MODERNENTERPRISEEDUCATION117 万方数据数学期望和方差的应用作者:陈奕宏, 张鑫作者单位:武警广州指挥学院,广东,广州,510440刊名:现代企业教育英文刊名:MODERN ENTERPRISE EDUCATION年,卷(期):2007,(2)引用次数:0次1.盛骤.谢式千.潘承毅概率论与数理统计 20011.期刊论文陈思源利用对称性巧解概率与数学期望问题-高等数学研究2007,10(4)给出古典概型和几何概型的实例,说明它们所具有的对称性,利用这种对称性可解决概率和数学期望问题,其方法与一般解法相比,具有初等和简明的优越性.2.期刊论文姜玉英.刘强离散型随机变量数学期望的几种巧妙算法-大学数学2008,24(5)利用定义求解离散型随机变量的数学期望有时显得非常复杂,本文给出了三种巧妙计算离散型随机变量数学期望的方法:对称性法、随机变量分解法、公式演变法.计算过程非常简洁,达到了简化计算的目的.3.期刊论文肖文华.Xiao Wenhua数学期望的计算方法与技巧-湖南工业大学学报2008,22(3)利用数学期望的定义、性质、公式、随机变量分布的对称性,以及母函数、特征函数等,探讨了数学期望的几种计算方法.4.期刊论文张唯春.Zhang Weichun浅谈概率论中数学期望的计算方法-辽宁省交通高等专科学校学报2008,10(2) 本文介绍了用特征函数、条件数学期望、对称性等求解数学期望的方法,解法各具特色.5.期刊论文覃光莲.Tan Guanglian数学期望的计算方法探讨-高等理科教育2006(5)本文探讨了各种简化计算随机变量数学期望的方法:利用一些特殊求和与积分公式、利用数学期望定义的不同形式、利用随机变量分布的对称性、全期望公式以及特征函数等,以期对该内容的学习和教学有所启发.6.期刊论文徐传胜离散型随机变量数学期望的求法探究-高等数学研究2005,8(1)除借用定义求解外,利用对称性、套用已有公式、将随机变量进行分解,借助递推法、母函数法等技巧也可求出随机变量的数学期望.7.学位论文张静一类g-概率的对称性问题2007Choquet(1953)把概率测度扩展到一类非线性测度,称之为容度。

并通过下面的式子定义了一类非线性数学期望-Choquet期望:C(ζ):=f<'0><,-∞>[V(ζ≥t)-1]dt+f<'∞><,0>V(ζ≥t)dt. Choquet期望处理不确定性问题,在统计,经济,金融和物理中都有非常广泛的应用。

许多文章研究了它的性质和应用,具体可见Anger(1977),Dellacherie(1970),Graf (1980),Satin andWakker(1992),Schmeidler(1989),Wakker(2001),Wasserman and Kadane(1990)等等。

Choquet容度在稳健性分析,决策论和对策论中也有很广泛的应用。

其中一类重要的Choquet容度是对称相关容度,在稳健性分析中许多容度都是对称相关容度,或者可以通过一对一光滑映射到对称相关容度。

[Buja(1986),Huber and Strassen(1973),Wasserman and Kadane(1990)and Fortini and Ruggeri(1994)].许多其他文章也研究了对称容度,具体可见Armstrong(1990),Dempster(1967,1968),Anger and Lembcke(1985),Walley(1991),Talagrand(1978),Wasserman and Kadane(1992)等等.Peng and Pardoux(1990)提出倒向随机微分方程(以下简写BSDE).Peng(1997)通过BSDE的解定义了g-期望和条件g-期望,并证明了在生成元g和终端值ζ满足一定条件时,g-期望和条件g-期望保持了经典数学期望除了线性性以外的一切性质。

g.期望在金融中得到了广泛的应用,可参见Chert and Epstein(2002). Chen(2005)研究了g-期望和Choquet期望之间的关系,并给出了一个充分必要条件。

在这篇文章里,我们给出了g-概率的对称性的概念。

在g-期望中,有一类g-期望和Choquet期望等价,我们就研究用这类g-期望定义的g-概率的对称性问题。

8.学位论文黄泽先均值复归与资本市场效率理论创新研究2007如何使稀缺性经济资源实现最优配置是经济学研究中最具占优性、基础性和复杂性的目标。

商品市场和要素市场中衡量资源配置效率的主流准则是帕累托标准,传统的资源配置效率研究存在两个主要缺陷,一是如果两个资源配置都没有达到帕累托最优状态,那么,无法确定哪一个资源配置的效率较高,哪一个资源配置的效率较低,即资源配置效率的测度缺乏连续性;二是通过解除外部约束条件,一个帕累托次优状态实现的帕累托最优状态是否是惟一、稳定和存在的还没有定论。

对资本市场而言,效率的研究更凸现了不成熟性、复杂性和不稳定性,以信息效率为主要目标的有效市场假说本身存在比较严重的缺陷,如市场有效的时间和状态动态不一致性、信息充分性悖论、信息有效和配置有效的兼容性问题、市场有效性内涵的统计性趋向严重、时间序列分析的平均权重问题、市场有效的功能脆弱性、对异象的解释不足、联合检验问题等等,因此,有效市场理论虽然是主流,但并不成熟,并不稳定;而其它的非主流资本市场效率理论如分形市场理论和功能观效率理论等更缺乏理论的严谨性和系统性,因此,对资本市场效率理论进一步探讨的必要性是非常突出的。

本文结合帕累托标准,在确定信息理性预期下对传统的有效市场理论进行完善:同时,在不确定信息理性预期下利用贝叶斯学习和市场序列均衡理论将不可得信息引入预期模型中,尝试建立了一个新的资本市场效率分析框架即均值复归理论,最终得出与确定信息理性预期下一致的结论。

本文的第一部分首先介绍了常见的资源配置标准,如庇古标准、帕累托标准、希克斯-卡尔多标准、X-效率标准和信息效率标准:其次,探讨了瓦尔拉斯均衡中的资源配置问题,瓦尔拉斯均衡中所有消费者都是价格的接受者,价格的数学期望等于任一消费者的交易价格,价格的波动方差为零;再次探讨了帕累托均衡的存在性、惟一性和稳定性问题,指出帕累托次优状态通过帕累托改进可以实现一阶状态惟一、稳定和存在的帕累托最优或帕累托均衡状态,且帕累托均衡中的价格等于资源配置的价格数学期望或均值,即价格具有均值复归性,然而,其零阶状态虽然存在,但不惟一也不稳定;同时,在商品组合交易的基础上给出了商品市场中帕累托次优条件,并提出了用资源配置价格方差来衡量帕累托次优状态效率高低的标准,并对其统计含义进行了解释。

帕累托均衡意味着均值复归性,这是资本市场均值复归性的理论基础,将帕累托均衡引入资本市场是接下来的主要工作之一,另一部分的工作是对传统有效市场理论进行完善,并时刻保持了这两项工作的协同性和一致性。

在锁定上述思路后,本文的第二部分主要基于确定信息理性预期拓展了传统拓展的有效市场理论。

相关文档
最新文档