6.4 用一次函数解决问题1(教 案)

合集下载

苏科版数学八年级上册6.4 用一次函数解决问题 学案

苏科版数学八年级上册6.4 用一次函数解决问题 学案

6.4用一次函数解决问题(1)一、学习目标:1.能根据实际问题中变量之间的关系,确定一次函数关系式;2.会利用一次函数的关系式解决简单的实际问题.二、学习重、难点:体会模型思想,感悟从数学的角度发现问题、提出问题、解决问题.三、预习体验:(一)列函数关系式解决实际问题:⑴某校办工厂现年产值是30万元,如果每增加1000元,投资一年可增加2500元产值,那么总产值y(万元)与增加的投资额x(万元)之间的函数关系式为.⑵某市电话的月租费是20元,可打200分钟免费电话,超过200分钟后,超过部分每分钟0.13元.①每月电话费y (元)与通话时间x(分钟)之间的函数关系式为;②月通话50分钟的电话费是;250分钟的电话费;③如果某月的电话费是27.8元,该月通话的时间是.(二)电脑情境展示:预习书P155“玉龙雪山”问题,试一试按下面思路来解决:(1)写出雪线海拔y(m)关于时间x(年)的一次函数关系式(2)问题中的“几年后”是不是(1)中的x?“雪线----消失”就是y= .既问题可转化为:当x= 时,y= 。

试一试完成解答:设计意图:用生活中的事例情境引入,让学生感受到数学在生活中的应用,数学源自于生活,又服务于生活。

四、问题探究:问题探究一(电脑展示):阅读问题1,你能按上面解题思路分析吗?问题1:某工厂生产某种产品,已知该工厂正常运转的固定成本为每天12000元,生产该产品的原料成本为每件900元.(1)写出每天的生产成本(包括固定成本和原料成本)与产量之间的函数表达式;(2)如果每件产品的出厂价为1200元,那么每天生产多少件产品,该工厂才有赢利?设计意图:分析实际问题中变量与变量之间的关系,引导学生建立一次函数的模型,从而利用一次函数的相关知识解决实际问题.方法的归纳与提升:把实际问题抽象成函数模型,即用函数思想来解决实际问题。

你能小结“用函数思想解决实际问题”的一般思路吗?特别要注意哪些?练习:在人才招聘会上,某公司承诺:录用后第1年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元.(1)如果某人在公司连续工作n年,那么他在第n年的月工资是多少?(2)如果某人期望第5年的年收入能超过40000元,那么他是否可以在该公司应聘?设计意图:通过探索分析,让学生进一步明确题中的数量关系,揭示其中内在的规律.体验在处理一个实际问题面前,数学所具有的价值和魅力,培养学生的应用意识.问题探究二:(电脑展示)2011年世界园艺博览会在西安隆重开园,这次世园会的个人票设置有三种:票的种类夜票(A)平日普通票(B)指定日普通票(C)单价(元/张)60 100 150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍少34张.设需购A种票张数为x,C种票张数为y.(1)写出y与x之间的函数关系式;(2)设购票总费用为w元,求出w (元)与x (张)之间的函数关系式.(3)求当购三种票中夜票最少时的购票总费用。

苏科版数学八年级上册6.4 用一次函数解决问题 教案

苏科版数学八年级上册6.4 用一次函数解决问题 教案

§6.4 用一次函数解决问题教学目标1、能通过函数图象获取信息,发展形象思维。

2、能利用函数图象解决简单的实际问题,3、初步体会方程与函数的关系。

能力目标1、通过函数图象获取信息,培养学生的数形结合意识。

2、根据函数图象解决简单的实际问题,发展学生的教学应用能力。

3、通过方程与函数关系的研究,建立良好的知识联系。

情感目标通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识。

教学重点一次函数图象的应用教学过程一、新课导入在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用。

二、讲授新课做一做:小明有100元的零花钱,每月剩余零花钱 y(元)与所用月数x(月)的关系如图所示:(元)(月)(1)观察图象,零花钱可供小明用多少个月?∵x=5时,y=0∴零花钱可用5个月(2)两个月后零花钱为多少? 60元几个月后的零花钱为20元? 4个月(3)图中的点A的坐标是什么?(3,40)是什么含义?3个月时,剩余零花钱40元。

(4)请写出y 与x的函数关系式y=100-20x(0≤x≤5)想一想:O 10203040507080901003456789106021A C B yy=100-20x y=80-10x1、图中的点B 的坐标是什么? 是什么含义 ?(6,20) 6个月时,剩余零花钱20元。

2、图中的点C 的坐标是什么? 是什么含义 ?(2,60)2个月时,两人剩余零花钱都为60元。

练一练:某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)之间的关系如图所示。

o 1001234567891011200300400500600y根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x 轴交点的横坐标即为摩托车行驶的最长路程。

苏科版数学八年级上册6.4《用一次函数解决问题》教学设计1

苏科版数学八年级上册6.4《用一次函数解决问题》教学设计1

苏科版数学八年级上册6.4《用一次函数解决问题》教学设计1一. 教材分析《苏科版数学八年级上册6.4《用一次函数解决问题》》这一节主要让学生学会运用一次函数解决实际问题。

通过前面的学习,学生已经掌握了函数的概念、一次函数的定义、图像和性质等知识。

本节内容是在这个基础上,进一步让学生学会如何将实际问题转化为函数问题,从而运用一次函数解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了函数的基本知识,对一次函数的概念、图像和性质有一定的了解。

但学生对如何将实际问题转化为函数问题,以及如何运用一次函数解决实际问题,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将实际问题与函数知识联系起来,培养学生运用函数解决实际问题的能力。

三. 教学目标1.知识与技能:让学生掌握一次函数解决实际问题的方法,学会如何将实际问题转化为函数问题。

2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.一次函数解决实际问题的方法。

2.如何将实际问题转化为函数问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过提出问题,引导学生思考,激发学生的学习兴趣;通过案例教学,让学生学会将实际问题转化为函数问题;通过小组合作,培养学生的团队合作精神。

六. 教学准备1.准备相关的实际问题案例。

2.准备一次函数的图像和性质的资料。

3.分组安排,准备小组合作的学习环境。

七. 教学过程1.导入(5分钟)通过提出一个问题:“如何在两个城市之间找到最短的路线?”引发学生的思考。

让学生意识到,解决这个问题需要用到数学知识。

2.呈现(10分钟)呈现一个实际问题案例,如“在一个农场中,如何规划一条道路,使得道路的长度最短?”引导学生将实际问题转化为函数问题。

3.操练(10分钟)让学生分组讨论,如何将实际问题转化为函数问题,并运用一次函数解决实际问题。

6.4+用一次函数解决问题+课件++2024——2025学年苏科版数学八年级上册

6.4+用一次函数解决问题+课件++2024——2025学年苏科版数学八年级上册
按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的 变化情况如图所示,当成年人按规定剂量服药后.
(1)服药后_______时,血液中含药 量最高,达到每毫升_______毫克,接 着逐步衰弱.
(2)服药5时,血液中含药量为每毫 升_______毫克.
让智力生长,让智慧开花
巩固反馈 升华应用
让智力生长,让智慧开花
合作探究 生长新知
函数图像:每月用车里程为x千 米,甲公司的月租费是y1元, 乙公司的月租费是y2元.
分析:看图像, 找交点.
(1)x为何值,y1=y2? (2)x在何范围,y1<y2? (3)x在何范围,y2<y1?
让智力生长,让智慧开花
交流展示 成果分享
【交流】某蔬菜基地要把一批新鲜蔬菜运往外地, 有两种运输方式可供选择,主要参考数据如下:
分析:先确定函数表达式;再求交点;画图像,看图说话.
y1=45x+45, y2=60x,
交点(3,180).
让智力生长,让智慧开花
总结归纳 反思提升
通过本节课的学习,你学到了什么? 请谈一谈体会和收获.
实际问题
转化 解决
数学模型(一次函)
让智力生长,让智慧开花
分层作业 延伸课堂
让智力生长,让智慧开花
y1
汽车
y2
火车
速度/(千米 途中综合费用/
/时)
(元/时)
60
270
100
240
x为运输路程(千米)
装卸费用/(元) 200 410
分析:先确定函数表达式;再求交点;画图像,看图说话.
让智力生长,让智慧开花
交流展示 成果分享
交点(100,650).
让智力生长,让智慧开花

八上数学课件 用一次函数解决问题(课件)

八上数学课件 用一次函数解决问题(课件)
①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图 象后再判断是一次函数还是其他函数,再利用待定系数法求解相关的 问题. ②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相 关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景, 从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式 .
苏教版
6.4 用一次函数解决问题
八年级上数学第六章
本节课学习目标
学习目标
1.能根据实际问题中变量之间的关系,确定 一次函数关系式。 2.能将简单的实际问题转化为数学问题,从 而解决实际问题 3.通过具体问题的分析,发展解决问题的能 力,增强应用意识.
问题1:玉龙雪山雪线的海拔是________m,雪线每年上
例题1答案
一次函数的应用
例题2
一次函数的应用
例题3
一次函数的应用
例题3答案
一次函数的应用
练习1
一次函数的应用
练习2
一次函数的应用
练习2答案
一次函数的应用
练习3
一次函数的应用
练习3答案
总结
1.根据实际问题中变量之间的关系, 确定一次函数的关系式. 2.实际问题中自变量取值范围与函数 图像之间的关系。
升约为____m,所以雪线海拔y(m)是时间x(年)的
________函数,函数的表达式为
;ቤተ መጻሕፍቲ ባይዱ
问题2:5年后,雪线的海拔是
m;
问题3:大约 年后,雪线退至山顶而消失.
根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的 数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量 的取值范围来确定.
课堂小结
1.你能够根据实际问题列一次函数关 系式了吗? 2.你对一次函数的应用理解了多少呢?

用一次函数解决数学问题教案

用一次函数解决数学问题教案

用一次函数解决数学问题教案教学目标1、能够理解什么是一次函数,具有一定的代数运算能力。

2、能够使用一次函数解决数学问题。

二、教学重难点1、一次函数的概念和性质。

2、如何用一次函数解决数学问题。

三、课前准备1、黑板,白板或者投影仪。

2、教师可以准备一些实例题目或者让学生自己查找一些一次函数的应用实例。

四、教学步骤1、导入教师可以介绍一下一次函数的概念和性质,比如函数的定义、自变量和因变量的关系等等,还可以结合一些实际的例子来说明一次函数的应用。

2、讲授教师可以先介绍一下一次函数的基本形式y=kx+b,x和y分别表示自变量和因变量,k是斜率,b是截距。

接着教师可以让学生自己尝试画出y=kx和y=kx+b这两种情况的图像,来感受一下斜率和截距的意义。

在讲解一次函数的实际应用过程中,教师可以举例说明一些常见的问题,如:(1)根据题意列出一次方程。

(2)确定斜率和截距。

(3)求解未知量的值。

通过以上步骤,学生可以很清晰地了解一次函数的解题方法及其应用范围。

3、运用教师可以根据学生的实际情况,让他们自己尝试去应用一次函数,提供一些具体的题目供他们参考,让学生亲身体验一次函数的解题过程及其实用性。

4、巩固在巩固环节,教师可以让学生分组完成一些综合性问题的探究活动,在学生自主学习的基础上,通过小组讨论、文献查找等多种方式,深入挖掘一次函数的数学应用和意义。

五、教学提示1、在教学和解题过程中,教师需要注重培养学生的数学思维和实际运用能力,让他们在学习中体现出合作创造的精神。

2、在教学过程中,尽量采用生动形象的教学方式,向学生讲述一些有趣的题目和猜想,让学生乐于学习、渴望知识。

3、教师需要具备扎实的基础知识和丰富的教学经验,能够灵活运用不同的教学策略,在解答学生的问题时深入浅出,让学生感受到老师的尊重和关爱。

八年级数学下册《利用一次函数解决实际问题》教案、教学设计

八年级数学下册《利用一次函数解决实际问题》教案、教学设计
(2)运用任务驱动法,设计具有挑战性的任务,激发学生的探究欲望;
(3)采用启发式教学法,引导学生通过观察、分析、归纳,发现一次函数的性质;
(4)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:以生活中的一次函数实例引入新课,让学生感受到数学与生活的紧密联系;
(2)探究:引导学生通过小组讨论、自主探究,从实际问题中抽象出一次函数关系;
3.探究性作业:鼓励学生自主探究一次函数的性质,发现规律,提高学生的探究能力和创新意识。
例题:研究一次函数y=kx+b(k、b为常数,且k≠0)的图像,探讨k、b的取值对图像的影响。
4.小组合作作业:安排一些需要团队合作完成的作业,培养学生的团队协作能力和沟通能力。
例题:小组合作设计一个一次函数应用实例,并撰写解题报告,分析解题过程。
3.一次函数在实际问题中的求解方法。
总之,在本节课的教学过程中,我将注重启发式教学、分层教学和师生互动,努力提高学生的学习兴趣和积极性,确保教学目标的实现。
五、作业布置
为了巩固本章节所学知识,检验学生对一次函数的理解和应用能力,我设计了以下几类作业:
1.基础知识巩固题:包括一次函数的定义、性质、图像等方面的练习,旨在帮助学生巩固一次函数的基本概念。
例题:已知一次函数y=2x+3,求该函数的斜率和截距。
2.实际问题应用题:设计一些与生活息息相关的问题,让学生运用一次函数知识解决,提高学生解决实际问题的能力。
例题:某商店进行打折促销活动,原价为100元的商品,每增加1元,折扣力度增加0.01。请列出商品价格与折扣力度之间的关系,并计算在哪个价格区间购买最划算。
(三)情感态度与价值观
1.增强数学在实际生活中的应用意识,认识到数学知识在解决实际问题中的重要性;

《6.4用一次函数解决问题》作业设计方案-初中数学苏科版12八年级上册

《6.4用一次函数解决问题》作业设计方案-初中数学苏科版12八年级上册

《用一次函数解决问题》作业设计方案(第一课时)一、作业目标本节课的作业设计旨在使学生掌握一次函数的基本概念,理解一次函数图像及其性质,并能运用一次函数解决简单的实际问题。

通过作业练习,提高学生分析问题和解决问题的能力,加深对一次函数的理解与运用。

二、作业内容1. 掌握一次函数的概念及基本形式,能准确识别一次函数表达式。

2. 理解一次函数的图像及其性质,包括斜率、截距等概念。

3. 通过实例练习,学会用一次函数解决与速度、距离、时间等相关的实际问题。

4. 练习绘制一次函数的图像,理解图像与函数表达式之间的关系。

5. 掌握一次函数在实际生活中的应用,如电价计算、销售问题等。

三、作业要求1. 学生对一次函数的基本概念要熟悉,能准确判断给定的表达式是否为一次函数。

2. 学生需掌握一次函数的图像画法,并理解斜率和截距的意义。

3. 针对实际问题,学生需分析问题中的已知条件和未知量,建立一次函数模型,并求解。

4. 学生在完成作业时,需注意解题步骤的完整性,思路要清晰,答案要准确。

5. 学生在作业中需体现出对一次函数在实际生活中的应用理解,如结合实际问题进行思考和解答。

四、作业评价1. 评价学生是否掌握了一次函数的基本概念和性质。

2. 评价学生是否能正确绘制一次函数的图像,并理解图像与函数表达式之间的关系。

3. 评价学生是否能正确分析实际问题,建立一次函数模型并求解。

4. 评价学生的解题步骤是否完整,思路是否清晰,答案是否准确。

5. 评价学生在作业中是否体现出对一次函数在实际生活中的应用理解。

五、作业反馈1. 教师需对每位学生的作业进行认真批改,指出错误并给出修改意见。

2. 对于普遍存在的问题,教师需在课堂上进行讲解和指导。

3. 对于优秀作业,教师需给予表扬和鼓励,激发学生的学习积极性。

4. 教师需根据学生的作业情况,调整教学进度和教学方法,以更好地满足学生的学习需求。

5. 教师应及时将学生的作业情况反馈给家长,与家长共同关注学生的学习进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.4 用一次函数解决问题(1)(教案)
【教学目标】
1、能根据实际问题中变量之间的关系,确定一次函数的表达式,通过一次函数表述数量及其关系的过程,体会模型思想;
2、能用一次函数及其一次方程和一次不等式等知识综合解决实际问题.
【教学重点】根据实际问题建立函数模型
【教学难点】综合一次方程和一次不等式等知识综合解决实际问题
【教学过程】
引例:(课本P155)名闻遐迩的玉龙雪山,位于云南省丽江城北,由12座山峰组成,主峰海拔5596米,远眺玉龙雪山,在海拔4500米处,有一条黑白分明的分界线——雪线,雪线以上是银光闪烁的冰雪世界,雪线以下是草木葱葱的原始深林.
由于气候变暖等原因,2002~2007年间,玉龙雪山的雪线平均每年上升约10米,假设雪线的高度按此速度不断变化,几年后玉龙雪山的雪线将由现在的海拔4500米退至山顶而消失?
情景的引入是为了让学生以丽江美景玉龙雪山为问题背景,通过两个变量的分析,引导学生建立一次函数的模型,从而利用一次函数的相关知识解决实际问题.在解答方法上,可以有不同的解法,鼓励学生发散思维,找到不同的解决途径,同时也为问题的解决作准备.
活动1、(课本P155问题1)某工厂生产某种产品,已知该工厂正常运转的固定资本为每天12000元,生产该产品的原料成本为每件900元.
(1)写出每天的生产成本(包括固定成本于原料成本)与产量之间的函数表达式;
(2)如果每件产品的出厂价为1200元,那么每天生产多少件产品,该工厂才有赢利?
学生读题,找清数量关系,即该产品每天的生产成本由两部分构成,一部分是固定成本,这是一个与产量无关的常量;另一部分是原料成本,它随产量的变化而变化.
通过探索活动,让学生进一步明确题中的数量关系,通过文字语言的分析,正确找出不等关系.体验在处理一个实际问题面前,数学所具有的价值和魅力,培养学生的应用意识.
练习1、已知A 、B 两家旅行社分别推出家庭旅游优惠活动,两家旅行社的票价均为90元/人,但优惠办法不同,A 旅行社的优惠方法是:全家有一人购全票,其余的半价优惠;B 旅行社的优惠方法是:每人均按3
2票价优惠,你将选择哪家旅行社?
通过练习巩固知识的运用,培养学生用函数的观点分析问题和解决问题的能力.
活动2、为节约能源,某市将调整电价,规定:每户居民每月用电量不超过100度,每度电价为0.50元,超过100度的,超出部分每度电价为1.00元.
(1)写出调整电价后某户居民按月应交的电费y(元)与用电量x(度)之间的函数表达式;
(2)甲、乙两户居民某月所交电费分别为40元和70元,这两户居民该月各用电多少度?
分段函数是指自变量在不同的取值范围内,其关系式(或图像)也不同的函数,分段函数的应用解答时需要分段讨论,在现实生活中存在许多需分段计费的实际问题.进行必要的延伸和拓展,提升学生的解题能力.
练习2、(课本P156练习2)
某市出租车收费标准:不超过3千米计费为7.0元,3千米后按2.4元/千米计费.
(1)当路程表显示1.5km 和7km 时,应分别付费多少元?
(2)写出车费 y (元)与路程 x (千米)之间的函数表达式;
(3)小亮乘出租车出行,付费19元,计算小亮乘车的路程.
拓展应用:(课本P159第2题)
如图,公路上有A 、B 、C 三个汽车站,一辆汽车8:00从离A 站10千米的P 地出发,向C 站匀速行驶,15分钟后离A 站30千米,
(1)设出发x 小时后,汽车离A 站y 千米,写出y 与x 之间的函数表达式;
(2)当汽车行驶到离A 站250千米的B 站时,接到通知要在12:00前赶到离B 站60千米的C 站,汽车按原速行驶,能否准时到达?如果能,那么汽车何时到达C 站?
随堂练习:
1、(课本P156问题2)在人才招聘会上,某公司承诺:录用后第一年得月工资为2000元,在以后的一定时间内,每年的月工资比上一年的月工资增加300元.
(1)某人在该公司连续工作n 年,写出他第n 年的月工资 y 与n 的函数表达式.
(2)他第5 年的年收入能否超过40000元?
2、(课本P159、3)某电信公司推出甲、乙两种收费方式供手机用户选择:甲种方式每月收月租费8元,每分钟通话费为0.2元;乙种方式不收月租费,每分钟通话费为0.3元,试根据通话时间的多少选择合适的付费方式.
小结思考: 通过本节课的学习,你有哪些收获,你还有哪些困惑?
本节课我们从生活中的问题出发,将实际问题转化为数学问题,建立了一次函数的模型,从而解决实际问题.学生尝试对知识方法进行归纳、提炼、总结,形成理性的认识,内化数学的方法和经验.试对所学知识进行反思、归纳和总结.会对知识进行提炼,体会数学的思想和应用,将感性的认识升华为理性的认识.
.
. . . B C P A。

相关文档
最新文档