数列、推理与证明

合集下载

数列、推理与证明

数列、推理与证明

× { + 3 × ( 1 J 2 + 4 × l 1 J 3 ・ + ( 肘 1 ) × 所 以 = 丢 ( - 一 吉 + ÷ 一 ÷ + . . ‘ + 一 2
数列的 通项公 式和前/ z 项和公 式 列
) ( n , m, P, q∈N ) ; 有 关 和 的
性质 , S , 3 2 2 - S k , ¥ 3  ̄ - S , … 仍 成 等 差
( 比) 数 列 等 .需 要 指 出 的是 , 等差 、 等 比数 列 的 性 质 具 有 对 称 性 , 因 此
思维 瓶颈 .
数列 推理与证明
。 逢葙活 。 凄 ‘ … 荡 ・
【 毒情分析】
等 差 数 列 与 等 比 数 列 是 新 课
标高考 的必考热 点之一 , 一 般 的考 查方 式 是 一 道 客 观题 、 一道 解 答 题 , 试 题 难 度 多为 中偏 低档 或 中档 , 总 分
1 二 , 口 ≠ t . 【 1 一 g
② 性质法 , 即运用等 差 ( 比) 数
列 的相 关 性 质 解 题 , 常 可 整体 代换 ,
【 经爨 } 例 艇】
o例 1 已知等差数列 { a n } 满足 :
7 , a  ̄ + a T = 2 6 , { %} 的 前n 项 和 为S .
( 2 )由 ( 1 ) 知a n = 2 n+ 1 , 所 以6 =
— 1 r因 为 = c + c 2 + … + c , 所 以 = 一 一 = 一 ) = ~ ‘ l \ — n ) f l ’ , ( 1 4 n ( n + l 4 n + 1J
E 三 孱
六 大 主 干 知 识
为 了让 您理 清 数 列 、 推理 与证 明 的复 习要 点 , 理 顺 数 列 中的 一对 姐 妹 花 ( 等 差数 列 与等 比数 列) , 成 功 穿越 数 列 的应用 , 理 透 推理 与证 明 的横 向联 系和纵 向延伸 , 整合 知 识 , 提炼破解技巧, 现 走进 经典 例题 , 通过 跟踪 练 习, 让 您 复 习数 列 、 推 理 与证 明 s 0 e a s y, 轻 松突破 数 列 、 推理 与证 明 的

2016高考理科数学二轮复习与增分策略课件(全国通用):专题四 数列 推理与证明 第4讲

2016高考理科数学二轮复习与增分策略课件(全国通用):专题四 数列 推理与证明 第4讲

)
解析 由{an}为等差数列,设公差为d,
a1+a2+„+an n-1 则 bn= =a1+ 2 d, n
又正项数列{cn}为等比数列,设公比为q,
n c 则 dn= c1· c2· „· cn= 1 q
n
n
n2 n 2
c1q
n 1 2
,故选 D.
答案 D
x2 y2 (2)若点 P0(x0,y0)在椭圆a2+b2=1(a>b>0)外,过点 P0 作该 椭圆的两条切线,切点分别为 P1,P2,则切点弦 P1P2 所在 x0x y0y x2 y2 直线的方程为 a2 + b2 =1.那么对于双曲线a2-b2=1(a>0, b>0) , 类 似 地 , 可 以 得 到 切 点 弦 所 在 直 线 的 方 程 为 ____________________.
x0x y0y 答案 a2 - b2 =1
x0x y0y 这说明 P1(x1,y1),P2(x2,y2)都在直线 a2 - b2 =1 上, x0x y0y 故切点弦 P1P2 所在直线的方程为 a2 - b2 =1.
热点三 直接证明和间接证明 直接证明的常用方法有综合法和分析法,综合法由因导果, 而分析法则是执果索因,反证法是反设结论导出矛盾的证 明方法.
1 2 3 4
即集合AB表示如图所示的所有圆点 “ ”+所有圆点“ ” +所有圆点“ ”,共45个. 故AB中元素的个数为45.故选C. 答案 C
1 2 3 4
2.(2014· 北京 ) 学生的语文、数学成绩均被评定为三个等级,
依次为“优秀”“合格”“不合格”.若学生甲的语文、数 学成绩都不低于学生乙,且其中至少有一门成绩高于乙, 则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位 学生比另一位学生成绩好,并且不存在语文成绩相同、数 学成绩也相同的两位学生,那么这组学生最多有( A.2人 B.3人 C.4人 D.5人 )

数学推理与证明的基本方法

数学推理与证明的基本方法

数学推理与证明的基本方法数学是一门严谨而抽象的学科,其研究对象是数和量之间的关系以及形式描述的模型。

而在数学中,推理和证明是非常重要的基本方法。

通过推理与证明,数学家们能够建立起完善的数学体系,深入研究各种数学问题,达到发现新知的目的。

本文将介绍数学推理与证明的基本方法,包括归纳法、逆推法、假设推理法等。

一、归纳法归纳法是数学推理与证明的一种基本方法,其核心思想是从具体情况出发,通过观察和总结相同规律的特征,推导出一般规律。

归纳法可分为弱归纳法和强归纳法两种形式。

1. 弱归纳法弱归纳法又称为数学归纳法,常用于证明递推数列性质的正确性。

其基本思路为:首先证明当n取某个特定值时命题成立,然后假设当n=k时命题成立,再通过这一假设证明当n=k+1时命题也成立。

这样,通过不断推理,可以得出当n取任意自然数时命题都成立的结论。

2. 强归纳法强归纳法是在弱归纳法的基础上进行推广而得到的一种证明方法。

强归纳法常用于证明某个关于自然数的数学命题的正确性。

与弱归纳法不同的是,强归纳法在假设部分多了包括前面所有情况作为条件。

二、逆推法逆推法是一种从结果出发,逆向思考的证明方法。

当我们需要证明一个命题时,可以倒过来先假设结论成立,然后通过逆向推理来证明这一假设是正确的。

逆推法常用于证明相等关系、包含关系、存在性等问题。

通过假设结果成立,并最终得出与已知条件相符的结论,说明假设是正确的,从而推出原命题成立。

三、假设推理法假设推理法是通过假设一些条件来推导出结论的一种证明方法。

在假设推理法中,我们通过对问题的设想和分析,假设某些条件成立,然后推导出与已知条件相符的结论。

假设推理法常用于证明存在性问题和推理漏洞的存在。

通过假设某个条件成立,然后通过推理来得出结论,如果假设的条件不符合实际情况,那么结论就是错误的。

通过这种方法,我们可以发现问题中的漏洞并得出正确的结论。

四、直接证明法直接证明法是最常见、最直接的证明方法之一。

高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理

高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理
第十页,共四十三页。
考点(kǎo di等ǎn)差1数列的基本(jīběn)运算 例 1:(1)(2017 年新课标Ⅰ)记 Sn为等差数列(děnɡ chā shù liè){an}的前n项 和.若a4+a5=24,S6=48,则{an}的公差为( )
第十一页,共四十三页。
解析:方法一,设公差为 d,a4+a5=a1+3d+a1+4d=2a1 +7d=列{an}的前 n 项和为 Sn,a1=15,且满足2ann-+13=
2na-n 5+1,已知 n,m∈N*,n>m,则 Sn-Sm 的最小值为(
第2讲 等差数列(děnɡ chā shù liè)
第一页,共四十三页。
1.理解(lǐjiě)等差数列的概念.
2.掌握等差数列的通项公式与前n项和公式. 3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解
决相应的问题.
4.了解等差数列与一次函数的关系.
第二页,共四十三页。
1.等差数列的定义
7.等差数列的最值
在等差数列{an}中,若a1>0,d<0,则Sn存在最大值;若
a1<0,d>0,则Sn存在(cúnzài)最_小_____值.
第六页,共四十三页。
1.(2015 年重庆(zhònɡ qìnɡ))在等差数列{an}中,若a2=4,a4=2,则a6 =( B )
A.-1
第七页,共四十三页。
第十六页,共四十三页。
考点(kǎo diǎ等n) 差2 数列的基本性质(xìngzhì)及应用 例2:(1)已知等差数列{an}的前n项和为Sn,若S10=1,S30=5,则S40 =( ) A. 思路点拨:思路1,设等差数列{an}的首项为a1,公差为d,根据 (gēnjù)题意列方程组求得a1,d,进而可用等差数列前n项和公式求S40; 思路2,设{an}的前n项和Sn=An2+Bn,由题意列出方程组求得A, B,从而得Sn,进而得S40;

数列的数学归纳法与证明总结

数列的数学归纳法与证明总结

数列的数学归纳法与证明总结在数学中,数列是一系列按照特定规律排列的数字。

数学归纳法是一种证明数学命题的常用方法之一,尤其在涉及到数列时起到重要作用。

本文将对数列的数学归纳法以及相关证明方法进行总结。

一、数学归纳法的基本原理数学归纳法是一种通过证明第一个命题为真,且若某一命题为真,则下一个命题也为真的方法,用于证明涉及正整数的命题。

它包含以下两个步骤:1. 基础步骤:证明当n取某个特定值时命题成立,通常是证明n=1时为真;2. 归纳步骤:假设当n=k时命题成立,证明当n=k+1时命题也成立。

通过以上两个步骤的迭代,可以得出结论:对于任意正整数n,命题都成立。

二、数列的数学归纳法证明当我们处理数列时,常常需要证明其中一些性质是否成立。

数学归纳法可以帮助我们进行这样的证明。

以斐波那契数列为例,我们将展示如何使用数学归纳法进行证明。

斐波那契数列是一个以0和1开始,后续每个数都是前两个数之和的数列。

即:F(1) = 0,F(2) = 1F(n) = F(n-1) + F(n-2),其中n>2现在我们使用数学归纳法证明斐波那契数列的性质:F(n)的值大于等于n。

我们按照数学归纳法的步骤来进行证明。

1. 基础步骤:当n=1时,F(1)=0,而0大于等于1不成立。

所以我们需要验证n=2时,F(2)的值是否大于等于2。

经计算可知F(2)=1,显然1小于2。

因此基础步骤不成立。

2. 归纳步骤:假设当n=k时,F(k) >= k 成立。

我们需要证明当n=k+1时,F(k+1) >= k+1也成立。

根据斐波那契数列的定义,有F(k+1) = F(k) + F(k-1)。

由归纳假设,F(k) >= k,而F(k-1) >= k-1。

因此有F(k+1) = F(k) + F(k-1) >= k + k-1 = 2k-1。

下一步我们可以尝试使用数学归纳法证明2k-1 >= k+1,其中k为正整数。

高考数学二轮复习专题

高考数学二轮复习专题

高考数学二轮复习专题汇总1专题一:集合、函数、导数与不等式。

此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。

每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。

2专题二:数列、推理与证明。

数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。

3专题三:三角函数、平面向量和解三角形。

平面向量和三角函数的图像与性质、恒等变换是重点。

近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。

平面向量具有几何与代数形式的“双重性”,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。

4专题四:立体几何。

注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。

5专题五:解析几何。

直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。

近几年高考中圆锥曲线问题具有两大特色:一是融“综合性、开放性、探索性”为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。

我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。

6专题六:概率与统计、算法与复数。

要求具有较高的阅读理解和分析问题、解决问题的能力。

高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。

高考数学二轮复习策略1.加强思维训练,规范答题过程解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。

数列与推理证明——学生版

第1讲 等差数列、等比数列【高考考情解读】 高考对本讲知识的考查主要是以下两种形式:1.以填空题的形式考查,主要利用等差、等比数列的通项公式、前n 项和公式及其性质解决与项、和有关的计算问题,属于基础题;2.以解答题的形式考查,主要是等差、等比数列的定义、通项公式、前n 项和公式及其性质等知识交汇综合命题,考查用数列知识分析问题、解决问题的能力,属低、中档题.1. a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2. 等差数列和等比数列等差数列 等比数列 定义 a n -a n -1=常数(n ≥2) a na n -1=常数(n ≥2) 通项公式a n =a 1+(n -1)da n =a 1q n -1(q ≠0)判定方法(1)定义法(2)中项公式法:2a n +1=a n +a n +2(n ≥1)⇔{a n }为等差数列(3)通项公式法:a n =pn +q (p 、q 为常数)⇔{a n }为等差数列(4)前n 项和公式法:S n =An 2+Bn (A 、B 为常数)⇔{a n }为等差数列(5){a n }为等比数列,a n >0⇔{log a a n }为等差数列 (1)定义法(2)中项公式法:a 2n +1=a n ·a n +2 (n ≥1)(a n ≠0) ⇔{a n }为等比数列(3)通项公式法:a n =c ·q n (c 、q 均是不为0的常数,n ∈N *)⇔{a n }为等比数列(4){a n }为等差数列⇔{aa n }为等比数列(a >0且a ≠1)性质(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m +a n =a p +a q (2)a n =a m +(n -m )d(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等差数列(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q (2)a n =a m q n-m(3)等比数列依次每n 项和(S n ≠0)仍成等比数列 前n 项和S n =n (a 1+a n )2=na 1+n (n -1)2d(1)q ≠1,S n =a 1(1-q n )1-q =a 1-a n q1-q(2)q =1,S n =na 1考点一 与等差数列有关的问题例1 在等差数列{a n }中,满足3a 5=5a 8,S n 是数列{a n }的前n 项和.(1)若a 1>0,当S n 取得最大值时,求n 的值;(2)若a 1=-46,记b n =S n -a nn ,求b n 的最小值.(1)(2012·浙江改编)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是________.(填序号)①若d <0,则数列{S n }有最大项;②若数列{S n }有最大项,则d <0;③若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0;④若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列.(2)(2013·课标全国Ⅰ改编)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________.考点二 与等比数列有关的问题例2 (1)(2012·课标全国改编)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.(2)(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.考点三 等差数列、等比数列的综合应用 例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.已知数列{a n }满足a 1=3,a n +1-3a n =3n (n ∈N *),数列{b n }满足b n =3-n a n .(1)求证:数列{b n }是等差数列;(2)设S n =a 13+a 24+a 35+…+a n n +2,求满足不等式1128<S n S 2n <14的所有正整数n 的值.1. 在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算.2. 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 3. 等差、等比数列的单调性(1)等差数列的单调性d >0⇔{a n }为递增数列,S n 有最小值.d <0⇔{a n }为递减数列,S n 有最大值.d =0⇔{a n }为常数列.(2)等比数列的单调性当⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列. 4. 常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n }等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=(a 2-a 1)qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公差为q k . 等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d . 5. 易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac .1. 已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=________.2. 已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为________.3. 已知等差数列{a n }的前n 项的和为S n ,等比数列{b n }的各项均为正数,公比是q ,且满足:a 1=3,b 1=1,b 2+S 2=12,S 2=b 2q .(1)求a n 与b n ;(2)设c n =3b n -λ·2a n3,若数列{c n }是递增数列,求λ的取值范围.(推荐时间:60分钟)一、填空题1. (2013·江西改编)等比数列x,3x +3,6x +6,…的第四项等于________.2. (2013·课标全国Ⅱ改编)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=________. 3. 等差数列{a n }前9项的和等于前4项的和.若a 4+a k =0,则k =________.4. 已知等比数列{a n }为递增数列.若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.5. 已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,a 2 011),则OP →·OQ →=________.6. 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8等于________. 7. 各项均为正数的等比数列{a n }的公比q ≠1,a 2,12a 3,a 1成等差数列,则a 3a 4+a 2a 6a 2a 6+a 4a 5=________.8. 在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于________.9. 已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________. 二、解答题10.已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.11.设数列{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .12.(2013·湖北)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式; (2)是否存在正整数m ,使得1a 1+1a 2+…+1a m ≥1?若存在,求m 的最小值;若不存在,说明理由.第2讲数列求和及数列的综合应用【高考考情解读】高考对本节知识主要以解答题的形式考查以下两个问题:1.以递推公式或图、表形式给出条件,求通项公式,考查学生用等差、等比数列知识分析问题和探究创新的能力,属中档题.2.通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.1.数列求和的方法技巧(1)分组转化法:有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2)错位相减法:这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n项和,其中{a n},{b n}分别是等差数列和等比数列.(3)倒序相加法:这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法:利用通项变形,将通项分裂成两项或n项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n+1的数列的前n项和,其中{a n}若为等差数列,则1a n a n+1=1d⎝⎛⎭⎫1a n-1a n+1.常见的拆项公式:①1n(n+1)=1n-1n+1;②1n(n+k)=1k(1n-1n+k);③1(2n-1)(2n+1)=12(12n-1-12n+1);④1n+n+k=1k(n+k-n).2.数列应用题的模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)混合模型:在一个问题中同时涉及等差数列和等比数列的模型.(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5)递推模型:如果容易找到该数列任意一项a n与它的前一项a n-1(或前n项)间的递推关系式,我们可以用递推数列的知识来解决问题.考点一分组转化求和法例1等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前n 项和S n .(2013·安徽)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x +a n+1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n .考点二 错位相减求和法例2 (2013·山东)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.考点三裂项相消求和法例3(2013·广东)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a2n+1-4n-1,n∈N*, 且a2,a5,a14构成等比数列.(1)证明:a2=4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.已知x,f(x)2,3(x≥0)成等差数列.又数列{a n}(a n>0)中,a1=3,此数列的前n项和为S n,对于所有大于1的正整数n都有S n=f(S n-1).(1)求数列{a n}的第n+1项;(2)若b n是1a n+1,1a n的等比中项,且T n为{b n}的前n项和,求T n.考点四 数列的实际应用例4 (2012·湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).某产品在不做广告宣传且每千克获利a 元的前提下,可卖出b 千克.若做广告宣传,广告费为n (n ∈N *)千元时比广告费为(n -1)千元时多卖出b2n 千克.(1)当广告费分别为1千元和2千元时,用b 表示销售量S ;(2)试写出销售量S 与n 的函数关系式;(3)当a =50,b =200时,要使厂家获利最大,销售量S 和广告费n 分别应为多少?1. 数列综合问题一般先求数列的通项公式,这是做好该类题型的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1)a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).(2)递推关系形如a n +1-a n =f (n ),常用累加法求通项.(3)递推关系形如a n +1a n=f (n ),常用累乘法求通项.(4)递推关系形如“a n +1=pa n +q (p 、q 是常数,且p ≠1,q ≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p (a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列.(5)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p ≠1,q ≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n+1转为用迭加法求解.2. 数列求和中应用转化与化归思想的常见类型:(1)错位相减法求和时将问题转化为等比数列的求和问题求解.(2)并项求和时,将问题转化为等差数列求和. (3)分组求和时,将问题转化为能用公式法或错位相减法或裂项相消法或并项法求和的几个数列的和求解. 提醒:运用错位相减法求和时,相减后,要注意右边的n +1项中的前n 项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零.3. 数列应用题主要考查应用所学知识分析和解析问题的能力.其中,建立数列模型是解决这类问题的核心,在试题中主要有:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.1. 在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么称这个数列为等积数列,称k 为这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.2. 秋末冬初,流感盛行,特别是甲型H1N1流感.某医院近30天每天入院治疗甲流的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗甲流的人数为________.3. 已知公差大于零的等差数列{a n }的前n 项和S n ,且满足:a 2·a 4=65,a 1+a 5=18. (1)若1<i <21,a 1,a i ,a 21是某等比数列的连续三项,求i 的值;(2)设b n =n(2n +1)S n ,是否存在一个最小的常数m 使得b 1+b 2+…+b n <m 对于任意的正整数n 均成立,若存在,求出常数m ;若不存在,请说明理由.(推荐时间:60分钟)一、填空题1. 已知数列112,314,518,7116,…,则其前n 项和S n =________.2. 在等差数列{a n }中,a 1=-2 013,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 013的值等于________.3. 对于数列{a n },a 1=4,a n +1=f (a n ),n =1,2,…,则a 2 013=________.x 1 2 3 4 5 f (x )543124. 设{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,记M n =ab 1+ab 2+…+ab n ,则数列{M n }中不超过2 013的项的个数为________.5. 在等差数列{a n }中,其前n 项和是S n ,若S 15>0,S 16<0,则在S 1a 1,S 2a 2,…,S 15a 15中最大的是________.6. 数列{a n }满足a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 012=________.7. 已知函数f (n )=⎩⎪⎨⎪⎧n 2(n 为奇数),-n 2(n 为偶数),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 2 012=________.8. 数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n =________.9. 已知数列{a n }满足3a n +1+a n =4(n ≥1)且a 1=9,其前n 项之和为S n ,则满足不等式|S n -n -6|<1125的最小整数n 是________.10.气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910(n ∈N *)元,使用它直至报废最合算(所谓报废最合算是指使用这台仪器的平均耗资最少),一共使用了________天.二、解答题11.已知等差数列{a n}满足:a5=9,a2+a6=14.(1)求数列{a n}的通项公式;(2)若b n=a n+qa n(q>0),求数列{b n}的前n项和S n.12.将函数f(x)=sin 14x·sin14(x+2π)·sin12(x+3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{a n}(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=2n a n,数列{b n}的前n项和为T n,求T n的表达式.13.在等比数列{a n}中,a2=14,a3·a6=1512.设b n=log2a2n2·log2a2n+12,T n为数列{b n}的前n项和.(1)求a n和T n;(2)若对任意的n∈N*,不等式λT n<n-2(-1)n恒成立,求实数λ的取值范围.第3讲推理与证明【高考考情解读】 1.高考主要考查对合情推理和演绎推理的理解及应用;直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列、不等式、解析几何等综合命题.考查“归纳—猜想—证明”的模式,常与数列结合考查.2.归纳推理和类比推理等主要是和数列、不等式等内容联合考查,多以填空题的形式出现,难度中等;而考查证明问题的知识面广,涉及知识点多,题目难度较大,主要考查逻辑推理能力、归纳能力和综合能力,难度较大.1. 合情推理(1)归纳推理①归纳推理是由部分到整体、由个别到一般的推理.②归纳推理的思维过程如下:实验、观察→概括、推广→猜测一般性结论 (2)类比推理①类比推理是由特殊到特殊的推理②类比推理的思维过程如下:观察、比较→联想、类推→猜测新的结论 2. 演绎推理(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般性原理.②小前提——所研究的特殊情况.③结论——根据一般原理,对特殊情况做出的判断.(2)合情推理与演绎推理的区别归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确. 3. 直接证明(1)综合法:用P 表示已知条件、已有的定义、定理、公理等,Q 表示所要证明的结论,则综合法可用框图表示为P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q(2)分析法:用Q 表示要证明的结论,则分析法可用框图表示为 Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→ 得到一个明显成立的条件4. 间接证明:反证法的证明过程可以概括为“否定——推理——否定”,即从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题)的过程.用反证法证明命题“若p 则q ”的过程可以用如图所示的框图表示.考点一 归纳推理例1 (2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.(1)在数列{a n }中,若a 1=2,a 2=6,且当n ∈N *时,a n +2是a n ·a n +1的个位数字,则a 2 014=________.(2)(2012·江西改编)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=________.考点二 类比推理例2 (1)在平面几何中有如下结论:若正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.(2)椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =-b 2a 2.那么对于双曲线则有如下命题:AB 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =________.(1)现有一个关于平面图形的命题,如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个中心,则这两个正方体重叠部分的体积恒为________. (2)命题p :已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1、F 2是椭圆的两个焦点,P 为椭圆上的一个动点,过F 2作∠F 1PF 2的外角平分线的垂线,垂足为M ,则OM 的长为定值.类比此命题,在双曲线中也有命题q :已知双曲线x 2a 2-y 2b 2=1(a >b >0),F 1、F 2是双曲线的两个焦点,P 为双曲线上的一个动点,过F 2作∠F 1PF 2的________的垂线,垂足为M ,则OM 的长为定值________.考点三 直接证明与间接证明例3 已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0 (n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1). (1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明:数列{a n }不是等比数列;(2)试判断数列{b n }是否为等比数列.1. 合情推理的精髓是“合情”,即得到的结论符合“情理”,其中主要是归纳推理与类比推理.归纳推理是由部分得到整体的一种推理模式.类比推理是由此及彼的推理模式;演绎推理是一种严格的证明方式.2. 直接证明的最基本的两种证明方法是综合法和分析法,这两种方法也是解决数学问题时常见的思维方式.在实际解题时,通常先用分析法寻求解题思路,再用综合法有条理地表述解题过程.1. 将全体正奇数排成一个三角形数阵:按照以上排列的规律,第45行从左向右的第17个数为________.2. 在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项,k (k +1)=13[k (k +1)(k+2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),…n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].相加,得1×2+2×3+…+n (n +1)=13n (n +1)(n +2).类比上述方法,计算“1×2×3+2×3×4+…+n (n +1)(n +2)”的结果为________.(推荐时间:60分钟)一、填空题1. 下列关于五角星的图案构成一个数列,该数列的一个通项公式是________.2. 已知结论:在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD=2.若把该结论推广到空间中,则有结论:在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AOOM等于________. 3. 已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是________.4. 已知正三角形内切圆的半径是其高的13,把这个结论推广到空间正四面体,类似的结论是________________________________________________________________________.5. 把非零自然数按一定的规则排成了如图所示的三角形数表(每行比上一行多一个数).设a ij (i 、j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如a 42=8,若a ij =2 014,则i ,j 的值的和为________.6. 有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含一个数{1},第二组含两个数{3,5},第三组含三个数{7,9,11},第四组含四个数{13,15,17,19},…,现观察猜想每组内各数之和为a n 与其组的编号数n 的关系为________.7. (2013·陕西)观察下列等式:(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为______________.8. 如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n ,每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第10行第3个数(从左往右数)为________.9. 对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23⎩⎨⎧35,33⎩⎪⎨⎪⎧7911,43⎩⎪⎨⎪⎧13151719,….仿此,若m 3的“分裂数”中有一个是59,则m 的值为________. 二、解答题10.已知a >0且a ≠1,f (x )=1a x +a.(1)求值:f (0)+f (1),f (-1)+f (2);(2)由(1)的结果归纳概括对所有实数x 都成立的一个等式,并加以证明; (3)若n ∈N *,求和:f (-(n -1))+f (-(n -2))+…+f (-1)+f (0)+f (1)+…+f (n ).11.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.12.已知数列{a n }有a 1=a ,a 2=p (常数p >0),对任意的正整数n ,S n =a 1+a 2+…+a n ,并有S n 满足S n =n (a n -a 1)2.(1)求a 的值并证明数列{a n }为等差数列;(2)令p n =S n +2S n +1+S n +1S n +2,是否存在正整数M ,使不等式p 1+p 2+…+p n -2n ≤M 恒成立,若存在,求出M 的最小值;若不存在,说明理由.。

高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2

第二章 推理与证明2.1.1 合情推理与演绎推理(1)归纳推理【要点梳理】1、从一个或几个已知命题得出另一个新命题的思维过程称为 任何推理包括 和 两个部分。

是推理所依据的命题,它告诉我们 是什么, 是根据前提推得的命题,它告诉我们 是什么。

2、从个别事实中推演车一般性的结论的推理通常称为 ,它的思维过程是3、归纳推理有如下特点(1)归纳推理的前提是几个已知的 现象,归纳所得的结论是尚属未知的 现象,该结论超越了前提所包含的范围。

(2)由归纳推理得到的结论具有 的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它 作为数学证明的工具。

(填“能”或“不能”)(3)归纳推理是一种具有 的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

【指点迷津】1、运用归纳推理的一般步骤是什么?首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);然后,对所得的一般性命题进行检验。

2、在数学上,检验的标准是什么?标准是是否能进行严格的证明。

3、归纳推理的一般模式是什么?S 1具有P ;S 2具有P ;……;S n 具有P (S 1、S 2、…、S n 是A 类事件的对象) 所以A 类事件具有P【典型例题】例1、设N n x f x f x f x f x f x f x x f n n ∈'='='==-),()(,),()(),()(,sin )(112010 ,则)()(2005=x fA 、x sinB 、x sin -C 、x cosD 、x cos - 【解析】:,cos )(sin )(1x x x f ='=)()()(sin )(cos )()(cos )(sin )(sin )cos ()(cos )sin ()(sin )(cos )(42615432x f x f x f x x x f x f x x x f xx x f xx x f x x x f n n ====-='==='=='-=-='-=-='=+故可猜测)(x f n 是以4为周期的函数,有x x f x f x f n n sin )(,cos )1()(2414-===++xf x f x x f n n sin )4()(cos )(4434==-=++故选C【点评】归纳推理是由部分到整体、由个别到一般的推理,是人们在日常活动和科学学习研究中经常使用的一种推理方法,必须认真学习领会,在归纳推理的过程中,应注意所探求的事物或现象的本质属性和因果关系。

2014年高考数学三轮专项模拟 数列、推理与证明试卷 理

数列、推理与证明本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·黄冈模拟)集合M ={y |y =lg(x 2+1),x ∈R },集合N ={x |4x >4,x ∈R },则M ∩N 等于( )A .[0,+∞)B .[0,1)C .(1,+∞)D .(0,1]【解析】 由x 2+1≥1知lg(x 2+1)≥0,所以M ={y |y ≥0},由4x >4知x >1,所以N ={x |x >1},所以M ∩N ={x |x >1},故选C. 【答案】 C2.如果命题“綈(p ∧q )”是真命题, 则( ) A .命题p 、q 均为假命题 B .命题p 、q 均为真命题C .命题p 、q 中至少有一个是真命题D .命题p 、q 中至多有一个是真命题【解析】 命题“綈(p ∧q )”是真命题,则命题“p ∧q ”是假命题,则命题p 、q 中至多有一个是真命题,故选D.【答案】 D3.(2013·宁波模拟)等差数列{a n }中,已知a 1=-12,S 13=0,使得a n >0的最小正整数n 为( )A .7B .8C .9D .10【解析】 由S 13=13(a 1+a 13)2=0得a 1+a 13=2a 7=0,所以a 7=0,又a 1=-12,故n ≥8时,a n >0.【答案】 B4.(2013·课标全国卷Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13C.19D .-19【解析】 设公比为q ,∵S 3=a 2+10a 1,a 5=9,∴⎩⎪⎨⎪⎧ a 1+a 2+a 3=a 2+10a 1,a 1q 4=9,∴⎩⎪⎨⎪⎧a 1q 2=9a 1,a 1q 4=9, 解得a 1=19,故选C.【答案】 C5.下列函数中与函数y =-3|x |奇偶性相同且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1【解析】 函数y =-3|x |是偶函数且在(-∞,0)是增函数,故选C. 【答案】 C6.(2013·大纲全国卷)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)【解析】 由3a n +1+a n =0,得a n +1a n =-13,故数列{a n }是公比q =-13的等比数列.又a 2=-43,可得a 1=4.所以S 10=4⎣⎡⎦⎤1-⎝⎛⎭⎫-13101-⎝⎛⎭⎫-13=3(1-3-10).【答案】 C7.已知向量a 、b 的夹角为120°,且|a |=|b |=4,那么b ·(2a +b )的值为( ) A .48 B .32 C .1D .0【解析】 b ·(2a +b )=2a·b +b 2=2×4×4×cos 120°+42=0. 【答案】 D8.已知f (x )=12 013+log 2x 1-x ,则f ⎝⎛⎭⎫12 014+f ⎝⎛⎭⎫22 014+…+f ⎝⎛⎭⎫2 0132 014的值为( ) A .1B .2C .2 013D .2 014【解析】 对任意0<x <1,可得f (x )+f (1-x )=22 013.设S =f ⎝⎛⎭⎫12 014+f ⎝⎛⎭⎫22 014+…+f ⎝⎛⎭⎫2 0132 014 则S =f ⎝⎛⎭⎫2 0132 014+f ⎝⎛⎭⎫2 1022 014+…+f ⎝⎛⎭⎫12 014 于是2S =⎣⎡⎦⎤f ⎝⎛⎭⎫12 014+f ⎝⎛⎭⎫2 0132 014+⎣⎡f ⎝⎛⎭⎫22 014+⎦⎤f ⎝⎛⎭⎫2 0122 014+…+[f ⎝⎛⎭⎫2 0132 014+f ⎝⎛⎭⎫12 014] =22 013×2 013=2,所以S =1. 【答案】 A第Ⅱ卷二、填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上) 9.已知角α的终边与单位圆交于点⎝⎛⎭⎫-255,55,则sin 2α的值为________. 【解析】 由已知得sin α=55,cos α=-255, 所以sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45. 【答案】 -4510.(2013·昆明模拟)已知数列{a n }中a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n+S 1)都成立,则S 15等于________.【解析】 由S n +1+S n -1=2(S n +S 1)得,(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),数列{a n }从第二项起构成等差数列,S 15=1+2+4+6+8+…+28=211.【答案】 21111.(2013·东城模拟)在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 013的值是________.【解析】 a 1a 2=2×7=14,所以a 3=4,4×7=28,所以a 4=8,4×8=32,所以a 5=2,2×8=16,所以a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,所以从第三项起,a n 成周期排列,周期数为6,2 013=335×6+3,所以a 2 013=a 3=4.【答案】 412.由直线y =2与函数y =2cos 2x 2(0≤x ≤2π)的图象围成的封闭图形的面积为________.【解析】 y =2cos 2x2=cos x +1,则所求面积为S =∫2π0[]2-(cos x +1)d x =(x -sin x )|2π0=2π.【答案】 2π13.(2013·潍坊模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos B +b cos A =c sin C ,b 2+c 2-a 2=3bc ,则角B =________.【解析】 由b 2+c 2-a 2=3bc 得cos A =b 2+c 2-a 22bc =32,所以A =30°.由a cos B +b cos A =c sin C 得 sin A cos B +cos A sin B =sin 2C , 即sin(A +B )=sin 2C , 所以sin C =sin 2C . 因为0°<C <180°, 所以sin C =1, 即C =90°, 所以B =60°. 【答案】 60°14.(2013·淄博模拟)如图1,一个类似杨辉三角的数阵,请写出第n (n ≥2)行的第2个数为________.图1【解析】 由已知得第n (n ≥2)行的第2个数为3+3+5+7+…+[2(n -2)+1]=3+(n -2)×2n 2=n 2-2n +3. 【答案】 n 2-2n +315.(2013·孝感模拟)现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm ,最下面的三节长度之和为114 cm ,第6节的长度是首节与末节长度的等比中项,则n =________.【解析】 设对应的数列为{a n },公差为d (d >0).由题意知a 1=10,a n +a n -1+a n -2=114,a 26=a 1a n ,由a n +a n -1+a n -2=114得3a n -1=114,解得a n -1=38,(a 1+5d )2=a 1(a n -1+d ),即(10+5d )2=10(38+d ),解得d =2,所以a n -1=a 1+(n -2)d =38,即10+2(n -2)=38,解得n =16.【答案】 16三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)(2013·安徽高考)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=()a n -a n +1+a n +2x +a n +1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0.(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n . 【解】 (1)由题设可得f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x . 对任意n ∈N *,f ′(π2)=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列. 由a 1=2,a 2+a 4=8解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2⎝⎛⎭⎫a n +12a n =2⎝⎛⎭⎫n +1+12n +1=2n +12n +2知, S n =b 1+b 2+…+b n =2n +2·n (n +1)2+12⎣⎡⎦⎤1-(12)n 1-12=n 2+3n +1-12n .17.(本小题满分12分)(2013·佛山模拟)在平面直角坐标系xOy 中,以Ox 为始边,角α的终边与单位圆O 的交点B 在第一象限,已知A (-1,3).(1)若OA ⊥OB ,求tan α的值; (2)若B 点横坐标为45,求S △AOB .【解】 (1)由题可知:A (-1,3),B (cos α,sin α), OA →=(-1,3),OB →=(cos α,sin α), 由OA ⊥OB ,得OA →·OB →=0, ∴-cos α+3sin α=0,tan α=13.(2)∵cos α=45,∴sin α=1-cos 2α=35,即B ⎝⎛⎭⎫45,35, ∴OA →=(-1,3),OB →=⎝⎛⎭⎫45,35, ∴|OA |=(-1)2+(3)2=10,|OB |=1, 得cos ∠AOB =OA →·OB →|OA →||OB →|=-1×45+3×3510×1=1010,∴sin ∠AOB =1-cos 2∠AOB =31010,则S △AOB =12|AO ||BO |sin ∠AOB =12×10×1×31010=32.18.(本小题满分12分)(2013·青岛模拟)已知数列{a n }满足a 1=1,a 1+a 2+…+a n -1-a n=-1(n ≥2且n ∈N *).(2)令d n =1+log a a 2n +1+a 2n +25(a >0,a ≠1),记数列{d n }的前n 项和为S n ,若S 2n S n恒为一个与n 无关的常数λ,试求常数a 和λ.【解】 (1)由题知a 1+a 2+…+a n -1-a n =-1,① 所以a 1+a 2+…+a n -a n +1=-1.②由①-②得:a n +1-2a n =0,即a n +1a n =2(n ≥2),当n =2时,a 1-a 2=-1, 因为a 1=1,所以a 2=2,a 2a 1=2,所以,数列{a n }是首项为1,公比为2的等比数列. 故a n =2n -1(n ∈N *).(2)因为a n =2n -1,所以d n =1+log a a 2n +1+a 2n +25=1+2n log a 2.因为d n +1-d n =2log a 2,所以{d n }是以d 1=1+2log a 2为首项,以2log a 2为公差的等差数列, 所以S 2nS n =2n (1+2log a 2)+2n (2n -1)2×2log a 2n (1+2log a 2)+n (n -1)2×2log a 2=2+(4n +2)log a 21+(n +1)log a 2=λ⇒(λ-4)n log a 2+(λ-2)(1+log a 2)=0, 因为S 2nS n恒为一个与n 无关的常数λ,所以⎩⎪⎨⎪⎧(λ-4)log a 2=0,(λ-2)(1+log a 2)=0,解得λ=4,a =12.19.(本小题满分13分)某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第1年的维护费用是4万元,从第2年到第7年,每年的维护费用均比上年增加2万元,从第8年开始,每年的维护费用比上年增加25%.(1)设第n 年该生产线的维护费用为a n ,求a n 的表达式. (2)设该生产线前n 年的维护费用为S n ,求S n .【解】 (1)由题意知,当n ≤7时,数列{a n }是首项为4,公差为2的等差数列,故a n =4+(n -1)×2=2n +2.当n ≥8时,数列{a n }从a 7开始构成首项为a 7=2×7+2=16,公比为1+25%=54的等比数列,则此时a n =16×⎝⎛⎭⎫54n -7, 所以a n =⎩⎪⎨⎪⎧2n +2,n ≤7,16×⎝⎛⎭⎫54n -7,n ≥8. (2)当1≤n ≤7时,S n =4n +n (n -1)2×2=n 2+3n , 当n ≥8时,由S 7=70,得S n =70+16×54×1-⎝⎛⎭⎫54n -71-54=80×⎝⎛⎭⎫54n -7-10,所以该生产线前n 年的维护费用为 S n =⎩⎪⎨⎪⎧n 2+3n ,1≤n ≤7,80×⎝⎛⎭⎫54n -7-10,n ≥8. 20.(本小题满分13分)(2013·天津模拟)已知数列{a n }的前n 项和为S n ,且S n =2a n -2(n ∈N *),数列{b n }满足b 1=1,且点P (b n ,b n +1)(n ∈N *)在直线y =x +2上.(1)求数列{a n },{b n }的通项公式. (2)求数列{a n ·b n }的前n 项和D n .(3)设c n =a n ·sin 2n π2-b n ·cos 2n π2(n ∈N *),求数列{c n }的前2n 项和T 2n .【解】 (1)当n =1时,a 1=2, 当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1(n ≥2),所以{a n }是等比数列,公比为2,首项a 1=2,所以a n =2n , 又点P (b n ,b n +1)(n ∈N *)在直线y =x +2上,所以b n +1=b n +2, 所以{b n }是等差数列,公差为2,首项b 1=1,所以b n =2n -1. (2)由(1)知a n ·b n =(2n -1)×2n ,所以D n =1×21+3×22+5×23+7×24+…+(2n -3)×2n -1+(2n -1)×2n ,①2D n =1×22+3×23+5×24+7×25+…+(2n -3)×2n +(2n -1)×2n +1.②①-②得-D n =1×21+2×22+2×23+2×24+…+2×2n -(2n -1)×2n +1=2+2×4(1-2n -1)1-2-(2n -1)×2n +1=(3-2n )2n +1-6,则D n =(2n -3)2n +1+6.(3)c n =⎩⎪⎨⎪⎧2n , n 为奇数,-(2n -1), n 为偶数,T 2n =(a 1+a 3+…+a 2n -1)-(b 2+b 4+…+b 2n ) =2+23+…+22n -1-[3+7+…+(4n -1)]=22n +1-23-2n 2-n .21.(本小题满分13分)(2013·杭州模拟)已知数列{a n }的前n 项和S n =-a n -⎝⎛⎭⎫12n -1+2(n ∈N *),数列{b n }满足b n =2n a n .(1)求证数列{b n }是等差数列,并求数列{a n }的通项公式.(2)设数列⎩⎨⎧⎭⎬⎫n +1n a n 的前n 项和为T n ,证明:n ∈N *且n ≥3时,T n >5n 2n +1. (3)设数列{c n }满足a n (c n -3n )=(-1)n -1λn (λ为非零常数,n ∈N *),问是否存在整数λ,使得对任意n ∈N *,都有c n +1>c n .【解】 (1)在S n =-a n -⎝⎛⎭⎫12n -1+2中,令n =1,可得S 1=-a 1-1+2=a 1,即a 1=12, 当n ≥2时,S n -1=-a n -1-⎝⎛⎭⎫12n -2+2, 所以a n =S n -S n -1=-a n +a n -1+⎝⎛⎭⎫12n -1, 所以2a n =a n -1+⎝⎛⎭⎫12n -1,即2n a n =2n -1a n -1+1. 因为b n =2n a n ,所以b n =b n -1+1,即当n ≥2时,b n -b n -1=1. 又b 1=2a 1=1,所以数列{b n }是首项和公差均为1的等差数列. 于是b n =1+(n -1)·1=n =2n a n ,所以a n =n 2n (n ∈N *).(2)由(1)得c n =n +1na n =(n +1)⎝⎛⎭⎫12n, 所以T n =2×12+3×⎝⎛⎭⎫122+4×⎝⎛⎭⎫123+…+(n +1)⎝⎛⎭⎫12n ,① 12T n =2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+4×⎝⎛⎭⎫124+…+(n +1)⎝⎛⎭⎫12n +1.② 由①-②得12T n =1+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =1+14⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-(n +1)⎝⎛⎭⎫12n +1=32-n +32n +1, 所以T n =3-n +32n ,T n -5n 2n +1=3-n +32n -5n2n +1=(n +3)(2n -2n -1)2n (2n +1),于是确定T n 与5n2n +1的大小关系等价于比较2n 与2n +1的大小,由2<2×1+1;22<2×2+1;23>2×3+1;24>2×4+1;25>2×5+1;… 可猜想当n ≥3时,2n >2n +1,证明如下: 方法一:①当n =3时,对上式验算显示成立. ②假设当n =k 时成立,则n =k +1(k ≥2)时,2k +1=2·2k >2(2k +1)=4k +2=2(k +1)+1+(2k -1)>2(k +1)+1,所以当n =k +1时猜想也成立.综合①②可知,对一切n ≥3的正整数,都有2n >2n +1. 方法二:当n ≥3时,2n =(1+1)n =C 0n +C 1n +C 2n +…+C n -1n +C n n ≥C 0n +C 1n +C n -1n +C n n =2n +2>2n +1,综上所述,当n ≥3时,T n >5n 2n +1.(3)因为c n =3n+(-1)n -1λ·na n=3n +(-1)n -1λ·2n ,所以c n +1-c n =[3n +1+(-1)n λ·2n +1]-[3n +(-1)n -1λ·2n ]=2·3n -3λ(-1)n -1·2n >0,所以(-1)n -1·λ<⎝⎛⎭⎫32n -1.① 当n =2k -1(k =1,2,3,…)时, ①式即为λ<⎝⎛⎭⎫322k -2,②依题意,②式对k =1,2,3,…都成立,所以λ<1, 当n =2k ,k =1,2,3,…时,①式即为λ>-⎝⎛⎭⎫322k -1,③ 依题意,③式对k =1,2,3,…都成立, 所以λ>-32,所以-32<λ<1,又λ≠0,所以存在整数λ=-1,使得对任意n ∈N *有c n +1>c n .。

高考数学二轮复习考前专题四数列、推理与证明第1讲等差数列与等比数列讲学案理(2021学年)

2018年高考数学二轮复习考前专题四数列、推理与证明第1讲等差数列与等比数列讲学案理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学二轮复习考前专题四数列、推理与证明第1讲等差数列与等比数列讲学案理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学二轮复习考前专题四数列、推理与证明第1讲等差数列与等比数列讲学案理的全部内容。

第1讲等差数列与等比数列1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.热点一等差数列、等比数列的运算1.通项公式等差数列:a n=a1+(n-1)d;等比数列:an=a1·q n-1.2.求和公式等差数列:S n=错误!=na1+错误!d;等比数列:S n=错误!=错误!(q≠1).3.性质若m+n=p+q,在等差数列中a m+an=a p+a q;在等比数列中a m·a n=a p·aq。

例1 (1)(2017届吉林二调)错误!是公差不为0的等差数列,满足a错误!+a错误!=a错误!+a 错误!,则该数列的前10项和S10等于( )A.-10 B.-5 C.0 D。

5答案C解析由题意,得a错误!-a错误!=a错误!-a错误!,即错误!错误!=错误!错误!,即-3d错误!=d错误!,又因为d≠0,所以a4+a7=a6+a5=0,则该数列的前10项和S10=\f(10a1+a10,2)=5错误!=0。

故选C.(2)(2017届武汉武昌区调研)设公比为q(q>0)的等比数列错误!的前n项和为Sn,若S2=3a+2,S4=3a4+2,则a1等于( )2A.-2 B.-1C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列、推理与证明本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·黄冈模拟)集合M={y|y=lg(x2+1),x∈R},集合N={x|4x>4,x∈R},则M∩N等于( )A.[0,+∞) B.[0,1)C.(1,+∞) D.(0,1]【解析】由x2+1≥1知lg(x2+1)≥0,所以M={y|y≥0},由4x>4知x >1,所以N={x|x>1},所以M∩N={x|x>1},故选C.【答案】 C2.如果命题“綈(p∧q)”是真命题,则( )A.命题p、q均为假命题B.命题p、q均为真命题C.命题p、q中至少有一个是真命题D .命题p 、q 中至多有一个是真命题【解析】 命题“綈(p ∧q )”是真命题,则命题“p ∧q ”是假命题,则命题p 、q 中至多有一个是真命题,故选D.【答案】 D3.(2013·宁波模拟)等差数列{a n }中,已知a 1=-12,S 13=0,使得a n >0的最小正整数n 为( )A .7B .8C .9D .10【解析】 由S 13=13(a 1+a 13)2=0得a 1+a 13=2a 7=0,所以a 7=0,又a 1=-12,故n ≥8时,a n >0.【答案】 B4.(2013·课标全国卷Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13C.19D .-19【解析】 设公比为q ,∵S 3=a 2+10a 1,a 5=9, ∴⎩⎨⎧a 1+a 2+a 3=a 2+10a 1,a 1q 4=9,∴⎩⎨⎧a 1q 2=9a 1,a 1q 4=9,解得a 1=19,故选C.【答案】 C5.下列函数中与函数y =-3|x |奇偶性相同且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1【解析】 函数y =-3|x |是偶函数且在(-∞,0)是增函数,故选C.【答案】 C6.(2013·大纲全国卷)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)【解析】 由3a n +1+a n =0,得a n +1a n =-13,故数列{a n }是公比q =-13的等比数列.又a 2=-43,可得a 1=4.所以S 10=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).【答案】 C7.已知向量a 、b 的夹角为120°,且|a |=|b |=4,那么b ·(2a +b )的值为( )A .48B .32C .1D .0【解析】 b ·(2a +b )=2a ·b +b 2=2×4×4×cos120°+42=0. 【答案】 D 8.已知f (x )=12 013+log 2x 1-x ,则f ⎝⎛⎭⎪⎫12 014+f ⎝ ⎛⎭⎪⎫22 014+…+f ⎝ ⎛⎭⎪⎫2 0132 014的值为( )A .1B .2C .2013D .2014【解析】 对任意0<x <1,可得f (x )+f (1-x )=22 013.设S =f ⎝⎛⎭⎪⎫12 014+f ⎝ ⎛⎭⎪⎫22 014+…+f ⎝ ⎛⎭⎪⎫2 0132 014 则S =f ⎝⎛⎭⎪⎫2 0132 014+f ⎝ ⎛⎭⎪⎫2 1022 014+…+f ⎝ ⎛⎭⎪⎫12 014 于是2S =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫12 014+f ⎝ ⎛⎭⎪⎫2 0132 014+⎣⎢⎡f ⎝ ⎛⎭⎪⎫22 014+⎦⎥⎤f ⎝⎛⎭⎪⎫2 0122 014+…+[f ⎝ ⎛⎭⎪⎫2 0132 014+f ⎝ ⎛⎭⎪⎫12 014] =22 013×2013=2,所以S =1. 【答案】 A第Ⅱ卷二、填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上)9.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-255,55,则sin2α的值为________.【解析】 由已知得sin α=55,cos α=-255, 所以sin2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45. 【答案】 -4510.(2013·昆明模拟)已知数列{a n }中a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15等于________.【解析】 由S n +1+S n -1=2(S n +S 1)得,(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),数列{a n }从第二项起构成等差数列,S 15=1+2+4+6+8+…+28=211.【答案】 21111.(2013·东城模拟)在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2013的值是________.【解析】 a 1a 2=2×7=14,所以a 3=4,4×7=28,所以a 4=8,4×8=32,所以a 5=2,2×8=16,所以a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,所以从第三项起,a n 成周期排列,周期数为6,2013=335×6+3,所以a 2013=a 3=4.【答案】 412.由直线y =2与函数y =2cos 2x2(0≤x ≤2π)的图象围成的封闭图形的面积为________.【解析】y=2cos2x2=cos x+1,则所求面积为S=∫2π0[]2-(cos x+1)d x=(x-sin x)|2π=2π.【答案】2π13.(2013·潍坊模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a cos B+b cos A=c sin C,b2+c2-a2=3bc,则角B=________.【解析】由b2+c2-a2=3bc得cos A=b2+c2-a22bc=32,所以A=30°.由a cos B+b cos A=c sin C得sin A cos B+cos A sin B=sin2C,即sin(A+B)=sin2C,所以sin C=sin2C.因为0°<C<180°,所以sin C=1,即C=90°,所以B=60°.【答案】60°14.(2013·淄博模拟)如图1,一个类似杨辉三角的数阵,请写出第n(n≥2)行的第2个数为________.图1【解析】 由已知得第n (n ≥2)行的第2个数为3+3+5+7+…+[2(n -2)+1]=3+(n -2)×2n 2=n 2-2n +3.【答案】 n 2-2n +315.(2013·孝感模拟)现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10cm ,最下面的三节长度之和为114cm ,第6节的长度是首节与末节长度的等比中项,则n =________.【解析】 设对应的数列为{a n },公差为d (d >0).由题意知a 1=10,a n +a n -1+a n -2=114,a 26=a 1a n ,由a n +a n -1+a n -2=114得3a n -1=114,解得a n -1=38,(a 1+5d )2=a 1(a n -1+d ),即(10+5d )2=10(38+d ),解得d =2,所以a n -1=a 1+(n -2)d =38,即10+2(n -2)=38,解得n =16.【答案】 16三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)(2013·安徽高考)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=()a n -a n +1+a n +2x +a n +1cos x -a n +2sin x 满足f ′⎝ ⎛⎭⎪⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎪⎫a n +12a n ,求数列{b n }的前n 项和S n .【解】 (1)由题设可得f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x . 对任意n ∈N *,f ′(π2)=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列. 由a 1=2,a 2+a 4=8解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2⎝ ⎛⎭⎪⎫a n +12a n =2⎝⎛⎭⎪⎫n +1+12n +1=2n +12n +2知,S n =b 1+b 2+…+b n =2n +2·n (n +1)2+12⎣⎢⎡⎦⎥⎤1-(12)n 1-12=n 2+3n +1-12n .17.(本小题满分12分)(2013·佛山模拟)在平面直角坐标系xOy 中,以Ox 为始边,角α的终边与单位圆O 的交点B 在第一象限,已知A (-1,3).(1)若OA ⊥OB ,求tan α的值; (2)若B 点横坐标为45,求S △AOB .【解】 (1)由题可知:A (-1,3),B (cos α,sin α), OA →=(-1,3),OB →=(cos α,sin α), 由OA ⊥OB ,得OA →·OB →=0, ∴-cos α+3sin α=0,tan α=13.(2)∵cos α=45,∴sin α=1-cos 2α=35,即B ⎝ ⎛⎭⎪⎫45,35,∴OA →=(-1,3),OB →=⎝ ⎛⎭⎪⎫45,35,∴|OA |=(-1)2+(3)2=10,|OB |=1,得cos ∠AOB =OA →·OB →|OA →||OB →|=-1×45+3×3510×1=1010, ∴sin ∠AOB =1-cos 2∠AOB =31010, 则S △AOB =12|AO ||BO |sin ∠AOB =12×10×1×31010=32.18.(本小题满分12分)(2013·青岛模拟)已知数列{a n }满足a 1=1,a 1+a 2+…+a n -1-a n =-1(n ≥2且n ∈N *).(1)求数列{a n }的通项公式a n ; (2)令d n =1+log aa 2n +1+a 2n +25(a >0,a ≠1),记数列{d n }的前n 项和为S n ,若S 2nS n恒为一个与n 无关的常数λ,试求常数a 和λ.【解】 (1)由题知a 1+a 2+…+a n -1-a n =-1,① 所以a 1+a 2+…+a n -a n +1=-1.② 由①-②得:a n +1-2a n =0,即a n +1a n=2(n ≥2), 当n =2时,a 1-a 2=-1, 因为a 1=1,所以a 2=2,a 2a 1=2,所以,数列{a n }是首项为1,公比为2的等比数列. 故a n =2n -1(n ∈N *). (2)因为a n =2n -1, 所以d n =1+log aa 2n +1+a 2n +25=1+2n log a 2.因为d n +1-d n =2log a 2,所以{d n }是以d 1=1+2log a 2为首项,以2log a 2为公差的等差数列, 所以S 2nS n =2n (1+2log a 2)+2n (2n -1)2×2log a 2n (1+2log a 2)+n (n -1)2×2log a 2=2+(4n +2)log a 21+(n +1)log a 2=λ⇒(λ-4)n log a 2+(λ-2)(1+log a 2)=0, 因为S 2nS n恒为一个与n 无关的常数λ, 所以⎩⎨⎧(λ-4)log a 2=0,(λ-2)(1+log a 2)=0,解得λ=4,a =12.19.(本小题满分13分)某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第1年的维护费用是4万元,从第2年到第7年,每年的维护费用均比上年增加2万元,从第8年开始,每年的维护费用比上年增加25%.(1)设第n 年该生产线的维护费用为a n ,求a n 的表达式. (2)设该生产线前n 年的维护费用为S n ,求S n .【解】 (1)由题意知,当n ≤7时,数列{a n }是首项为4,公差为2的等差数列,故a n =4+(n -1)×2=2n +2.当n ≥8时,数列{a n }从a 7开始构成首项为a 7=2×7+2=16,公比为1+25%=54的等比数列, 则此时a n =16×⎝ ⎛⎭⎪⎫54n -7,所以a n=⎩⎨⎧2n +2,n ≤7,16×⎝ ⎛⎭⎪⎫54n -7,n ≥8.(2)当1≤n ≤7时,S n =4n +n (n -1)2×2=n 2+3n ,当n ≥8时,由S 7=70,得S n =70+16×54×1-⎝ ⎛⎭⎪⎫54n -71-54=80×⎝ ⎛⎭⎪⎫54n -7-10,所以该生产线前n 年的维护费用为S n=⎩⎨⎧n 2+3n ,1≤n ≤7,80×⎝ ⎛⎭⎪⎫54n -7-10,n ≥8.20.(本小题满分13分)(2013·天津模拟)已知数列{a n }的前n 项和为S n ,且S n =2a n -2(n ∈N *),数列{b n }满足b 1=1,且点P (b n ,b n +1)(n ∈N *)在直线y =x +2上.(1)求数列{a n },{b n }的通项公式. (2)求数列{a n ·b n }的前n 项和D n . (3)设c n =a n ·sin2n π2-b n ·cos2n π2(n ∈N *),求数列{c n }的前2n 项和T 2n .【解】 (1)当n =1时,a 1=2, 当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1(n ≥2),所以{a n }是等比数列,公比为2,首项a 1=2,所以a n =2n ,又点P (b n ,b n +1)(n ∈N *)在直线y =x +2上,所以b n +1=b n +2, 所以{b n }是等差数列,公差为2,首项b 1=1,所以b n =2n -1. (2)由(1)知a n ·b n =(2n -1)×2n ,所以D n =1×21+3×22+5×23+7×24+…+(2n -3)×2n -1+(2n -1)×2n ,①2D n =1×22+3×23+5×24+7×25+…+(2n -3)×2n +(2n -1)×2n +1.② ①-②得-D n =1×21+2×22+2×23+2×24+…+2×2n -(2n -1)×2n +1 =2+2×4(1-2n -1)1-2-(2n -1)×2n +1=(3-2n )2n +1-6, 则D n =(2n -3)2n +1+6. (3)c n =⎩⎨⎧2n, n 为奇数,-(2n -1), n 为偶数,T 2n =(a 1+a 3+…+a 2n -1)-(b 2+b 4+…+b 2n ) =2+23+…+22n -1-[3+7+…+(4n -1)]=22n +1-23-2n 2-n .21.(本小题满分13分)(2013·杭州模拟)已知数列{a n }的前n 项和S n =-a n -⎝ ⎛⎭⎪⎫12n -1+2(n ∈N *),数列{b n }满足b n =2n a n .(1)求证数列{b n }是等差数列,并求数列{a n }的通项公式.(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n +1n a n 的前n 项和为T n ,证明:n ∈N *且n ≥3时,T n >5n2n +1. (3)设数列{c n }满足a n (c n -3n )=(-1)n -1λn (λ为非零常数,n ∈N *),问是否存在整数λ,使得对任意n ∈N *,都有c n +1>c n .【解】 (1)在S n =-a n -⎝ ⎛⎭⎪⎫12n -1+2中,令n =1,可得S 1=-a 1-1+2=a 1,即a 1=12, 当n ≥2时,S n -1=-a n -1-⎝ ⎛⎭⎪⎫12n -2+2, 所以a n =S n -S n -1=-a n +a n -1+⎝ ⎛⎭⎪⎫12n -1, 所以2a n =a n -1+⎝ ⎛⎭⎪⎫12n -1,即2n a n =2n -1a n -1+1. 因为b n =2n a n ,所以b n =b n -1+1,即当n ≥2时,b n -b n -1=1.又b 1=2a 1=1,所以数列{b n }是首项和公差均为1的等差数列.于是b n =1+(n -1)·1=n =2n a n ,所以a n =n2n (n ∈N *). (2)由(1)得c n =n +1n a n =(n +1)⎝ ⎛⎭⎪⎫12n , 所以T n =2×12+3×⎝ ⎛⎭⎪⎫122+4×⎝ ⎛⎭⎪⎫123+…+(n +1)⎝ ⎛⎭⎪⎫12n ,① 12T n =2×⎝ ⎛⎭⎪⎫122+3×⎝ ⎛⎭⎪⎫123+4×⎝ ⎛⎭⎪⎫124+…+(n +1)⎝ ⎛⎭⎪⎫12n +1.② 由①-②得12T n =1+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -(n +1)⎝ ⎛⎭⎪⎫12n +1 =1+14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(n +1)⎝ ⎛⎭⎪⎫12n +1 =32-n +32n +1, 所以T n =3-n +32n ,T n -5n 2n +1=3-n +32n -5n 2n +1=(n +3)(2n -2n -1)2n (2n +1), 于是确定T n 与5n 2n +1的大小关系等价于比较2n 与2n +1的大小, 由2<2×1+1;22<2×2+1;23>2×3+1;24>2×4+1;25>2×5+1;… 可猜想当n ≥3时,2n >2n +1,证明如下:方法一:①当n =3时,对上式验算显示成立.②假设当n =k 时成立,则n =k +1(k ≥2)时,2k +1=2·2k >2(2k +1)=4k +2=2(k +1)+1+(2k -1)>2(k +1)+1, 所以当n =k +1时猜想也成立.综合①②可知,对一切n ≥3的正整数,都有2n >2n +1.方法二:当n ≥3时,2n =(1+1)n =C 0n +C 1n +C 2n +…+C n -1n +C n n ≥C 0n +C 1n +C n -1n +C n n =2n +2>2n +1,综上所述,当n ≥3时,T n >5n 2n +1. (3)因为c n =3n +(-1)n -1λ·na n=3n +(-1)n -1λ·2n ,所以c n +1-c n =[3n +1+(-1)n λ·2n +1]-[3n +(-1)n -1λ·2n ]=2·3n -3λ(-1)n -1·2n >0,所以(-1)n -1·λ<⎝ ⎛⎭⎪⎫32n -1.① 当n =2k -1(k =1,2,3,…)时,①式即为λ<⎝ ⎛⎭⎪⎫322k -2,② 依题意,②式对k =1,2,3,…都成立,所以λ<1,当n =2k ,k =1,2,3,…时,①式即为λ>-⎝ ⎛⎭⎪⎫322k -1,③ 依题意,③式对k =1,2,3,…都成立,所以λ>-32,所以-32<λ<1,又λ≠0, 所以存在整数λ=-1,使得对任意n ∈N *有c n +1>c n .。

相关文档
最新文档