学习任务3:轴向拉压杆强度计算

合集下载

轴向拉压杆件内力计算公式

轴向拉压杆件内力计算公式

轴向拉压杆件内力计算公式在工程力学中,轴向拉压杆件是一种常见的结构元件,它在工程实践中被广泛应用于各种机械设备和建筑结构中。

轴向拉压杆件内力计算公式是用来计算轴向拉压杆件在受力作用下内部产生的拉力或压力的公式,它是工程设计和分析中非常重要的一部分。

在本文中,我们将介绍轴向拉压杆件内力计算公式的推导和应用,希望能够帮助读者更好地理解和应用这一重要的工程知识。

一、轴向拉压杆件的受力分析。

轴向拉压杆件是一种受拉或受压的结构元件,它通常由材料制成,具有一定的截面形状和尺寸。

当轴向拉压杆件受到外部力的作用时,内部会产生拉力或压力,这种内力的大小和方向是由外部力和结构本身的特性共同决定的。

在进行轴向拉压杆件的内力计算时,需要先进行受力分析,确定受力情况和受力方向。

通常情况下,轴向拉压杆件受到的外部力可以分为两种情况,拉力和压力。

对于受拉的轴向拉压杆件,外部力的方向和内部拉力的方向相同;对于受压的轴向拉压杆件,外部力的方向和内部压力的方向相反。

在受力分析的基础上,可以得到轴向拉压杆件内力计算的基本公式:N = A σ。

其中,N为轴向拉压杆件的内力,A为截面积,σ为应力。

根据受力分析的结果,可以确定σ的正负号,从而确定N的正负号,进而确定内力的方向。

二、轴向拉压杆件内力计算公式的推导。

1. 受拉的轴向拉压杆件。

对于受拉的轴向拉压杆件,外部拉力的方向和内部拉力的方向相同,因此内力的大小可以直接由外部拉力计算得到。

假设外部拉力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。

因此,受拉的轴向拉压杆件内力计算公式为:N = P。

2. 受压的轴向拉压杆件。

对于受压的轴向拉压杆件,外部压力的方向和内部压力的方向相反,因此内力的大小需要考虑结构的稳定性。

假设外部压力为P,截面积为A,根据胡克定律,可以得到应力σ=P/A,进而得到内力N=P。

然而,受压的轴向拉压杆件在实际应用中往往需要考虑结构的稳定性,因此需要引入材料的材料的屈服强度和稳定性系数,从而得到更加精确的内力计算公式。

第八章 轴向拉压杆的强度计算

第八章  轴向拉压杆的强度计算

标准试件:试验段l0称为标距。
试件的尺寸统一的规定:
对于矩形截面试件,记中部原始横截面面积为A0,
短试件: /
=5.65 长试件: /
=11.3
对, 于圆截面试件,设中部直径为d0,则 五倍试件:
十倍试件:
金属材料的压缩试验, 试件一般制成短圆柱体。 为了保证试验过程中试件不 发生失稳,圆柱的高度取为直径的1~3倍。
引入比例系数E,把上式写成
式中E为弹性模量,表示材料抵抗弹性变形的能力,是一个只 与材料有关的物理量,其值可以通过试验测得,量纲与应力量 纲相同。弹性模量E和泊松比ν都是材料的弹性常数。
------轴向拉(压)杆件的变形与EA成反比。
EA称为轴向拉(压)杆的抗拉(压)刚度,表示杆件抵抗 拉伸(压缩)的能力。
材料的力学性质除取决于材料本身的成分和组织结构外, 还与荷载作用状态、温度和加载方式等因素有关。
重点讨论常温、静载条件下金属材料在拉伸或压缩时的力 学性质。
为使不同材料的试验结果能进行对比,对于钢、铁和有色 金属材料,需将试验材料按《金属拉伸试验试样》的规定加工 成标准试件,分为圆截面试件和矩形截面试件。
这种由于杆件形状或截面尺寸突然改变而引起局部区 域的应力急剧增大的现象称为应力集中。
设产生应力集中现象的截面上最大应力为σmax,同一 截面视作均匀分布按净面 积A0计算的名义应力为σ0, 即
则比值
称为应力集中因数,它反映了应力集中的程度,是一个大 于1的因数。
§8–3、轴向拉压杆的变形——胡克定律
§8–1、应力与应变的基本概念
1、应力的概念 应力:指截面上一点处单位面积内的分布内力;
或是指内力在一点处的集度。 平均应力:
M点处的内力集度(总应力):

轴向拉(压)杆的强度计算

轴向拉(压)杆的强度计算

② 求杆件横截面上的应力。
BC
FNBC ABC
23.094 103
500
46.2 MPa
( 压应力 )
BD
FNBD ABD
11.547 103
200
57.7 MPa
( 拉应力 )
图6-4
1.2 斜截面上的应力
铸铁压缩的实验表明,破坏有时也可能是沿斜截面发生的。要更全方位地研 究拉(压)杆的强度,就需要进一步讨论斜截面上的应力。
面的剪应力 τα 。由图6-5d 可得
p cos cos2
(6-2)
p
sin
cos
sin
1 2
sin
2
(6-3)
式 (6-2) 和式(6-3) 表明轴向拉 (压) 杆斜截面上任一点既有正应力 σα ,又有 剪应力 τα ,并且它们都随斜截面方位角α 的变化而变化。
计算时要注意 α 、σα 和 τα 的符号,规定如下 (见图6-6 ):
图6-2
根据平面假设可断定拉杆所有纵向纤维的伸长相等。又因材料是均匀的,各 纵向纤维性质相同,因而其受力也就一样。所以,杆件横截面上的内力均匀分布, 即在横截面上各点的正应力相等,亦即 σ 等于常量 (见图6-2b)。由 FN = σA 得
FN A
(6-1)
式 (6-1) 就是拉 (压) 杆横截面上正应力σ 的计算公式。正应力符号与轴力FN 的符号规定相同,即拉应力为正,压应力为负。由于拉 (压) 杆横截面上各点的正
120o
2
sin
2
100 sin 2
2 120o
43.3 MPa
在本例中发现,α = 30o 和 α = 120o 两 个正交截面上的剪应力数值相等而符号相反, 此结果具有一般性,称为剪应力互等定理, 即在受力构件内互相垂直的任意两截面上, 剪应力大小相等而符号相反,其方向同时指 向或同时离开两截面的交线。

轴向拉、压杆的内力及应力计算

轴向拉、压杆的内力及应力计算
解:(1)计算各段的轴力
AB段:用1-1截面在AB段内将杆截开,取左段为研究对象,以N1表示截面上的轴力,并假设为拉力。写出平
衡方程: ∑X=0,N1+P1=0
得 N1=-P1=-20KN 负号表示AB段轴力N1实际为压力。
BC段:同理写出平衡方程: ∑X=0,N2+P1-P2=0
得 N2=-P1+P2=-20+30=10KN 正号表示BC段轴力N2实际为拉力。
面垂直的应力为正应力,与截面相切的应力为剪应力。轴向拉伸、压缩时,杆件
截面上各点处产生正应力,且大小相等。若应力用σ表示,横截面积为A,轴力
为N,则
N
A
正应力的正负号规定:拉应力为正,压应力为负。
课题七 轴向拉、压杆的内力及应力计算
例:如图7-2a悬臂梁,已知P1=20KN,P2=30KN,P3=10KN,试画出杆的轴力图。
课题七 轴向拉、压杆的内力及应力计算
三、轴力图
表明沿杆长各横截面轴力变化规律的图形称为轴力图。用平行于杆轴线的坐 标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力,按选定的比 例尺把正轴力画在轴的上方,负轴力画在轴的下方,并连成直线,就得到轴力 图。
四、轴向拉、压杆横截面上的应力
单位面积课题七 轴向拉、压杆的内力及应力计算
一、轴向拉伸和压缩
受力特点:直杆的两端沿杆轴线方向作用一对大小相等,方向相反的力。 变形特点:在外力作用下产生轴线方向的伸长或缩短。 当作用力背离杆端时,作用力是拉力,杆件产生伸长变形,叫做轴向拉伸。 见图7-1a 当作用力指向杆端时,作用力是压力,杆件产生压缩变形,叫做轴向压缩。 见图7-1b
图 7-1
课题七 轴向拉、压杆的内力及应力计算

杆件的轴向拉压变形及具体强度计算

杆件的轴向拉压变形及具体强度计算

根据强度条件,可以解决三类强度计算问题
1、强度校核:
max
FN A

2、设计截面:
A

FN

3、确定许可载荷: FN A
目录
拉压杆的强度条件
例题3-3
F
F=1000kN,b=25mm,h=90mm,α=200 。
〔σ〕=120MPa。试校核斜杆的强度。
解:1、研究节点A的平衡,计算轴力。
目录
——横截面上的应力
目录
FN
A
——横截面上的应力
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
根据杆件变形的平面假设和材料均匀连续性假设 可推断:轴力在横截面上的分布是均匀的,且方向垂 直于横截面。所以,横截面的正应力σ计算公式为:
目录
• 拉(压)杆横截面上的应力
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
2、计算各杆件的应力。
B
1

FN1 A1


28.3103 202 106

4
F
90106 Pa 90MPa
x
2

FN 2 A2

20103 152 106

89106 Pa 89MPa
目录
三、材料在拉伸和压缩时的力学性质
教学目标:1.拉伸、压缩试验简介; 2.应力-应变曲线分析; 3.低碳钢与铸铁的拉、压的力学性质; 4.试件的伸长率、断面收缩率计算。
教学重点:1.应力-应变曲线分析; 2.材料拉、压时的力学性质。
教学难点:应力-应变曲线分析。 小 结: 塑性材料与脆性材料拉伸时的应力-应变曲线分析。 作 业: 复习教材相关内容。

工程力学-第7章-轴向拉压杆件的强度与变形计算

工程力学-第7章-轴向拉压杆件的强度与变形计算
广 州 汽 车 学 院
7
Guang Zhou Auto College
工程力学
第7章 轴向拉压杆件的强度与变形计算
广 州 汽
斜拉桥承受拉力的钢缆 车 学 院
8
Guang Zhou Auto College
工程力学
第7章 轴向拉压杆件的强度与变形计算
广 州 汽 车 学 院9来自 7-1轴向拉压杆横截面上的应力
胡克定律



工程力学
17
轴向拉压的变形分析
P
P
A 细长杆受拉会变长变细,
P
B 受压会变短变粗
C 长短的变化,沿轴线方向, 称为纵向变形
l+Dl l
d-Dd d
D 粗细的变化,与轴线垂直,
称为横向变形
P
P
P
7-3轴向拉压杆的变形计算 胡克定律
工程力学
Guang Zhou Auto College
变形量的代数和:


Δ
l

FNi li FNi ADlEADA+i
=Dl AD DlDE DlEB Dl
FNDElDE + FNEBlEB + FNBClBC
BC

Ec AAD
Ec ADE
Es AEB
Es ABC
=1.2106 m 0.6106 m 0.285106 m 0.428106 m
广
承受轴向载荷的拉(压)杆在工程中的

应用非常广泛。

由汽缸、活塞、连
杆所组成的机构中,不

仅连接汽缸缸体和汽缸
盖的螺栓承受轴向拉力,

带动活塞运动的连杆由

【教学能力比赛】轴向拉、压杆的强度计算-教学设计

【教学能力比赛】轴向拉、压杆的强度计算-教学设计

轴向拉、压杆的强度计算教学设计基于中职、中专类学生的特点,我选用的是高教出版社《土木工程力学基础》,该书在内容上对原有的冗杂部分进行了删减,在满足教学需要的同时,符合中专生以就业为导向的培养思想。

力学课是一门技术基础课,本课的学习主要是为学生学习专业课做铺垫的,所以十分重要。

所以结合教学大纲的要求及学生层次特点,本课的教学重难点为:【教学重难点】教学重点:理解正应力拉压干强度公式含义教学难点:利用拉压杆强度条件公式解决强度效和、截面设计等工程实际问题。

【教学目标】1. 技能目标:使学生能够应用正应力强度条件公式完成轴向拉压构件强度校核、截面设计和确定许用荷载方面的实际任务。

2.能力目标:加强学生解决问题的能力。

3.情感目标:在探究学习中增强学生的自信。

这样多元化的教学目标,把关键的能力培养蕴含于知识技能的学习中专,并培养他们自信的心理态度。

【教学过程】科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。

因为我们所面对的学生的学习基础薄弱,学习方法单一,习惯于被动接受,而非主动思考,而本节课又是理论性极强的一节课,所以我采用的教法是以任务驱动法为主线贯穿整堂课,各部分穿插讲授法、演示教学法、启发教学法。

而学法上,我贯彻的指导思想是以提高和发展学生的能力为本,启发引导学生积极思考探究问题,发现规律,看到本质,纳未知为已知;倡导“自主、合作、探究”的学习方式,具体的学法是自主学习、探究学习、小组合作完成任务法和分组讨论法。

我的教学过程的开展以任务驱动的形式为主要的教学方法贯穿于课程始终。

在完成任务课题探讨阶段分别使用了范例式教学法和启发式教学法,使学生通过自主学习、探究学习、合作学习的学习方式理解新课知识点。

整个过程强调提高和发展学生的能力为本,其中贯穿了引导、启发的思想,充分发挥教师主导的同时,体现学生主体的教学理念,下面我对具体的教学过程进行做一下阐释。

为了完成教学目标,解决教学重点突破教学难点,课堂教学我按四个大模块、七个教学环节展开来完成教学过程。

讲轴向拉压杆强度计算.

讲轴向拉压杆强度计算.

P
N=266kN
max
N 4 266 103 116.2MP a 2 A 3.14 54
A
α
B P=30kN
C
一起重用支架。a= 30°,AB杆为圆截面 钢杆,1 160MPa 。BC杆为正方形木 材杆件, 2 10MPa 。请根据强度条 件设计AB杆直径d与BC杆边长a。
L x A B
分析:
V ABDLBD;
P C
ABD N BD / ; LBD h / sin 。

h
D
L x
XA
A
B
YA

NBD
P
C
解: BD杆内力N( ): 取AC为研究对象,如图
mA 0 , (NBDsin ) (hctg ) Px
PL NBD hcos
HC
C
RC
③应力:

N
max
N 4P A d2
4 26.3 103 MPa 2 131 3.14 0.016
max
131MPa 170 MPa
此杆满足强度要求,是安全的。
[例] 简易起重机构如图,AC为刚性梁,吊车与吊起重物总重
为P,为使 BD杆最轻,角 应为何值? 已知 BD 杆的许用应力 为[]。
2.5 轴向拉压(杆)强 度计算
一、许用应力与安全系数
1.材料的极限应力 塑性材料: σ°=σs 脆性材料: σ°=σb 2.许用应力
为了保证构件能正常地工作,应当把最大工作应 力限制在一定的范围之内,这个限制值称为材料在 拉伸(或压缩)时的许用应力。用 [σ]表示。
3.安全系数n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10MPa 。请根据强度条
件设计AB杆直径d与BC杆边长a。
A
B
30° 2
1 45° C
P 38.61kN
P
支架①杆的许用正应力为1 100 MPa ,
②杆的许用正应力为 2 160 MPa ,两
杆的面积均为A=200mm2。求许用荷载。
已知三铰屋架如图,承受竖向均布载荷,载荷的分布集度为:q =4.2kN/m,屋架中的钢拉杆直径 d =16 mm,许用应力
我们加油!
2.5 轴向拉(压) 杆 的强度计算
材料的力学性能指标
1.弹性指标:弹性模量E、泊松比μ
2.塑性指标: 断后伸长率δ 断面收缩率ψ
l1 l 100 %
l
A A1 100 %
A
工程上一般将δ>5%的材料称为塑性材科,
将δ<5%的材料称为脆性材料。 3.强度指标
屈服极限σs : 塑性材料的极限应力 强度极限σb :脆性材料的极限应力
N
4 26.3103 3.14 0.0162
131MPa
④强度校核与结论: max 131 MPa 170 MPa
ቤተ መጻሕፍቲ ባይዱ此杆满足强度要求,是安全的。
简易起重机构如图,AC为刚性梁,吊车与吊起重物总重为P,为
使 BD杆最轻,角 应为何值? 已知 BD 杆的许用应力为[]。
L
分析:
x
A
B
V ABDLBD;
[]=170M Pa。 试校核钢拉杆的强度。
q
q
C
A
B
钢拉杆
8.5m
解:① 整体平衡求支反力
q
q
C
HAA
钢拉杆
RA
RB
8.5m
X 0 HA 0 mB 0 RA 19.5kN
q HAA
RA
② 局部平衡求 轴力:
mC 0 N 26.3kN
HC
C ③应力:
RC
max
N A
4P
d2
m a x
N A
其中:[]--许用应力, max--危险点的最大工作应力。
依强度准则可进行三种强度计算:
①校核强度:
max
②设计截面尺寸:
Am in
Nmax
[ ]
③许可载荷: Nmax A ;
P f (Ni )
例 已知一圆杆受拉力P =25 k N,直径 d =14mm,许用应力
[]=170MPa,试校核此杆是否满足强度要求。
圆杆,直径d=54mm,材料的许用应力
120 MPa 。校核斜杆强度。
C
P
N=266kN
max
N A
4 266 10 3 3.14 54 2
116 .2MPa
A
B
α
d 20.33mm
P=30kN
C
a 77.46mm
一起重用支架。a= 30°,AB杆为圆截面
材钢杆杆件,,1 2
160 MPa 。BC杆为正方形木
解:① 轴力:N = P =25kN
②应力: max
N A
4P πd 2
4 25 10 3 3.14 14 2
162 MPa
③强度校核: max 162MPa 170MPa
④结论:此杆满足强度要求,能够正常工作。
P
A d αα B
一起重用的吊环。a= 20°,吊环的最大
吊重量P=500kN,斜杆是由锻钢制成的
P
C ABD NBD / ;
LBD h / sin 。
D
h
L x
XA A
B
YA
NBD
PC
解: BD杆内力N( ): 取AC为研究对象,如图
mA 0 , (NBDsin ) (hctg ) Px
NBD
PL
hcos
BD杆横截面面积A:
A NBD /
L x
XA A
B
YA
NBD
PC
一、许用应力与安全系数
1.材料的极限应力 塑性材料: σ°=σs 脆性材料: σ°=σb
2.许用应力 为了保证构件能正常地工作,应当把最大工
作应力限制在一定的范围之内,这个限制值称 为材料在拉伸(或压缩)时的许用应力。用 [σ]表示。 [σ]= σ°
K
二、强度条件准则
保证构件不发生强度破坏并有一定安全余量的条件准则。

求VBD
的最小值: V
ALBD
Ah / sin
2PL
[ ] sin2
;
45o时,
Vmin
2PL
[ ]
大家辛苦了!
相关文档
最新文档