坐标系中的几何问题

合集下载

如何运用坐标系解决高考数学中的几何问题

如何运用坐标系解决高考数学中的几何问题

如何运用坐标系解决高考数学中的几何问题几何问题在高考数学考试中占据了很大的比例,要想在数学考试中获得更好的成绩,就必须要熟练掌握坐标系的运用方法。

在解决几何问题时,坐标系可以帮助我们更加清晰明了地理解问题,同时解题思路也更加清晰。

本文将详细介绍如何运用坐标系解决高考数学中的几何问题。

一、坐标系的引入坐标系是一种直角坐标系,它可以帮助我们更加清晰地理解和描述几何问题。

在引入坐标系之前,我们需要先了解平面直角坐标系的相关概念和公式。

平面直角坐标系由两条互相垂直的坐标轴组成,通常被称为x轴和y轴。

坐标轴的交点被称为原点,它的坐标为(0,0)。

x轴的正方向向右,负方向向左;y轴的正方向向上,负方向向下。

图1展示了一个平面直角坐标系的例子。

图1:平面直角坐标系的示意图在平面直角坐标系中,我们可以用(x,y)来表示一个点的位置,其中x表示该点在x轴上的位置,y表示该点在y轴上的位置。

例如,点A的坐标为(3, 4),它表示该点在x轴上的位置为3,而在y 轴上的位置为4。

二、关于平面几何问题在平面几何问题中,我们通常需要求出某个角度的大小、某两点之间的距离、某条直线的方程等问题。

但是,这些问题通常是比较抽象的,常常难以通过简单的数学公式来解决。

这时,我们可以通过引入坐标系来帮助我们解决问题。

三、坐标系的应用1. 求两点之间的距离假设有两个点A(x1,y1)和B(x2,y2),我们可以通过勾股定理求得线段AB的长度:d = √{(x2 - x1)² + (y2 - y1)²}例如,求出A(3, 4)和B(6, 8)之间的距离,可以用以下公式计算:d = √{(6-3)² + (8-4)²} = √{3² + 4²} = 5因此,线段AB的长度为5。

2. 求直线的斜率对于一条直线,我们可以用公式y=kx+b来表示,其中k表示该直线的斜率,b表示该直线在y轴上的截距。

利用平面直角坐标系解几何问题

利用平面直角坐标系解几何问题

利用平面直角坐标系解几何问题平面直角坐标系是解决几何问题的重要工具之一。

通过利用平面直角坐标系,我们可以方便地描述和推导各种几何关系,解决各种几何问题。

本文将介绍平面直角坐标系的基本概念和用法,并通过具体的几何问题演示如何利用平面直角坐标系解决问题。

1. 平面直角坐标系的基本概念平面直角坐标系由两条相互垂直的坐标轴构成,分别称为x轴和y 轴。

坐标轴的交点称为原点,用O表示。

x轴向右延伸正方向,y轴向上延伸正方向。

在坐标轴上,我们可以取一个单位长度,用于表示数值大小。

坐标轴上的点由坐标表示,例如一个点P的坐标为(x, y),其中x表示点P在x轴上的位置,y表示点P在y轴上的位置。

2. 平面直角坐标系的用法(1)坐标计算:通过确定点的坐标,我们可以计算两点之间的距离、点到坐标轴的距离等。

例如,已知点A(2, 3)和点B(5, 7),我们可以通过距离公式来计算点A和点B之间的距离。

(2)图形描述:通过坐标轴上的点,我们可以绘制图形来描述几何关系。

例如,通过连接几个点可以绘制出直线、折线、曲线等。

通过计算几何图形上的点的坐标,我们可以了解图形的特征和性质。

(3)问题求解:通过利用平面直角坐标系,我们可以解决各种几何问题。

例如,已知两点可以求直线的斜率;已知直线的斜率和一点可以求直线的方程;已知两条直线的方程可以求直线的交点等。

3. 利用平面直角坐标系解几何问题的示例问题一:已知直线L1过点A(1, 2)且斜率为2,直线L2过点B(3, 5)且斜率为-1,求直线L1和直线L2的交点坐标。

解答:设直线L1的方程为y = 2x + b1,直线L2的方程为y = -x +b2。

将点A和点B的坐标代入直线方程,得到两个方程:2 = 2 * 1 +b1 和 5 = -1 * 3 + b2。

解得b1 = 0,b2 = 8。

因此,直线L1的方程为y= 2x,直线L2的方程为y = -x + 8。

两直线相交时,它们的坐标相等,因此求解方程2x = -x + 8,解得x = 2。

利用坐标系解决平面几何问题

利用坐标系解决平面几何问题

利用坐标系解决平面几何问题在平面几何中,我们经常需要解决一些与坐标有关的问题。

利用坐标系可以将几何问题转化为代数问题,从而更容易进行分析和求解。

本文将介绍如何利用坐标系解决平面几何问题,并通过实例说明其应用。

1. 坐标系的建立在解决平面几何问题时,我们通常会建立一个二维坐标系。

坐标系由两条相互垂直的坐标轴组成,分别称为x轴和y轴。

通过在这个坐标系上标记点的坐标,我们可以用数字来表示几何图形的位置和性质。

2. 点的坐标表示在建立坐标系后,我们可以用坐标表示平面上的点。

通常,我们用一个有序数对(x, y)来表示点的坐标,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

例如,点A的坐标为(2, 3),表示它在x轴上的位置为2,在y轴上的位置为3。

3. 直线的方程在坐标系中,直线可以用方程表示。

一条直线的方程通常有两种形式:斜截式和一般式。

斜截式方程的形式为y = mx + b,其中m为直线的斜率,b为直线在y轴上的截距。

一般式方程的形式为Ax + By + C = 0,其中A、B、C为常数。

4. 直线的性质利用坐标系,我们可以轻松地分析直线的性质。

例如,两条直线的交点可以通过求解它们的方程得到。

如果两条直线的方程相等,那么它们是重合的;如果两条直线的斜率相等,但截距不同,那么它们是平行的。

5. 线段的长度在坐标系中,我们可以通过计算两个点的距离来求解线段的长度。

根据勾股定理,如果两个点的坐标分别为(x1, y1)和(x2, y2),那么它们之间的距离d可以通过以下公式计算:d = √((x2 - x1)² + (y2 - y1)²)。

6. 面积的计算利用坐标系,我们可以计算平面上一些几何图形的面积。

例如,一个三角形的面积可以通过计算它的底边长度和高的乘积的一半来求解。

如果三角形的三个顶点的坐标分别为(x1, y1),(x2, y2)和(x3, y3),那么它的面积可以通过以下公式计算:S = 0.5 * |(x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2))|。

直角坐标系中的几何问题(PDF版,含解析)

直角坐标系中的几何问题(PDF版,含解析)

直角坐标系中的几何问题(国庆拓展)1.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.(2)在y轴上是否存在一点P,连接P A,PB,使S△P AB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.2.如图,点A(a,b)在第二象限,其中a,b满足等式+|a+b+n|=0,点B在第一象限内,射线BC∥OA,与y轴交于点C(0,5).(1)当n=1时,求A点的坐标;(2)点P在y轴上从(0,﹣3)出发以每秒1个单位长度的速度向点C运动(到达C点后停止运动),求当时间为t秒时(不考虑点P与点O,C重合的情况),∠AOP,∠OPB,∠PBC的大小关系;(3)如图,若∠AOF=30°,点D是射线BC上一动点,∠FOD,∠ODC的平分线交于点E.∠E的大小是否随点D的位置变化发生改变,若不变,请求出∠E的度数;若改变,说明理由.3.如图1,在平面直角坐标系中,P(3,3),点A、B分别在x轴正半轴和y轴负半轴上,且P A=PB.(1)求证:P A⊥PB;(2)若点A(9,0),则点B的坐标为;(3)当点B在y轴负半轴上运动时,求OA﹣OB的值;(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.4.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.5.如图,已知在平面直角坐标系中,△ABO的面积为8,OA=OB,BC=12,点P的坐标是(a,6).(1)求△ABC三个顶点A,B,C的坐标;(2)若点P坐标为(1,6),连接P A,PB,则△P AB的面积;(3)是否存在点P,使△P AB的面积等于△ABC的面积?如果存在,请求出点P的坐标.6.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,已知A(0,2),B(3,0),C(3,4)三点,(1)求三角形ABC的面积;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积.(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a ﹣2|+(b﹣3)2=0,(c﹣5)2≤0.(1)求a、b、c的值.(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形APOB的面积.(3)在(2)的条件下,是否存在点P,使四边形AOBC的面积是四边形APOB的面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由.9.如图,平面直角坐标系中,已知A(﹣7,1),B(﹣1,1),C(﹣1,5),且点D的坐标(x,y),满足2x+5y=22,四边形ABCD的面积为37,求x,y的值.10.在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD=S ABOC,若存在,请求出t值,若不存在,请说明理由.11.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.(1)a=,b=;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上求点N(的坐标),使得△ABN的面积与四边形ABOM的面积相等.(直接写出答案)12.如图,在平面直角坐标系中,点A在X轴正半轴上,B在Y轴的负半轴,过点B画MN∥x轴;C是Y轴上一点,连接AC,作CD⊥CA.(1)如图(1),请直接写出∠CA0与∠CDB的数量关系.(2)如图(2),在题(1)的条件下,∠CAO的角平分线与∠CDB的角平分线相交于点P,求∠APD 的度数.(3)如图(2),在题(1)、(2)的条件下,∠CAX的角平分线与∠CDN的角平分线相交于点Q,请直接写出∠APD与∠AQD数量关系.(4)如图(3),点C在Y轴的正半轴上运动时,∠CAO的角平分线所在的直线与∠CDB的角平分线相交于点P,∠APD的大小是否变化?若不变,直接写出其值;若变化,说明理由.13.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.14.如图,已知平面直角坐标系内A(2a﹣1,4),B(﹣3,3b+1),A、B;两点关于y轴对称(1)求A、B的坐标;(2)动点P、Q分别从A点、B点同时出发,沿直线AB向右运动,同向而行,P点的速度是每秒2个单位长度,Q点的速度是每秒4个单位长度,设P、Q的运动时间为t秒,用含t的代数式表示三角形OPQ的面积S,并写出t的取值范围;(3)在平面直角坐标系中存在一点M,点M的横纵坐标相等,且满足S△PQM:S△OPQ=3:2,求出点M的坐标,并求出当S△AQM=15时,三角形OPQ的面积.15.已知两种不同的数对处理器f、g.当数对(x,y)输入处理器f时,输出数对(x+2y,2x﹣y),记作f (x,y)=(x+2y,2x﹣y);但数对(x,y)输入处理器g时,输出数对(y,﹣x+4),记作g(x,y)=(y,﹣x+4).(1)f(3,2)=(,),g(3,2)=(,).(2)当f(x,y)=g(1,﹣1)时,求x,y;(3)对于数对(x,y),f[g(x,y)]=g[f(x,y)]一定成立吗?若成立,说明理由;若不成立,举例说明.16.如图,在平面直角坐标系内放置一个直角梯形AOCD,已知AD=3,AO=8,OC=5.(1)若点P在y轴上且S△P AD=S△poc,求点P的坐标;(2)若点P在梯形内且S△P AD=S△POC,S△P AO=S△PCD,求点P的坐标.17.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x 轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.18.如图,在平面直角坐标系,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+(a+2b﹣4)2=0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使S△COM=△ABC的面积,求出点M的坐标;②在坐标轴的其他位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标为.19.如图,在长方形OABC中,OA=BC=10,AB=OC=6,以O为原点,OA为x轴,OC为y轴,建立平面直角坐标系.动点P从点A出发,沿A→O→C→B路线运动到点B停止,速度为4个单位长度/秒;动点Q从点O出发,沿O→C→B路线运动到点B停止,速度为2个单位长度/秒;当点P到达点B时,两点同时停止运动.设运动时间为t.(1)写出A、B、C三个点的坐标;(2)当点P恰好追上点Q时,求此时点P的坐标;(3)当点P运动到线段BC上时,连接AP、AQ,若△APQ的面积为3,求t的值.20.已知:如图三角形ABC的三个顶点位置分别是A(1,0),B(﹣4,0),C(﹣2,5)(1)求三角形ABC的面积;(2)若点P(0,m)在y轴上,试用含m的代数式表示三角形ABP的面积;(3)若点P在y轴上什么位置时,三角形ABP的面积等于三角形ABC的一半?21.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,3),且||+(4a﹣b+11)2=0.(1)求a、b的值;(2)①在y轴上的负半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使结论“△COM的面积=△ABC的面积”仍然成立?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.22.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.23.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,求a的值.直角坐标系中的几何问题答案(国庆拓展)1.如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a =+﹣1,现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC .(2)在y 轴上是否存在一点P ,连接P A ,PB ,使S △P AB =S 四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)的值是否发生变化,并说明理由.【解答】解:(1)由题意得,3﹣b ≥0且b ﹣3≥0,解得b ≤3且b ≥3, ∴b =3, a =﹣1,∴A (﹣1,0),B (3,0),∵点A ,B 分别向上平移2个单位,再向右平移1个单位, ∴点C (0,2),D (4,2); ∵AB =3﹣(﹣1)=3+1=4, ∴S 四边形ABDC =4×2=8;(2)∵S △P AB =S 四边形ABDC , ∴×4•OP =8,解得OP =4,∴点P 的坐标为(0,4)或(0,﹣4);(3)=1,比值不变.理由如下:由平移的性质可得AB ∥CD ,如图,过点P 作PE ∥AB ,则PE ∥CD , ∴∠DCP =∠CPE ,∠BOP =∠OPE ,∴∠CPO =∠CPE +∠OPE =∠DCP +∠BOP , ∴=1,比值不变.2.如图,点A (a ,b )在第二象限,其中a ,b 满足等式+|a +b +n |=0,点B 在第一象限内,射线BC ∥OA ,与y 轴交于点C (0,5). (1)当n =1时,求A 点的坐标;(2)点P 在y 轴上从(0,﹣3)出发以每秒1个单位长度的速度向点C 运动(到达C 点后停止运动),求当时间为t 秒时(不考虑点P 与点O ,C 重合的情况),∠AOP ,∠OPB ,∠PBC 的大小关系;(3)如图,若∠AOF =30°,点D 是射线BC 上一动点,∠FOD ,∠ODC 的平分线交于点E .∠E 的【解答】解:(1)∵a,b满足等式+|a+b+n|=0,n=1,∴解得:a=﹣3,b,=2,∴A(﹣3,2)答:当n=1时,A点的坐标为(﹣3,2).(2)①当0<t<3时,即点P在y轴的负半轴移动时,如图2﹣1,此时∠AOP=∠OPB+∠PBC;∵OA∥BC,∴∠AOP=∠OCQ,又∵∠OCQ=∠OPB+∠PBC,∴∠AOP=∠OPB+∠PBC,②当3<t<8时,即点P在OC上移动时,如图2﹣2,此时∠OPB=∠AOP+∠PBC;∵OA∥BC,∴∠AOP=∠PCB,又∵∠OPB═∠PBC+∠BCP,∴∠OPB=∠AOP+∠PBC.(3)∠E的大小不会随点D的位置变化发生改变,∠E=75°,作∠AOD的平分线交DE于点F,如图3所示∵OE平分∠FOD,OF平分∠AOD,DE平分∠ODC,∵∠AOE=∠EOD=∠FOD,∠AOF=∠FOD =∠AOD,∠ODE=∠EDC=∠ODC,∵OA∥BC,∴∠AOD+∠ODC=180°,∴∠ODE+∠FOD=90°,即∠OFD=90°,∴∠EOF=∠FOD﹣∠AOD=∠FOA=15°,∴∠E=90°﹣15°=75°,即∠E的大小不变,∠E=75°.答:∠E的大小不会随点D的位置变化发生改变,∠E=75°.3.如图1,在平面直角坐标系中,P(3,3),点A、B分别在x轴正半轴和y轴负半轴上,且P A=PB.(1)求证:P A⊥PB;(2)若点A(9,0),则点B的坐标为;(3)当点B在y轴负半轴上运动时,求OA﹣OB的值;(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.【解答】(1)证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,∵P(3,3),∴PE=PF=3,在Rt△APE和Rt△BPF中,∴Rt△APE≌Rt△BPF(HL),∴∠APE=∠BPF,∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,∴P A⊥PB;(2)解:由(1)证得,Rt△APE≌Rt△BPF,∴PF=PE,∴四边形OEPF是正方形,∴OE=OF=4,∵A(9,0),∴OA=9,∴AE=OA﹣OE=9﹣3=6,∵Rt△APE≌Rt△BPF,∴AE=BF=6,∴OB=BF﹣OF=6﹣3=3,∴点B的坐标为(0,﹣3),故答案为:(0,﹣3);(3)解:∵Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣3,BF=OB+OF=OB+3,∴OA﹣3=OB+3,∴OA﹣OB=6;(4)解:如图2,过点P作PE⊥x轴于E,作PF⊥y轴于F,同(1)可得,Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣3,BF=OF﹣OB=3﹣OB,∴OA﹣3=3﹣OB,∴OA+OB=6.4.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.【解答】解:(1)∵|a+1|+(b﹣3)2=0,∴a+1=0且b﹣3=0,解得:a=﹣1,b=3,故答案为:﹣1,3;(2)过点M作MN⊥x轴于点N,∵A(﹣1,0)B(3,0)∴AB=1+3=4,又∵点M(﹣2,m)在第三象限∴MN=|m|=﹣m∴S△ABM=AB•MN=×4×(﹣m)=﹣2m;(3)当m=﹣时,M(﹣2,﹣)∴S△ABM=﹣2×(﹣)=3,点P有两种情况:①当点P在y轴正半轴上时,设点p(0,k)S△BMP=5×(+k)﹣×2×(+k)﹣×5×﹣×3×k=k+,∵S△BMP=S△ABM,∴k+=3,解得:k=0.3,∴点P坐标为(0,0.3);②当点P在y轴负半轴上时,设点p(0,n),S△BMP=﹣5n﹣×2×(﹣n﹣)﹣×5×﹣×3×(﹣n)=﹣n﹣,∵S△BMP=S△ABM,∴﹣n﹣=3,解得:n=﹣2.1∴点P坐标为(0,﹣2.1),故点P的坐标为(0,0.3)或(0,﹣2.1).5.如图,已知在平面直角坐标系中,△ABO的面积为8,OA=OB,BC=12,点P的坐标是(a,6).(1)求△ABC三个顶点A,B,C的坐标;(2)若点P坐标为(1,6),连接P A,PB,则△P AB的面积;(3)是否存在点P,使△P AB的面积等于△ABC的面积?如果存在,请求出点P的坐标.【解答】解:(1)∵S△ABO=•OA•OB,∵OA=OB,∴OA2=8,解得OA=4,∴OB=OA=4,∴OC=BC﹣OB=12﹣4=8,∴A(0,4),B(﹣4,0),C(8,0);(2)作PH⊥x轴于H,如图1,S△P AB=S△PBH﹣S△AOB﹣S梯形AOHP=×(4+1)×6﹣8﹣×(4+6)×1=15﹣8﹣5=2.(3)S△ABC=•4•12=24,当点P在第一象限,即a>0,作PH⊥x轴于H,如图2,S△P AB=S△AOB+S梯形AOHP﹣S△PBH=8+•a﹣•6•(a+4)=2a﹣4;则2a﹣4=24,解得a=14.此时P点坐标为(14,6);当点P在第二象限,即a<0,作PH⊥y轴于H,如图3,S△P AB=S梯形OHPB﹣S△P AH﹣S△OAB=•6﹣•(6﹣4)•(﹣a)﹣8=4﹣2a;则4﹣2a=24,解得a=﹣10.此时P点坐标为(﹣10,6).综上所述,点P的坐标为(﹣10,6)或(14,6).6.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.【解答】解:(1)∵a,b满足|a﹣2|+(b﹣3)2=0,∴a﹣2=0,b﹣3=0,解得a=2,b=3.故a的值是2,b的值是3;(2)过点M作MN丄y轴于点N.四边形AMOB面积=S△AMO+S△AOB=MN•OA+OA•OB=×(﹣m)×2+×2×3=﹣m+3;(3)当m=﹣时,四边形ABOM的面积=4.5.∴S△ABN=4.5,①当N在x轴负半轴上时,设N(x,0),则S△ABN=AO•NB=×2×(3﹣x)=4.5,解得x=﹣1.5;②当N在y轴负半轴上时,设N(0,y),则S△ABN=BO•AN=×3×(2﹣y)=4.5,解得y=﹣1.∴N(0,﹣1)或N(﹣1.5,0).7.如图,在平面直角坐标系中,已知A(0,2),B(3,0),C(3,4)三点,(1)求三角形ABC的面积;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积.(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)已知点A(0,2),B(3,0),C(3,4),过A点作BC边上的高,交BC于点H,则三角形ABC的面积为:S=BC•AH=×4×3=6;(2)四边形ABOP的面积可以看作是△APO和△AOB的面积和,∵P在第二象限,∴m<0,S APOB=S△AOB+S APO=+×(﹣m)×2=3﹣m.故四边形ABOP的面积为3﹣m;(3)当四边形ABOP的面积与△ABC的面积相等时,即3﹣m=6,得m=﹣3,此时P点坐标为:(﹣3,),存在P点,使四边形ABOP的面积与△ABC的面积相等.8.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a ﹣2|+(b﹣3)2=0,(c﹣5)2≤0.(1)求a、b、c的值.(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形APOB的面积.(3)在(2)的条件下,是否存在点P,使四边形AOBC的面积是四边形APOB的面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由.【解答】解:(1)由已知|a﹣2|+(b﹣3)2=0,(c﹣5)2≤0可得:a﹣2=0,b﹣3=0,c﹣5=0,解得:a=2,b=3,c=5;(2)∵a=2,b=3,c=5,∴A(0,2),B(3,0),C(3,5),∴OA=2,OB=3,∵S△ABO=×2×3=3,S△APO=×2×(﹣m)=﹣m,∴S四边形ABOP=S△ABO+S△APO=3+(﹣m)=3﹣m(3)存在,∵S四边形AOBC=S△AOB+S△ABC=3+=10.5,若S四边形AOBC=2S四边形APOB=2(3﹣m)=10.5,则m=﹣,∴存在点P(﹣,),使四边形AOBC的面积是四边形APOB的面积的2倍.9.如图,平面直角坐标系中,已知A(﹣7,1),B(﹣1,1),C(﹣1,5),且点D的坐标(x,y),满足2x+5y=22,四边形ABCD的面积为37,求x,y的值.【解答】解:如图,作DE⊥y轴于点E,延长BC交DE于点F,则BF⊥DE,由A(﹣7,1),B(﹣1,1),C(﹣1,5),且点D的坐标(x,y),∴AB=6、DF=﹣x﹣1、BF=y﹣1,CF=y﹣5,由四边形ABCD的面积为37知×(6﹣x﹣1)(y﹣1)﹣×(﹣x﹣1)(y﹣5)=37,整理,得:2x﹣3y=﹣42,由2x+5y=22可得,解得:.10.在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD=S ABOC,若存在,请求出t值,若不存在,请说明理由.【解答】解:(1)B(0,6),C(8,0),故答案为:0、6,8、0;(2)当点P在线段BA上时,由A(8,6),B(0,6),C(8,0)可得:AB=8,AC=6∵AP=AB﹣BP,BP=2t,∴AP=8﹣2t(0≤t<4);当点P在线段AC上时,∵AP=点P走过的路程﹣AB=2t﹣8(4≤t≤7).(3)存在两个符合条件的t值,当点P在线段BA上时∵S△APD=AP•AC S ABOC=AB•AC∴(8﹣2t)×6=×8×6,解得:t=3<4,当点P在线段AC上时,∵S△APD=AP•CD CD=8﹣2=6∴(2t﹣8)×6=×8×6,解得:t=5<7,综上所述:当t为3秒和5秒时S△APD=S ABOC,11.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.(1)a=,b=;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上求点N(的坐标),使得△ABN的面积与四边形ABOM的面积相等.(直接写出答案)【解答】解:(1)∵|a﹣2|+(b﹣3)2=0,∴a﹣2=0,b﹣3=0,解得:a=2,b=3,故答案为:2,3;(2)∵在第二象限内有一点M(m,1),∴S△AMO=×AO×(﹣m)=﹣m,S△AOB=×AO×OB=3,∴四边形ABOM的面积为:3﹣m;(3)∵当m=﹣时,△ABN的面积与四边形ABOM的面积相等,当N在x轴的负半轴时,设N点坐标为:(c,0),则×2(3﹣c)=3﹣(﹣),解得:c=﹣1.5,故N(﹣1.5,0),当N在y轴的负半轴时,设N点坐标为:(0,d),则×3(2﹣d)=3﹣(﹣),解得:d=﹣1,故N(0,﹣1),综上所述:N点坐标为:(﹣1.5,0),(0,﹣1).12.如图,在平面直角坐标系中,点A在X轴正半轴上,B在Y轴的负半轴,过点B画MN∥x轴;C是Y轴上一点,连接AC,作CD⊥CA.(1)如图(1),请直接写出∠CA0与∠CDB的数量关系.(2)如图(2),在题(1)的条件下,∠CAO的角平分线与∠CDB的角平分线相交于点P,求∠APD 的度数.(3)如图(2),在题(1)、(2)的条件下,∠CAX的角平分线与∠CDN的角平分线相交于点Q,请直接写出∠APD与∠AQD数量关系.(4)如图(3),点C在Y轴的正半轴上运动时,∠CAO的角平分线所在的直线与∠CDB的角平分线相交于点P,∠APD的大小是否变化?若不变,直接写出其值;若变化,说明理由.【解答】解:(1)如图,∵CD⊥CA,∴∠ACO+∠DCB=90°,∵∠AOC=90°,∴∠ACO+∠OAC=90°,∴∠DCB=∠OAC,又∵∠CBD=90°,∴∠DCB+∠CDB=90°,∴∠CAO+∠CDB=90°;(2)如图2,延长AP交MN于点E,∵AP平分∠CAO、DP平分∠CDB,∴∠1=∠CAO、∠2=∠CDB,∵∠CAO+∠CDB=90°,∴∠1+∠2=45°,∵MN∥OA,∴∠1=∠3,∴∠APD=∠2+∠3=∠1+∠3=45°;(3)∵AP平分∠OAC、AQ平分∠CAx,∴∠P AC=∠OAC、∠QAC=∠CAx,∵∠OAC+∠CAx=180°,∴∠P AQ=∠P AC+∠CAQ=(∠OAC+∠CAx)=90°,同理得∠PDQ=90°,∴∠APD+∠AQD=360°﹣(∠P AQ+∠PDQ)=180°;(4)∠APD的大小不变,为45°;设∠CAQ=2α,∠CQA=2β,∵∠ACD=90°,∴∠CAQ+∠CQA=90°,即2α+2β=90,α+β=45,∵AO∥MN,∴∠CQA=∠CDB=2β,∵AQ平分∠CAQ、DB平分∠CDB,∴∠QDP=∠CDB=β,∠CAQ=α,则∠CQA=90°﹣∠CAQ=90°﹣α,∴∠APD=∠CQA﹣∠CDB=90°﹣α﹣β=13.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是E、F;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.【解答】解:(1)①∵点A(﹣3,1)到x、y轴的距离中最大值为3,∴与A点是“等距点”的点是E、F.②当点B坐标中到x、y轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A符合“等距点”的是(﹣3,3).故答案为①E、F;②(﹣3,3);(2)T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,①若|4k﹣3|≤4时,则4=﹣k﹣3或﹣4=﹣k﹣3解得k=﹣7(舍去)或k=1.②若|4k﹣3|>4时,则|4k﹣3|=|﹣k﹣3|解得k=2.根据“等距点”的定义知,k=1或k=2符合题意.即k的值是1或2.14.如图,已知平面直角坐标系内A(2a﹣1,4),B(﹣3,3b+1),A、B;两点关于y轴对称(1)求A、B的坐标;(2)动点P、Q分别从A点、B点同时出发,沿直线AB向右运动,同向而行,P点的速度是每秒2个单位长度,Q点的速度是每秒4个单位长度,设P、Q的运动时间为t秒,用含t的代数式表示三角形OPQ的面积S,并写出t的取值范围;(3)在平面直角坐标系中存在一点M,点M的横纵坐标相等,且满足S△PQM:S△OPQ=3:2,求出点M的坐标,并求出当S△AQM=15时,三角形OPQ的面积.【解答】解:(1)∵A(2a﹣1,4),B(﹣3,3b+1),A、B两点关于y轴对称,∴2a﹣1=3,3b+1=4.解得a=2,b=1.∴点A的坐标为(3,4),点B的坐标为(﹣3,4).(2)∵AP=2t,BQ=4t,AB=6,∴当0<t<3时,PQ=6+2t﹣4t=6﹣2t;当t>3时,PQ=4t﹣6﹣2t=2t﹣6.∴当0<t<3时,S=PQ•4=×(6﹣2t)×4=12﹣4t;当t>3时,S=.即.(3)设点M的坐标为(x,x).当0<t<3时,∵S△PQM:S△OPQ=3:2,=(3﹣t)×|4﹣x|,S△OPQ=12﹣4t.∴.解得,x=﹣2或x=10∴点M的坐标为(﹣2,﹣2)或(10,10)当t>3时,∵S△PQM:S△OPQ=3:2,=(t﹣3)×|4﹣x|,S△OPQ=4t﹣12∴解得,x=﹣2或x=10.∴点M的坐标为(﹣2,﹣2)或(10,10).∵S△AQM=15,(0<t<3)或(t>3),∴t=或t=,∴当t=时,,当t=时,S△OPQ=12﹣4×=1;由上可得,点M的坐标为(﹣2,﹣2)或(10,10),当S△AQM=15时,三角形OPQ的面积是11或1.15.已知两种不同的数对处理器f、g.当数对(x,y)输入处理器f时,输出数对(x+2y,2x﹣y),记作f (x,y)=(x+2y,2x﹣y);但数对(x,y)输入处理器g时,输出数对(y,﹣x+4),记作g(x,y)=(y,﹣x+4).(1)f(3,2)=(,),g(3,2)=(,).(2)当f(x,y)=g(1,﹣1)时,求x,y;(3)对于数对(x,y),f[g(x,y)]=g[f(x,y)]一定成立吗?若成立,说明理由;若不成立,举例说明.【解答】解:(1)∵x=3,y=2,∴x+2y=7,2x﹣y=4,由f(x,y)=(x+2y,2x﹣y),得到f(3,2)=(7,4);同理把x=3,y=2,代入g(x,y)=(y,﹣x+4)中,可得g(3,2)=(2,1).故答案为(7,4),(2,1).(2)∵g(x,y)=(y,﹣x+4),∴g(1,﹣1)=(﹣1,3).当f(x,y)=g(1,﹣1)=(﹣1,3)时,根据f(x,y)=(x+2y,2x﹣y),可得解得x=1,y=1;(3)对于数对(x,y),f[g(x,y)]=g[f(x,y)]一定成立,理由如下:∵g(x,y)=(y,﹣x+4),∴f[g(x,y)]=f(y,﹣x+4).又∵f(x,y)=(x+2y,2x﹣y),所以f(y,﹣x+4)=(3y,3x﹣4).∵f(x,y)=(x+2y,2x﹣y),∴g[f(x,y)]=g(x+2y,2x﹣y).又∵g(x,y)=(y,﹣x+4),∴g(x+2y,2x﹣y)=(3y,3x﹣4).所以f[g(x,y)]=g[f(x,y)]=(3y,3x﹣4).所以对于数对(x,y),f[g(x,y)]=g[f(x,y)]一定成立.16.如图,在平面直角坐标系内放置一个直角梯形AOCD,已知AD=3,AO=8,OC=5.(1)若点P在y轴上且S△P AD=S△poc,求点P的坐标;(2)若点P在梯形内且S△P AD=S△POC,S△P AO=S△PCD,求点P的坐标.【解答】解:(1)①点P在AO上时,S△P AD=AD•P A,S△POC=OC•PO,∵S△P AD=S△POC,∴AD•P A=OC•PO,∴3(8﹣PO)=5PO,解得PO=3,此时点P的坐标为(0,3),②点P在AO的延长线上时,S△P AD=AD•P A,S△POC=OC•PO,∵S△P AD=S△POC,∴AD•P A=OC•PO,∴3(8+PO)=5PO,解得PO=12,此时点P的坐标为(0,﹣12),综上所述,点P的坐标为(0,3)或(0,﹣12);(2)如图,过点P作PE⊥y轴于E,S梯形AOCD=(3+5)×8=32,∵S△P AD=S△POC,∴AD•AE=OC•OE,∴3AE=5OE,即3(8﹣OE)=5OE,解得OE=3,∴S△P AO=S△PCD=(32﹣2××5×3)=,∴AO•PE=,即×8•PE=,解得PE=,∴点P的坐标是(,3).17.在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x 轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.【解答】解:(1)∵b2=16,∴b=±4,∵B(0,b)是y轴负半轴上一点,∴B(0,﹣4),∵AB⊥y轴,S△AOB=12.∴AB•BO=12,即AB×4=12,解得AB=6,∴A的坐标为(6,﹣4),(2)如图1,过点N作NM∥x轴,∵NM∥x,∴∠MNO=∠NOC,∵ON是∠EOD的角平分线,∴∠MNO=∠NOC=∠EOD,∴∠MNF=∠NF A,∵FN是∠AFD的角平分线,∴∠MNF=∠NF A=∠AFD,∵AB∥x轴,∴∠OED=∠AFD,∵ED⊥OA,∴∠EOD+∠AFD=90°,∴∠ONF=∠MNO+∠MNF=(∠EOD+∠AFD)=×90°=45°.(3)如图2,过点N作NM∥x轴,∵NM∥x,∴∠MNO=∠NOC,∵ON是∠EOD的角平分线,∴∠MNO=∠NOC=∠EOD,又∵MN∥AB∴∠MNF=∠NF A,∵FN是∠AFD的角平分线,∴∠MNF=∠NF A=∠AFD,∵AB∥x轴,∴∠OED=∠AFD,∵∠ODF=∠EOD+∠AFD=α,∴∠ONF=∠MNO+∠MNF=(∠EOD+∠AFD)=α.18.如图,在平面直角坐标系,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+(a+2b﹣4)2=0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使S△COM=△ABC的面积,求出点M的坐标;②在坐标轴的其他位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M 的坐标为.【解答】解(1)∵|2a+b+1|+(a+2b﹣4)2=0,又∵|2a+b+1|和(a+2b﹣4)2都是非负数,所以得,解方程组得,,∴a=﹣2,b=3.(2)①由(1)得A,B点的坐标为A(﹣2,0),B(3,0),|AB|=5.∵C(﹣1,2),∴△ABC的AB边上的高是2,∴.要使△COM的面积是△ABC面积的,而C点不变,即三角形的高不变,M点在x轴的正半轴上,只需使.此时.∴M点的坐标为②由①中的对称点得,当M在y轴上时,△COM的高为1,∵△COM的面积=△ABC的面积,∴|OM|×1=∴OM=±5(负值舍去),∴M2(0,5),M3(0,﹣5).故答案为:(﹣,0),(0,5),(0,﹣5).19.如图,在长方形OABC中,OA=BC=10,AB=OC=6,以O为原点,OA为x轴,OC为y轴,建立平面直角坐标系.动点P从点A出发,沿A→O→C→B路线运动到点B停止,速度为4个单位长度/秒;动点Q从点O出发,沿O→C→B路线运动到点B停止,速度为2个单位长度/秒;当点P到达点B时,两点同时停止运动.设运动时间为t.(1)写出A、B、C三个点的坐标;(2)当点P恰好追上点Q时,求此时点P的坐标;(3)当点P运动到线段BC上时,连接AP、AQ,若△APQ的面积为3,求t的值.【解答】解:(1)点A(10,0),B(10,6),C(0,6);(2)设时间为t,由题意得,4t﹣2t=10,解得t=5,此时,点P运动的路程为4×5=20,所以,点P在BC上,CP=20﹣10﹣6=4,所以,点P的坐标为(4,6);(3)点Q在点P的前面时,PQ=2t﹣(4t﹣10)=10﹣2t,△APQ的面积=(10﹣2t)×6=3,解得t=4.5,点P在点Q的前面时,PQ=(4t﹣10)﹣2t=2t﹣10,△APQ的面积=(2t﹣10)×6=3,解得t=5.5,综上所述,△APQ的面积为3时,t=4.5秒或5.5秒.20.已知:如图三角形ABC的三个顶点位置分别是A(1,0),B(﹣4,0),C(﹣2,5)(1)求三角形ABC的面积;(2)若点P(0,m)在y轴上,试用含m的代数式表示三角形ABP的面积;(3)若点P在y轴上什么位置时,三角形ABP的面积等于三角形ABC的一半?【解答】解:(1)∵A(1,0),B(﹣4,0),C(﹣2,5),∴AB=1﹣(﹣4)=1+4=5,点C到AB的距离为5,∴△ABC的面积=×5×5=12.5;(2)点P在y轴正半轴时,m>0,面积=×5•m=m,点P在y轴负半轴时,m<0,面积=×5•(﹣m)=﹣m;(3)设点P到x轴的距离为h,则×5h=×12.5,解得h=,所以,点P坐标为(0,)或(0,﹣).21.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,3),且||+(4a﹣b+11)2=0.(1)求a、b的值;(2)①在y轴上的负半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使结论“△COM的面积=△ABC的面积”仍然成立?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵||+(4a﹣b+11)2=0,∴解得∴a的值是﹣2,b的值是3.(2)如图1,过点C作CG⊥x轴,CH⊥y轴,垂足分别为G、H,∵A(﹣2,0),B(3,0),∴AB=3﹣(﹣2)=5,∵点C的坐标是(﹣1,3),∴CG=3,CH=1,∴,∴,即,∴OM=,∴点M的坐标是(0,﹣7.5).(3)∵点M的坐标是(0,﹣7.5)时,△COM 的面积=△ABC的面积,∴点M的坐标是(0,7.5)时,△COM的面积=△ABC的面积;∵三角形的高一定时,面积和底成正比,∴点M的坐标是(2.5,0)或(﹣2.5,0)时,△COM的面积=△ABC的面积.综上,可得在坐标轴的其它位置存在点M,使结论“△COM 的面积=△ABC的面积”仍然成立,符合条件的点M的坐标有3个:(0,7.5)、(2.5,0)或(﹣2.5,0).22.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.【解答】解:(1)S△BCD=CD•OC=×3×2=3.(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°,∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°,∵BF是∠CBA的平分线,∴∠CBF=∠OBE,∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠P AD,∵∠ADC=∠DAC∴∠CAP=2∠DAC,∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC,∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.23.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,求a的值.【解答】解:如图1,过P点作PD⊥x轴,垂足为D.由A(﹣,0)、B(0,1),得OA=,OB =1,∵△ABC为等边三角形,由勾股定理,得AB==2,∴S△ABC=×2×=,又∵S△ABP=S△AOB+S梯形BODP﹣S△ADP=××1+×(1+a)×3﹣×(+3)×a=,由2S△ABP=S△ABC,得=,∴a=.如图2,过P点作PD⊥x轴,垂足为D.由A(﹣,0)、B(0,1),得OA=,OB =1,∵△ABC为等边三角形,由勾股定理,得AB==2,∴S△ABC=×2×=,又∵S△ABP=S△ADP﹣S△AOB﹣S梯形BODP =×(+3)×a﹣××1﹣×(1+a)×3=,由2S△ABP=S△ABC,得a﹣﹣3=,∴a=2+.故a的值是或2+.。

高中数学平面几何直角坐标系问题求解方法

高中数学平面几何直角坐标系问题求解方法

高中数学平面几何直角坐标系问题求解方法一、直角坐标系的基本概念和性质直角坐标系是平面几何中常用的坐标系统,由横轴和纵轴组成,相互垂直且交于原点。

在直角坐标系中,每个点都可以用一个有序数对(x, y)表示,其中x表示横坐标,y表示纵坐标。

在直角坐标系中,我们可以通过距离公式计算两点之间的距离。

设点A(x1, y1)和点B(x2, y2)是直角坐标系中的两个点,它们之间的距离可以用以下公式表示:AB = √((x2 - x1)² + (y2 - y1)²)二、直线的方程和求解方法1. 一般式方程直线的一般式方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不能同时为0。

例如,直线2x + 3y - 6 = 0的一般式方程为2x + 3y - 6 = 0。

通过一般式方程,我们可以判断点是否在直线上。

将点的坐标代入一般式方程,若等式成立,则该点在直线上;若不成立,则该点不在直线上。

2. 斜截式方程直线的斜截式方程可以表示为y = kx + b,其中k为斜率,b为截距。

例如,直线y = 2x + 3的斜截式方程为y = 2x + 3。

通过斜截式方程,我们可以得到直线的斜率和截距。

斜率表示直线的倾斜程度,截距表示直线与纵轴的交点。

3. 两点式方程直线的两点式方程可以表示为(y - y1)/(y2 - y1) = (x - x1)/(x2 - x1),其中(x1, y1)和(x2, y2)是直线上的两个点。

例如,直线过点A(1, 2)和点B(3, 4),则直线的两点式方程为(y - 2)/(4 - 2) = (x - 1)/(3 - 1)。

通过两点式方程,我们可以得到直线的方程,进而求解与其他直线或曲线的交点。

三、平面几何问题的求解方法1. 直线与直线的交点设直线L1的方程为y = k1x + b1,直线L2的方程为y = k2x + b2。

若L1和L2相交于点P(x0, y0),则P满足以下条件:k1x0 + b1 = k2x0 + b2k1x0 - k2x0 = b2 - b1(x0, y0)即为直线L1和L2的交点。

平面直角坐标系的应用

平面直角坐标系的应用

平面直角坐标系的应用平面直角坐标系是数学中常用的一个工具,可以用来描述平面上的点和图形的位置关系。

它由两条互相垂直的直线组成,分别称为x轴和y轴,它们的交点称为原点。

本文将探讨平面直角坐标系在几何问题和物理问题中的应用。

一、平面几何问题中的应用在平面几何中,平面直角坐标系可以用来确定点的坐标、计算线段的长度和比例等。

首先,我们可以利用坐标系来确定平面上的点的位置。

一个点的位置可以用其在x轴和y轴上的坐标来表示,如点A的坐标为(Ax, Ay)。

通过坐标系,我们可以直观地看出点的位置关系,比如两个点是否重合、是否在同一直线上等。

其次,我们可以使用平面直角坐标系计算线段的长度。

根据直角三角形的性质,我们可以通过两个点的坐标计算出它们之间的距离。

根据勾股定理,两点间的距离可以表示为d = √((Ax-Bx)^2 + (Ay-By)^2),其中(Ax, Ay)和(Bx, By)分别是两个点的坐标。

另外,平面直角坐标系还可以帮助我们计算线段的比例。

通过计算两条线段在x轴和y轴上的长度比例,我们可以判断它们是否平行于坐标轴、与坐标轴垂直,或者是斜线段。

二、物理问题中的应用平面直角坐标系在物理学中也有着广泛的应用,特别是在描述物体运动和力的作用方向等问题中。

首先,当我们研究物体在平面上的运动时,可以使用平面直角坐标系来描述物体的位置和速度。

通过定义物体的位置为原点,我们可以将物体的位移和速度表示为一个向量,在坐标系中用箭头表示。

这样,我们可以根据向量的长度和方向来描述物体的位置和速度。

其次,在力学中,平面直角坐标系可以帮助我们分解力的作用方向,从而更好地理解力的合成和分解。

例如,如果一个物体受到多个力的作用,我们可以将这些力沿着x轴和y轴分解,然后根据分解后的力的合成求得物体的合力。

这一过程减少了复杂力的计算,并且更加直观地反映了力的作用方向和大小。

结语平面直角坐标系在几何和物理问题中都有着重要的应用。

通过合理运用坐标系的知识,我们可以更好地理解和解决实际问题。

空间坐标系与空间坐标系在立体几何中的应用有答案

空间坐标系与空间坐标系在立体几何中的应用有答案

一.空间直角坐标系如图1,为了确定空间点的位置,我们建立空间直角坐标系:以正方体为载体,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长,建立三条数轴:x轴、y轴、z轴,这时我们说建立了一个空间直角坐标系,其中点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、zOx平面、yOz平面,通常建立的坐标系为右手直角坐标系,即右手拇指指向x轴的正方向,食指指向y轴的正方向,中指指向z轴的正方向.二.空间直角坐标系中的坐标空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标[例1]在空间直角坐标系中,作出点M(6,-2,4).[例2]长方体ABCD-A1B1C1D1中,|AB|=a,|BC|=b,|CC1|=c,将此长方体放到空间直角坐标系中的不同位置(如图3),分别写出长方体各顶点的坐标.变式1:棱长为2的正方体,将此正方体放到空间直角坐标系中的不同位置,分别写出几何体各顶点的坐标。

2.底面为边长为4的菱形,高为5的棱柱,将此几何体放到空间直角坐标系中的不同位置分别写出几何体各顶点的坐标。

3.在棱长均为2a的正四棱锥P-ABCD中,建立恰当的空间直角坐标系,(1)写出正四棱锥P-ABCD各顶点坐标;(2)写出棱PB的中点M的坐标.解:连接AC,BD交于点O,连接PO,∵P-ABCD为正四棱锥,且棱长均为2a.∴四边形ABCD为正方形,且PO⊥平面ABCD.∴OA=2a.PO=P A2-OA2=?2a?2-?2a?2=2a.以O点为坐标原点,OA,OB,OP所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系.(1)正四棱锥P-ABCD中各顶点坐标分别为A(2a,0,0),B(0,2a,0),C(-2 a,0,0),D(0,-2a,0),P(0,0,2a).(2)∵M为棱PB的中点,∴由中点坐标公式,得M(0+02,2a+02,0+2a2),即M(0,22a,22a).[例3]在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.[解](1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x=2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3(6,-3,-12).变式:1.写出点P(6,-2,-7)在xOy面,yOz面,xOz面上的投影的坐标以及点P关于各坐标平面对称的点的坐标.解:设点P在xOy平面、yOz平面、xOz平面上的投影分别为点A,B,C,点P关于xOy平面、yOz平面、xOz平面的对称点分别为点A′,B′,C′,由P A⊥平面xOy,PB⊥平面yOz,PC⊥平面xOz及坐标平面的特征知,点A(6,-2,0),点B(0,-2,-7),点C(6,0,-7);根据点P关于各坐标平面对称点的特征知,点A ′(6,-2,7),B ′(-6,-2,-7),C ′(6,2,-7).2.在棱长都为2的正三棱柱ABC -A 1B 1C 1中,建立恰当的直角坐标系,并写出正三棱柱ABC -A 1B 1C 1各顶点的坐标.[正解] 取BC ,B 1C 1的中点分别为O ,O 1,连线OA ,OO 1, 根据正三棱柱的几何性质,OA ,OB ,OO 1两两互相垂直,且 |OA |=32×2=3, 以OA ,OB ,OO 1所在的直线分别为x 轴、y 轴、z 轴建立直角坐标系,如图5所示,则正三棱柱ABC —A 1B 1C 1各顶点的坐标分别为A (3,0,0),B (0,1,0),C (0,-1,0),A 1(3,0,2),B 1(0,1,2),C 1(0,-1,2).三.空间向量在立体几何中的应用1. 直线的方向向量与平面的法向量(1) 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量. (2) 如果表示非零向量n 的有向线段所在直线垂直于平面α,那么称向量n 垂直于平面α,记作n ⊥α.此时把向量n 叫做平面α的法向量.2. 线面关系的判定直线l 1的方向向量为e 1=(a 1,b 1,c 1),直线l 2的方向向量为e 2=(a 2,b 2,c 2),平面α的法向量为n 1=(x 1,y 1,z 1),平面β的法向量为n 2=(x 2,y 2,z 2).(1) 如果l 1∥l 2,那么e 1∥e 2⇔e 2=λe 1⇔a 2=λa 1,b 2=λb 1,c 2=λc 1. (2) 如果l 1⊥l 2,那么e 1⊥e 2⇔e 1·e 2=0⇔a 1a 2+b 1b 2+c 1c 2=0. (3) 若l 1∥α,则e 1⊥n 1⇔e 1·n 1=0⇔a 1x 1+b 1y 1+c 1z 1=0. (4) 若l 1⊥α,则e 1∥n 1⇔e 1=k n 1a 1=kx 1,b 1=ky 1,c 1=kz 1. (5) 若α∥β,则n 1∥n 2⇔n 1=k n 2⇔x 1=kx 2,y 1=ky 2,z 1=kz 2. (6) 若α⊥β,则n 1⊥n 2⇔n 1·n 2=0⇔x 1x 2+y 1y 2+z 1z 2=0. 3. 利用空间向量求空间角 (1) 两条异面直线所成的角①范围:两条异面直线所成的角θ的取值范围是⎝⎛⎦⎥⎤0,π2.②向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为φ,则有cos θ=|cos φ|. (2) 直线与平面所成的角①范围:直线和平面所成的角θ的取值范围是⎣⎢⎡⎦⎥⎤0,π2.②向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|(3) 二面角①二面角的取值范围是[0,π].②二面角的向量求法:(ⅰ) 若AB 、CD 分别是二面角α-l-β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图①).(ⅱ) 设n 1、n 2分别是二面角α-l-β的两个面α、β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).题型1 空间向量的基本运算[例1]已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a =AB →,b =AC→. (1) 求a 和b 的夹角θ;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.解:∵A(-2,0,2),B(-1,1,2),C(-3,0,4),a =AB→,b =AC →, ∴a =(1,1,0),b =(-1,0,2).(1)∵cosθ=a·b |a ||b |=-1+0+02×5=-1010,∴a 和b 的夹角为arccos ⎝ ⎛⎭⎪⎫-1010. (2)∵k a +b =k(1,1,0)+(-1,0,2)=(k -1,k ,2),k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ),∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0,解得k =-52或2.题型2 空间中的平行与垂直例2 如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直, AB =2,AF =1,M 是线段EF 的中点.求证:(1) AM ∥平面BDE ;(2) AM ⊥平面BDF.证明:(1) 建立如图所示的空间直角坐标系,设AC ∩BD =N ,连结NE.则N ⎝ ⎛⎭⎪⎫22,22,0,E(0,0,1),A(2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1.∴ NE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM→=⎝ ⎛⎭⎪⎫-22,-22,1.∴ NE →=AM →且NE 与AM 不共线.∴ NE ∥AM.∵ NE Ì平面BDE ,AM Ë平面BDE ,∴ AM ∥平面BDE.(2) 由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1,∵ D(2,0,0),F(2,2,1),∴ DF→=(0,2,1),∴ AM →·DF →=0,∴ AM ⊥DF.同理AM ⊥BF. 又DF ∩BF =F ,∴ AM ⊥平面BDF.题型3 空间的角的计算 例3 (2013·苏锡常镇二模)如图,圆锥的高PO =4,底面半径OB =2,D 为PO 的中点,E 为母线PB 的中点,F 为底面圆周上一点,满足EF ⊥DE.(1) 求异面直线EF 与BD 所成角的余弦值; (2) 求二面角F-OD-E 的正弦值.解:(1) 以O 为原点,底面上过O 点且垂直于OB 的直线为x 轴,OB 所在的线为y 轴,OP 所在的线为z 轴,建立空间直角坐标系,则B(0,2,0),P(0,0,4),D(0,0,2),E(0,1,2).设F(x 0,y 0,0)(x 0>0,y 0>0),且x 20+y 20=4,则EF→=(x 0,y 0-1,-2),DE →=(0,1,0),∵ EF ⊥DE ,即EF →⊥DE →,则EF →·DE →=y 0-1=0,故y 0=1.∴ F(3,1,0),EF →=(3,0,-2),BD→=(0,-2,2). 设异面直线EF 与BD 所成角为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪EF →·BD →|EF →||BD →|=47×22=147. (2) 设平面ODF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥OD →,n 1⊥OF →,即⎩⎪⎨⎪⎧z 1=0,3x 1+y 1=0.令x 1=1,得y 1=-3,平面ODF 的一个法向量为n 1=(1,-3,0).设平面DEF 的法向量为n 2=(x 2,y 2,z 2),同理可得平面DEF 的一个法向量为n 2=⎝⎛⎭⎪⎫1,0,32.设二面角F-OD-E 的平面角为β,则|cos β|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=17=77.∴ sin β=427. (翻折问题)例4. (2013广东韶关第二次调研)如图甲,在平面四边形ABCD 中,已知∠A =45°,∠C =90°,∠ADC =105°,AB =BD ,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC(如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1) 求证: DC ⊥平面ABC ; (2) 求BF 与平面ABC 所成角的正弦值; (3) 求二面角B -EF -A 的余弦值.解:(1) ∵ 平面ABD ⊥平面BDC ,又∵ AB ⊥BD ,∴ AB ⊥平面BDC ,故AB ⊥DC ,又∵ ∠C =90°,∴ DC ⊥BC ,BC ÍABC 平面ABC ,DC Ë平面ABC ,故DC ⊥平面ABC.(2) 如图,以B 为坐标原点,BD 所在的直线为x 轴建立空间直角坐标系如下图示,设CD =a ,则BD =AB =2a ,BC =3a ,AD =22a ,可得B(0,0,0),D(2a ,0,0),A(0,0,2a),C ⎝ ⎛⎭⎪⎫32a ,32a ,0,F(a ,0,a),∴ CD→=⎝ ⎛⎭⎪⎫12a ,-32a ,0,BF →=(a ,0,a).设BF 与平面ABC 所成的角为θ,由(1)知DC ⊥平面ABC ,∴ cos ⎝ ⎛⎭⎪⎫π2-θ=CD →·BF →|CD →|·|BF →|=12a 2a ·2a =24,∴ sin θ=24.(3) 由(2)知 FE ⊥平面ABC, 又∵ BE Ì平面ABC ,AE Ì平面ABC ,∴ FE ⊥BE ,FE ⊥AE ,∴ ∠AEB 为二面角B -EF -A 的平面角 .在△AEB 中,AE =BE =12AC =12AB 2+BC 2=72a ,∴ cos ∠AEB =AE 2+BE 2-AB 22AE ·BE=-17,即所求二面角B -EF -A 的余弦为-17. 课后巩固练习:1.(2013·江苏卷)如图所示,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1) 求异面直线A 1B 与C 1D 所成角的余弦值;(2) 求平面ADC 1与平面ABA 1所成二面角的正弦值.解:(1) 以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B→=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2) 设平面ADC 1的法向量为n 1=(x ,y ,z), 因为AD→=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0), 设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.2. (2013·新课标全国卷Ⅱ)如图所示,直三棱柱ABCA 1B1C 1中,D 、E 分别是AB 、BB 1的中点,AA 1=AC =CB =22AB. (1) 证明:BC 1∥平面A 1CD ;(2) 求二面角DA 1CE 的正弦值.(1) 证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF. 因为DF Ì平面A 1CD ,BC 1Ë平面A 1CD , 所以BC 1∥平面A 1CD.(2) 由AC =CB =22AB 得AC ⊥BC. 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA =2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD→=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 为平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n·m|n||m|=33,故sin 〈n ,m 〉=63.即二面角D-A 1C-E 的正弦值为63.3. (2013·重庆)如图所示,四棱锥PABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB.(1) 求PA 的长;(2) 求二面角B-AF-D 的正弦值. 解:(1) 如图,连结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD.以O 为坐标原点,OB →、OC →、AP →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系Oxyz ,则OC =CDcos π3=1,而AC =4,得AO =AC -OC =3.又OD =CDsin π3=3,故A(0,-3,0),B(3,0,0),C(0,1,0),D(-3,0,0).因为PA ⊥底面ABCD ,可设P(0,-3,z),由F 为PC 边中点,得F ⎝ ⎛⎭⎪⎫0,-1,z 2,又AF →=⎝ ⎛⎭⎪⎫0,2,z 2,PB →=(3,3,-z),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|PA→|=2 3.(2) 由(1)知AD→=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2).由n 1·AD→=0,n 1·AF →=0, 得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB →=0,n 2·AF →=0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B-AF-D 的正弦值为378. 4. (2013·连云港调研)在三棱锥SABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 恰是AC 的中点,侧棱SB 和底面成45°角.(1) 若D 为侧棱SB 上一点,当SDDB为何值时,CD ⊥AB ;(2) 求二面角S-BC-A 的余弦值大小.解:以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系O-xyz.由题意知∠SBO =45°,SO =3.O(0,0,0),C(0,3,0),A(0,-3,0),S(0,0,3),B(3,0,0).(1) 设BD→=λBS →(0≤λ≤1),则OD →=(1+λ)OB →+λOS →=(3(1+λ),0,3λ),所以CD→=(3(1-λ),-3,3λ). 因为AB →=(3,3,0),CD ⊥AB ,所以CD →·AB →=9(1-λ)-3=0,解得λ=23. 故SD DB =12时, CD ⊥AB. (2) 平面ACB 的法向量为n 1=(0,0,1),设平面SBC 的法向量n 2=(x ,y ,z),则n 2·SB →=0,n 2·SC →=0,则⎩⎪⎨⎪⎧3x -3z =0,3y -3z =0,解得⎩⎪⎨⎪⎧x =z ,y =3z ,取n 2=(1,3,1),所以cos 〈n 1,n 2〉=3×0+1×0+1×112+12+(3)2·1=55. 又显然所求二面角的平面角为锐角,故所求二面角的余弦值的大小为55.5. 在直四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2,底面是边长为1的正方形,E 、F 分别是棱B 1B 、DA 的中点.(1) 求二面角D 1-AE-C 的大小;(2) 求证:直线BF ∥平面AD 1E.(1) 解:以D 为坐标原点,DA 、DC 、DD 1分别为x 、y 、z 轴建立空间直角坐标系如图.则相应点的坐标分别为D 1(0,0,2),A(1,0,0),C(0,1,0),E(1,1,1),∴ED1→=(0,0,2)-(1,1,1)=(-1,-1,1), AE→=(1,1,1)-(1,0,0)=(0,1,1), AC→=(0,1,0)-(1,0,0)=(-1,1,0). 设平面AED 1、平面AEC 的法向量分别为m =(a ,b ,1),n =(c ,d ,1).由⎩⎪⎨⎪⎧ED 1→·m =0,AE →·m =0Þ⎩⎨⎧-a -b +1=0,b +1=0Þ⎩⎨⎧a =2,b =-1,由⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0Þ⎩⎨⎧-c +d =0,d +1=0Þ⎩⎨⎧c =-1,d =-1,∴m =(2,-1,1),n =(-1,-1,1),∴cos m ,n =m·n|m |·|n |=-2+1+16×3=0,∴二面角D 1AEC 的大小为90°.(2) 证明:取DD 1的中点G ,连结GB 、GF.∵E 、F 分别是棱BB1、AD 的中点,∴GF ∥AD 1,BE ∥D 1G 且BE =D 1G ,∴四边形BED 1G 为平行四边形,∴D 1E ∥BG .又D 1E 、D 1A Ì平面AD 1E ,BG 、GF 平面AD 1E , ∴BG ∥平面AD 1E ,GF ∥平面AD 1E.∵GF 、GB Ì平面BGF ,∴平面BGF ∥平面AD 1E. ∵BF 平面AD 1E ,∴直线BF ∥平面AD 1E.(或者:建立空间直角坐标系,用空间向量来证明直线BF ∥平面AD 1E ,亦可) 6. (2013·苏州调研)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,A 1A =3.D 是BC 的中点.(1) 求直线DB 1与平面A 1C 1D 所成角的正弦值; (2) 求二面角B 1-A 1D-C 1的正弦值.解:(1) 由题意,A(0,0,0),B(2,0,0),C(0,4,0),D(1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3).A 1D →=(1,2,-3),A 1C 1→=(0,4,0).设平面A 1C 1D 的一个法向量为n =(x ,y ,z).∵ n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0.∴ x =3z ,y =0.令z =1,得x =3.n =(3,0,1).设直线DB 1与平面A 1C 1D 所成角为θ,∵ DB 1→=(1,-2,3),∴ sin θ=|cos 〈DB 1→·n 〉|=3×1+0×(-2)+1×310×14=33535.(2) 设平面A 1B 1D 的一个法向量为m =(a ,b ,c). A 1B 1→=(2,0,0),∵ m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0,∴ a =0,2b =3c.令c =2,得b =3.m =(0,3,2). 设二面角B 1A 1DC 1的大小为α,∴ |cos α|=cos|〈m ,n 〉|=|m·n||m|·|m|=|0×3+3×0+2×1|13×10=265,则sin α=3765=345565. ∴ 二面角B 1A 1DC 1的正弦值为345565.7. (2013·南通二模)如图,在三棱柱ABCA 1B 1C 1中,A 1B ⊥平面ABC ,AB ⊥AC ,且AB =AC =A 1B =2.(1) 求棱AA 1与BC 所成的角的大小; (2) 在棱B 1C 1上确定一点P ,使二面角P -AB -A 1的平面角的余弦值为255. 解:(1) 如图,以A 为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A 1(0,2,2),B 1(0,4,2),AA 1→=(0,2,2),BC →=B 1C 1→=(2,-2,0).cos〈AA 1→,BC →〉=AA 1→·BC →|AA 1→|·|BC →|=-48·8=-12,故AA 1与棱BC 所成的角是π3.(2) P 为棱B 1C 1中点,设B 1P →=λB 1C 1→=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB 的法向量为n 1=(x ,y ,z),AP→=(2λ,4-2λ,2), 则⎩⎪⎨⎪⎧n 1·AP→=0,n 1·AB →=0.⎩⎨⎧λx +2y -λy +z =0,2y =0.⎩⎨⎧z =-λx ,y =0.故n 1=(1,0,-λ),而平面ABA 1的法向量是n 2=(1,0,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=11+λ2=255,解得λ=12,即P 为棱B 1C 1中点,其坐标为P(1,3,2).近六年高考题1. 【2010高考北京理第16题】(14分)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,CE ⊥AC ,EF ∥AC ,AB=CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE ;(3)求二面角A-BE-D 的大小.【答案】设AC 与BD 交与点G 。

初中数学解题技巧解决平面坐标系中的几何问题

初中数学解题技巧解决平面坐标系中的几何问题

初中数学解题技巧解决平面坐标系中的几何问题平面几何作为初中数学的重要内容之一,常常涉及到平面坐标系的运用和几何问题的解决。

在学习过程中,我们可以运用一些解题技巧来更好地应对这些问题。

本文将介绍一些初中数学解题技巧,帮助同学们解决平面坐标系中的几何问题。

一、了解平面坐标系基础知识在解决平面坐标系中的几何问题之前,我们首先需要了解平面坐标系的基础知识。

平面坐标系由x轴和y轴组成,原点为(0, 0)。

我们可以通过平面直角坐标系来表示点的位置,并求解两点之间的距离、直线方程等问题。

熟练掌握平面坐标系的基础知识,是解决几何问题的基础。

二、利用对称性简化问题在解决平面坐标系中的几何问题时,我们可以利用对称性来简化问题。

例如,如果题目中给出的图形具有对称轴,我们可以利用对称性来缩小解题范围。

通过找出对称轴,我们可以发现一些对称点之间的特殊关系,从而简化问题的分析过程。

三、确定图形属性,转化为坐标运算在解决平面坐标系中的几何问题时,我们需要确定图形的属性,并将其转化为坐标运算进行求解。

例如,如果题目中给出了一个三角形,我们可以通过求解三个顶点的坐标,进而求解三角形的边长、周长和面积等问题。

通过将几何问题转化为坐标运算,可以帮助我们更清晰地理解问题,并得出准确的解答。

四、利用平移和旋转简化问题平移和旋转是解决平面坐标系中的几何问题时常用的技巧。

平移可以将图形的位置进行调整,从而使问题的求解更加便利。

旋转可以改变图形的朝向,帮助我们研究图形的性质。

通过灵活运用平移和旋转,我们可以简化问题的分析过程,达到事半功倍的效果。

五、利用代数方程求解在解决平面坐标系中的几何问题时,我们可以运用代数方程的方法进行求解。

通过设定变量和建立方程组,我们可以通过求解方程组来获得几何问题的解答。

例如,如果题目中给出了一个圆与直线的交点问题,我们可以建立圆的方程和直线的方程,并通过求解方程组来求解交点的坐标。

代数方程法是一种常用的解决平面坐标系几何问题的方法,同学们可以尝试掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学重难点专题讲座第七讲 坐标系中的几何问题【前言】前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。

但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。

所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。

此类问题也是失分最高的,往往起到拉开分数档次的关键作用。

作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。

此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。

第一部分 真题精讲【例1】2010,石景山,一模已知:如图1,等边ABC ∆的边长为x轴上且()10A ,AC 交y 轴于点E ,过点E 作EF ∥AB 交BC 于点F .(1)直接写出点B C 、的坐标;(2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值;(3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段OB 上运动时,现给出两个结论:① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.图2图1【思路分析】 很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。

在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。

第一问不难,C 点纵坐标直接用tg60°来算,七分中的两分就到手了。

第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。

由于EFAB 还是一个等腰梯形,所以对角线交点非常好算,四分到手。

最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。

抛物线倒是好求,因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D 做一条垂线就发现图中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。

至此,一道看起来很难的压轴大题的7分就成功落入囊中了。

【解析】解:(1)()10B ;()13C ,. (2)过点C 作CP AB ⊥于P ,交EF 于点Q ,取PQ 的中点R . ∵ABC ∆是等边三角形,()10A . ∴60EAO ∠=︒ .在Rt EOA ∆中,90EOA ∠=︒.∴(tan 6013EO AO =⋅︒=-∴(0,3E .∵EF ∥AB 交BC 于F ,()13C ,.∴1R ⎛ ⎝⎭. (就是四边形对角线的中点,横坐标自然和C 一样,纵坐标就是E 的纵坐标的一半)∵直线1y kx =-将四边形EABF 的面积两等分.∴直线1y kx =-必过点1R ⎛ ⎝⎭.∴1k -=,∴k(3)正确结论:①GNM CDM ∠=∠.证明:可求得过A B C 、、的抛物线解析式为222y x x =-++ ∴()02D ,. ∵()20G -,. ∴OG OD =.由题意90GON DOM ∠=∠=︒. 又∵GNO DNH ∠=∠ ∴NGO MDO ∠=∠ ∴NGO ∆≌MDO ∆∴GNO DMO ∠=∠,OM ON = ∴45ONM NMO ∠=∠=︒ 过点D 作DT CP ⊥于T ∴1DT CT == ∴45CDT DCT ∠=∠=︒ 由题意可知DT ∥AB ∴TDM DMO ∠=∠∴454545TDM DMO GNO ∠+︒=∠+︒=∠+︒ ∴TDM CDT GNO ONM ∠+∠=∠+∠即:GNM CDM ∠=∠. (这一问点多图杂,不行就直接另起一个没有抛物线干扰的图)GPNM HTD C BA O xy【例2】2010,怀柔,一模如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x正半轴交于点A,与y轴交于点B,过点B 作x 轴的平行线BC,交抛物线于点C,连结AC .现有两动点P 、Q 分别从O 、C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC,PQ 相交于点D,过点D 作DE ∥OA,交CA 于点E,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t(单位:秒)(1)求A,B,C 三点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形请写出计算过程;(3)当0<t <92时,△PQF 的面积是否总为定值若是,求出此定值,若不是,请说明理由;(4)当t _________时,△PQF 为等腰三角形【思路分析】近年来这种问动点运动到何处时图像变成特殊图形的题目非常流行,所以大家需要对各种特殊图形的判定性质非常熟悉。

本题一样一步步拆开来做,第一问送分,给出的抛物线表达式很好因式分解。

注意平行于X 轴的直线交抛物线的两个点一定是关于对称轴对称的。

第二问就在于当四边形PQCA 为平行四边形的时候题中已知条件有何关系。

在运动中,QC 和PA 始终是平行的,根据平行四边形的判定性质,只要QC=PA 时候即可。

第三问求△PQF 是否为定值,因为三角形的一条高就是Q 到X 轴的距离,而运动中这个距离是固定的,所以只需看PF 是否为定值即可。

根据相似三角形建立比例关系发现OP=AF ,得解。

第四问因为已经知道PF 为一个定值,所以只需PQ=PF=18即可,P 点(4t,0)Q (8-t,-10),F(18+4t,0)两点间距离公式分类讨论即可.本道题是09年黄冈原题,第四问原本是作为解答题来出的本来是3分,但是本题作为1分的填空,考生只要大概猜出应该是FP=FQ 就可以。

实际考试中如果碰到这么麻烦的,如果没时间的话笔者个人建议放弃这一分去检查其他的.毕竟得到这一分的时间都可以把选择填空仔细过一遍了.【解析】解:(1) 21(8180)18y x x =--,令0y =得281800x x --=,()()18100x x -+= ∴18x =或10x =-∴(18,0)A ;在21410189y x x =--中,令0x =得10y =即(0,10)B -; 由于BC ∥OA ,故点C 的纵坐标为-10,由2141010189x x -=--得8x =或0x = 即(8,10)C -于是,(18,0),(0,10),(8,10)A B C --(2)若四边形PQCA 为平行四边形,由于QC ∥PA.故只要QC=PA 即可 ∵184,PA t CQ t =-= ∴184t t -= 得185t =(3)设点P 运动t 秒,则4,OP t CQ t ==,0 4.5t <<,说明P 在线段OA 上,且不与点O 、A 重合,由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t === ∴4AF t OP ==∴18PF PA AF PA OP =+=+= 又点Q 到直线PF 的距离10d =∴1118109022PQF S PF d ∆==⨯⨯=g g∴△PQF 的面积总为90(4)由上知,(4,0),(184,0),(8,10)P t F t Q t +--,0 4.5t <<。

构造直角三角形后易得2222(48)10(58)100PQ t t t =-++=-+,2222(1848)10(510)100FO t t t =+-++=++若FP=PQ ,即2218(58)100t =-+,故225(2)224t +=,∵22 6.5t +≤≤∴25t +==∴2t =若QP=QF ,即22(58)100(510)100t t -+=++,无0 4.5t ≤≤的t 满足条件;……………12′若PQ=PF ,即22(58)10018t -+=,得2(58)224t -=,∴ 4.5t =>或0t =<都不满足0 4.5t ≤≤,故无0 4.5t ≤≤的t 满足方程;综上所述:当25t =-时,△PQR 是等腰三角形。

【例3】2010,延庆,一模如图,已知抛物线1C :()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(2)如图(1),抛物线2C 与抛物线1C 关于x 轴对称,将抛物线2C 向右平移,平移后的抛物线记为3C ,3C 的顶点为M ,当点P 、M 关于点B 成中心对称时,求3C 的解析式;(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线1C 绕点Q 旋转180︒后得到抛物线4C .抛物线4C 的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.【思路分析】出题人比较仁慈,上来就直接给出抛物线顶点式,再将B (1,0)代入,第一问轻松拿分。

第二问直接求出M 坐标,然后设顶点式,继续代入点B 即可。

第三问则需要设出N ,然后分别将NP ,PF,NF 三个线段的距离表示出来,然后切记分情况讨论直角的可能性。

计算量比较大,务必细心。

【解析】解:⑴由抛物线1C :()225y a x =+-得 顶点P 的为(25)--,∵点(10),B 在抛物线1C 上 ∴ ()20125a =+-解得,59a =⑵连接PM ,作⊥PH x 轴于H ,作⊥MG x 轴于G ∵点P 、M 关于点B 成中心对称 ∴PM 过点B ,且=PB MB ∴PBH MBG △≌△∴5==MG PH ,3==BG BH∴顶点M 的坐标为(45),(标准答案如此,其实没这么麻烦,点M 到B 的横纵坐标之差都等于B 到P 的,直接可以得出(4,5))抛物线2C 由1C 关于x 轴对称得到,抛物线3C 由2C 平移得到 ∴抛物线3C 的表达式为()25459y x =--+ ⑶∵抛物线4C 由1C 绕点x 轴上的点Q 旋转180︒得到 ∴顶点N 、P 关于点Q 成中心对称 由⑵得点N 的纵坐标为5 设点N 坐标为(5),m 作⊥PH x 轴于H ,作⊥NG x 轴于G 作⊥PK NG 于K ∵旋转中心Q 在x 轴上 ∴26===EF AB BH∴3=FG ,点F 坐标为(30)+,m H 坐标为(20),,K 坐标为(5)-,m , 根据勾股定理得22224104PN NK PK m m =+=++22221050PF PH HF m m =+=++ 2225334NF =+=①当90∠=︒PNF 时,222PN NF PF +=,解得443m =,∴Q 点坐标为19(0)3,②当90∠=︒PFN 时,222PF NF PN +=,解得103m =,∴Q 点坐标为2(0)3,③∵10>=>PN NK NF ,∴90NPF ∠︒≠综上所得,当Q 点坐标为19(0)3,或2(0)3,时,以点P 、N 、F 为顶点 的三角形是直角三角形.【例4】2010,房山,一模如图,在平面直角坐标系xOy 中,直线l1:y =+交x 轴、y 轴于A 、B 两点,点(),M m n 是线段AB 上一动点,点C 是线段OA 的三等分点.(1)求点C 的坐标;(2)连接CM ,将ACM △绕点M 旋转180︒,得到''A C M △. ①当12BM AM =时,连结'A C 、'AC ,若过原点O 的直线2l 将四边形''A CAC 分成面积相等的两个四边形,确定此直线的解析式;②过点'A 作'A H x ⊥轴于H ,当点M 的坐标为何值时,由点'A 、H 、C 、M 构成的四边形为梯形【思路分析】本题计算方面不是很繁琐,但是对图形的构造能力提出了要求,也是一道比较典型的动点移动导致特殊图形出现的题目。

相关文档
最新文档