《代数式》教案 (公开课)2022年2

合集下载

代数式(公开课)教案

代数式(公开课)教案

代数式(公开课)教案一、教学目标知识与技能:1. 理解代数式的概念,掌握代数式的表示方法。

2. 掌握代数式的运算规则,能够进行简单的代数式运算。

3. 能够运用代数式解决实际问题。

过程与方法:1. 通过观察、分析、归纳等方法,引导学生理解代数式的概念和表示方法。

2. 利用group work,pr work 等合作学习方式,培养学生的团队协作能力和沟通能力。

3. 运用问题驱动的教学方法,引导学生主动探究代数式的运算规则,提高学生的自主学习能力。

情感态度价值观:1. 培养学生对数学学科的兴趣和好奇心,激发学生的学习积极性。

2. 培养学生勇于探究、严谨治学的科学态度。

3. 培养学生团队协作、沟通交流的能力,提高学生的综合素质。

二、教学内容1. 代数式的概念与表示方法数与字母的组合代数式的基本元素:数字、字母、运算符代数式的书写规则:字母的大小写、数字与字母的连接、运算符的优先级2. 代数式的运算规则加减乘除运算:同号相乘、异号相除幂的运算:乘方、幂的乘方、积的乘方合并同类项:同类项的定义、合并同类项的方法三、教学重点与难点重点:1. 代数式的概念与表示方法2. 代数式的运算规则难点:1. 代数式的运算规则2. 运用代数式解决实际问题四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究代数式的概念、表示方法和运算规则。

2. 利用多媒体课件、实物模型等教学资源,直观展示代数式的运算过程,提高学生的理解能力。

3. 采用group work,pr work 等合作学习方式,培养学生的团队协作能力和沟通能力。

4. 设计具有梯度的练习题,让学生在实践中巩固所学知识,提高学生的应用能力。

五、教学过程1. 导入新课:通过生活中的实际问题,引导学生思考如何用数学语言来表示问题中的数量关系。

2. 讲解代数式的概念与表示方法:介绍代数式的定义、基本元素和书写规则。

3. 探究代数式的运算规则:引导学生通过观察、分析、归纳等方法,总结代数式的运算规则。

最新版初中数学教案《代数式 )》精品教案(2022年创作)

最新版初中数学教案《代数式 )》精品教案(2022年创作)

2 代数式第1课时代数式【知识与技能】理解代数式,能解释一些简单代数式的实际背景或几何意义.【过程与方法】经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,开展运用符号解决问题和数学探究意识.【情感态度】在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心,开展学生创新精神.【教学重点】列代数式.【教学难点】理解具体代数式的意义,能用代数式表示简单的数量关系.一、情境导入,初步认识在上节内容中出现过的4+3〔x – 1〕,x+x+〔x+1〕,m – 1,3v,2a+10,1an,st,6〔a– 1〕2等式子,有什么共同的特征?【教学说明】学生通过观察、分析与同伴进行交流,找出它们的共同特征.二、思考探究,获取新知1.代数式的概念问题1 什么样的式子是代数式?【教学说明】学生在导入里已经找到这些式子的共同特征,教师应加以标准.【归纳结论】用运算符号把数和字母连接而成的,像这样的式子叫做代数式.注意:单独一个数或一个字母也是代数式.问题2 列代数式.〔1〕某公园的门票价格是:成人票每张10元,学生票每张5元.一个旅游团有成人x人、学生y人,那么该旅游团应付多少门票费?【教学说明】学生通过分析,与同伴交流,正确地列出代数式,让学生初步感受怎样列代数式.【归纳结论】列代数式就是把实际问题中的数量关系用代数式表示出来.问题3 代数式10x+5y还可以表示什么?【教学说明】学生通过讨论、交流,能准确地理解并掌握代数式的意义.【归纳结论】同一个代数式可以表示不同的意义.三、运用新知,深化理解1.教材第82页“随堂练习〞第1题.2.教材第82页“随堂练习〞第2题.“随堂练习〞第3题.【教学说明】学生自主完成,加深对新学知识的理解,检测对代数式知识的掌握情况,对学生疑惑,教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业局部.答案:1.假设买一千克苹果需p元,那么6p表示买6千克苹果需6p元.2.〔1〕10b+a〔2〕假设一个三位数的个位数字是a,十位数字是b,百位数字是c,那么这个三位数可表示为100c+10b+a.3.〔1〕假设x表示某厂2021年的利润,2021年利润比2021年增长8%,那么〔1+8%〕x表示该厂2021年的利润.〔2〕假设x=100万元,那么〔1+8%〕×100=108(万元),它表示该厂2021年的利润为108万元.四、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回忆本节课所学的知识,让学生大胆发言,加深对新学知识的理解.【板书设计】1.布置作业:从教材“习题3.2〞中选取.2.完成练习册中本课时的相应作业.本节课从学生了解代数式的概念,到列代数式,培养学生爱思考,爱学习的习惯,让学生学会运用所学知识解决实际问题,提高解决问题的能力.圆周角教学目标(1)通过本节的教学使学生理解圆周角的概念,掌握圆周角的性质;(2)准确地运用圆周角性质进行简单的证明计算。

《代数式》教案设计

《代数式》教案设计

《代数式》教案设计•相关推荐《代数式》教案设计(通用12篇)作为一位优秀的人民教师,有必要进行细致的教案准备工作,教案是教学活动的依据,有着重要的地位。

我们该怎么去写教案呢?下面是小编为大家整理的《代数式》教案设计,仅供参考,希望能够帮助到大家。

《代数式》教案设计篇1教学目标1、使学生能把简单的与数量有关的词语用代数式表示出来;2、初步培养学生观察、分析和抽象思维的能力教学重点和难点重点:把实际问题中的数量关系列成代数式?难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式教学手段现代课堂教学手段教学方法启发式教学教学过程(一)、从学生原有的认知结构提出问题1、用代数式表示乙数:(投影)(1)乙数比x大5;(x+5)(2)乙数比x的2倍小3;(2x-3)(3)乙数比x的倒数小7;(-7)(4)乙数比x大16%?((1+16%)x)(应用引导的方法启发学生解答本题)2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?(二)、讲授新课例1用代数式表示乙数:(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?解:设甲数为x,则乙数的代数式为(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?(本题应由学生口答,教师板书完成)最后,教师需指出:第4小题的答案也可写成x+16%x?例2用代数式表示:(1)甲乙两数和的2倍;(2)甲数的与乙数的的差;(3)甲乙两数的平方和;(4)甲乙两数的和与甲乙两数的差的积;(5)乙甲两数之和与乙甲两数的差的积?分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?解:设甲数为a,乙数为b,则(1)2(a+b);(2)a-b;(3)a2+b2;(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?(本题应由学生口答,教师板书完成)此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?例3用代数式表示:(1)被3整除得n的数;(2)被5除商m余2的数?分析本题时,可提出以下问题:(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n 的数如何表示?(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?解:(1)3n;(2)5m+2?(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?例4设字母a表示一个数,用代数式表示:(1)这个数与5的和的3倍;(2)这个数与1的差的;(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和?分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?) 例5设教室里座位的行数是m,用代数式表示:(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?分析本题时,可提出如下问题:(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)解:(1)m(m+6)个;(2)(m)m个?(三)、课堂练习1?设甲数为x,乙数为y,用代数式表示:(投影)(1)甲数的'2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?2?用代数式表示:(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?3?用代数式表示:(1)与a-1的和是25的数;(2)与2b+1的积是9的数;(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕(四)、师生共同小结首先,请学生回答:1?怎样列代数式?2?列代数式的关键是什么?其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握练习设计1、用代数式表示:(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?2、已知一个长方形的周长是24厘米,一边是a厘米,求:(1)这个长方形另一边的长;(2)这个长方形的面积?板书设计§3.2代数式(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计教学后记由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础?同时,也使学生的抽象思维能力得到初的培养。

代数式(公开课)教案

代数式(公开课)教案

代数式(公开课)教案一、教学目标知识与技能:1. 理解代数式的概念,掌握代数式的表示方法和基本性质。

2. 学会使用代数式进行简单的运算和求解。

过程与方法:1. 通过实例引入代数式,培养学生的抽象思维能力。

2. 借助数形结合的思想,引导学生理解代数式的几何意义。

情感态度与价值观:1. 激发学生对代数式的兴趣,培养学生的探究精神。

2. 感受数学与实际生活的联系,提高学生运用数学解决问题的能力。

二、教学内容第一课时:代数式的概念与表示方法1. 导入:通过实际问题引入代数式,例如“已知苹果的重量为x千克,香蕉的重量为y千克,求苹果和香蕉的总重量”。

2. 讲解代数式的概念,引导学生理解代数式是表示数量关系的数学表达式。

3. 介绍代数式的表示方法,如字母表示数、数表示字母等。

第二课时:代数式的基本性质1. 导入:通过具体例子,让学生感受代数式的基本性质。

2. 讲解代数式的四则运算规则,如加减乘除等。

3. 引导学生掌握代数式的化简、因式分解等基本运算技巧。

第三课时:代数式的应用1. 导入:通过实际问题,让学生运用代数式解决问题。

2. 讲解代数式在实际生活中的应用,如购物、测量等。

3. 引导学生进行代数式的求解,培养学生的解决问题的能力。

第四课时:代数式的几何意义1. 导入:通过图形,引导学生理解代数式的几何意义。

2. 讲解代数式与图形之间的关系,如直线方程、圆的方程等。

3. 引导学生运用代数式解决几何问题,提高学生的数形结合能力。

第五课时:代数式的综合练习1. 导入:通过综合练习题,让学生巩固所学知识。

2. 讲解练习题的解题思路和方法。

3. 引导学生独立完成练习题,培养学生的解题能力。

三、教学策略1. 采用问题驱动的教学方法,引导学生通过实际问题理解和掌握代数式。

2. 利用数形结合的思想,让学生感受代数式的几何意义。

3. 设计丰富的练习题,让学生在实践中提高解题能力。

四、教学评价1. 课堂问答:通过提问,检查学生对代数式概念和表示方法的理解。

最新版初中数学教案《代数式 2》精品教案(2022年创作)

最新版初中数学教案《代数式 2》精品教案(2022年创作)

5.2 代数式第2课时教学目标1.能用文字语言表达代数式,并能解释一些简单代数式的实际背景或几何意义.2.通过丰富的实例使学生经历从语言表到达代数表示,从代数表示到语言表达的双向过程.体会数与符号是刻画现实世界数量关系的重要工具.教学重难点【教学重点】用文字语言表达代数式并解释一些简单代数式的实际背景.【教学难点】用文字语言表达代数式并解释一些简单代数式的实际背景.课前准备课件教学过程一、课前预习1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长2张强比王华大3岁,当张强a岁时,王华的年龄是多少?3a千克大米的售价是6元,1千克大米售多少元?4圆的半径是R厘米,它的面积是多少?5用代数式表示:(1)长为a,宽为b米的长方形的周长;(2)宽为b米,长是宽的2倍的长方形的周长;(3)长是a米,宽是长的 1/2的长方形的周长;(4)宽为b米,长比宽多2米的长方形的周长.二、课内探究探究一:例1 将以下代数式用文字语言表示:(1) 2a+3; (2)2(a+3);(3)a-b;(4)a2+b2; (5)(a+b) 2点拨:〔1〕读的顺序要根据运算的顺序来决定,一般“先算先读〞.〔2〕以简明而不致引起误会为出发点.小组讨论: 用文字语言表达代数式a2—b2与(a—b) 2探究二:例2 请对代数式a+2的实际意义作出解释.〔要求生多思考,想出更多的解释〕〔三〕有效训练1、用语言表达以下代数式的意义.〔1〕苹果每千克的价格是x 元,x 21可以表示 . 〔2〕62a 可以表示 .〔3〕可以表示25y x . 2、顺次大1的整数,叫连续整数.三个连续整数中.假设最大的一个数为m ,那么其它两个数分别是 ;假设中间一个数是n ,那么其它两个数分别是 .3、结合两个不同的情景,解释代数式ab 的意义.〔四〕小结反思:〔五〕达标检测1、指出以下各题中,两个代数式的不同〔1〕与〔2〕与 〔3〕与 〔4〕 与 2、用语言表达代数式 ,表达不正确的选项是〔 〕A 、x 分之一加上4B 、x 的倒数与4的和C 、1除以x 的商与4的和D 、x 与4的和的倒数3、代数式3a-2b 可以表示的实际意义是什么?三、课后拓展课本116页 探索与创新 第8题.学习目标1、掌握有理数的混合运算2、能熟练地进行有理数的加、减、乘、除乘方的混合运算。

《代数式》word教案 (公开课)2022年北师大版 (2)

《代数式》word教案 (公开课)2022年北师大版 (2)

课题代数式教学目标理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值.2.通过创设实际背景和引用符号,经历观察、体验、验算、猜测、归纳等数学过程,体会数学与现实世界的联系,增强符号感,开展运用符号解决问题和数学探究意识.3.在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心。

教材分析重点列代数式。

难点正确列出代数式表示现实问题中的数量关系;从不同的角度给代数式赋予实际意义。

教具电脑、投影仪教学过程一、旧知归纳,直奔主题学生在通过上一节知识的回忆,知道像4+3〔x-1〕,x+x+〔x-1〕,a+b,ab,2〔m+n〕,ts,a3 ……滲透了把实际问题抽象成数学问题的一般思想方法.讲解教材中的例1 列代数式,并求值.二、创设背景,理解概念承接上面的例子,继续提出问题:前面10x+5y表示的是x个成人、y个学生进公园的门票费,那么它还可以表示什么呢?请大家想一想后,写出一种或两种表示的内容.根据讨论结果,共同归纳:字母可以表示任何数,或者任何一个量,“10x+5y〞可以赋于很多的实际的意义。

课时教案字母表示数【学习目标】课标要求:1.能用字母和代数式表示以前学过的运算律和计算公式。

2.体会字母表示数的意义,形成初步的符号感。

3. 经历探索规律并用代数式表示规律的过程。

目标达成:理解用字母表示数的意义。

学习流程:【课前展示】出示小题【创境激趣】提供便于学生感受需要使用一般性符号表达事物的实例。

如:“一支青蛙一张嘴,两支眼睛四条腿……〞,让学生想方法用一句歌词将它唱完整。

【自学导航】请同学们认真看题,利用图形解答以下问题〔利用电脑或投影仪〕问题〔一〕【合作探究】搭一个正方形需要4根火柴棒。

①按上述方式,搭2个正方形需要______根火柴棒,搭3个正方形需要______根火柴棒。

②搭10个这样的正方形需要多少根火柴棒?③搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?待学生解答完以上问题后,出示引申题:④如果用X表示所搭正方形的个数,那么搭X个这样的正方形需要多少根火柴棒?与同学交流?【展示提升】典例分析知识迁移提供教材上的实例,师生共同活动。

《代数式》word教案 (同课异构)2022年浙教版 (2)

《代数式》word教案 (同课异构)2022年浙教版 (2)

4.2代数式教学目标 1、在具体情境中让学生观察、分析归纳得出代数式的概念。

理解代数式的意义。

2、能根据代数式和具体问题说出一个代数式表示的数量关系。

,并能解释代数式的实际背景或几何意义,开展符号感4使学生初步认识数学与人类的密切关系,体验数学活动充满着探索与创造。

教学重点理解代数式的意义,会正确书写代数式。

教学难点用代数式表示数量关系。

教学方法教学用具多媒体教学过程集体备课稿个案补充一合作学习售票处成人票价 10元小孩票价 5元1)成人 2 名,小孩 3 名,购置门票应付多少元?2)成人 x 名,小孩 y 名,购置门票应付多少元?2.小芳三分钟能打m个汉字,平均每分钟打_____个;小丽每分钟能打n个汉字,小芳和小丽两人一小时共打___________________个;3、日平均气温是指一天中2:00,8:00,14:00,20:00四个时刻气温的平均值,假设上述四个时刻的摄氏度数分别为a、b、c、d,那么日平均气温的摄氏度数是4、一隧道长a米,一列火车长180米,如果该列火车穿过隧道所花的时间为t分,那么列车的速度为二新课展开像10x+5y,,, , a 这样含有字母的数学表达式称为代数式1、一个代数式由什么组成呢?数、表示数的字母和运算符号2、单独的一个数或者一个字母也称代数式。

3,做一做在x,1,x -2,s=ab, v=sh中代数式的个数是( )A. 5B. 4C. 3D. 24例1 用代数式表示:⑴ x的3倍与3的差;⑵ x的2倍与y的的和⑶ a与b的和的平方;⑷ a与b的平方的和;⑸ a、b两数的平方和;⑹比a除以b小2的数⑺ 2a的立方根5练一练:1、用代数式表示“a与-2的差的3倍〞,正确的选项是( )A.a-2B. 3[a-〔-2〕]C.a-〔-2〕×3D.3(a-2〕2、说出以下代数式的意义:⑴ 2a-b ⑵ 2(a-b) ⑶ a-2b6.例2 一辆汽车以80千米/小时的速度行驶,从A城到B城需t小时,如果该车的行驶速度增加v千米/小时,那么从A城到B城需多少时间?解:由题意得,A,B两城之间的路程为80t千米,如果该车的行驶速度增加v千米/小时,那么汽车的速度为(80+v)千米/小时,此时从A城到B城需答:当该车行驶速度增加v千米/小时,从A城到B城需小时。

2022年初中数学精品教案《代数式》公开课专用

2022年初中数学精品教案《代数式》公开课专用

代数式第1课时代数式教学目标【知识与技能】进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式的意义,能解释一些简单代数式的实际背景或几何意义.【过程与方法】通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,发展运用符号解决问题和数学探究意识.【情感态度价值观】在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心,发展学生创新精神.教学重难点【教学重点】列代数式【教学难点】解释代数式的实际背景或几何意义.课前准备课件教学过程一、情境导入,初步认识青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?1.思考:(1)若正方形的边长为a,则正方形的面积是,体积是.(2)设n表示一个数,则它的相反数是;(3)铅笔的单价是x元,钢笔的单价是铅笔单价的倍,则钢笔的单价是元.(4)一辆汽车的速度是v千米/时,行驶t小时所走过的路程为千米.2.观察所列代数式包含哪些运算,有何共同的运算特征.像4a,3a,-n,x,vt,3v, 2a+10,1an,st,6(a-1)2等式子,有什么共同的特征?二、思考探究,获取新知1.代数式的概念(1)问题:什么样的式子是代数式?定义:用运算符号把数和字母连接而成的式子叫作代数式.单独一个数或一个字母也是代数式.注意:运算符号指加、减、乘、除、乘方等.(2)代数式的判断判断一个式子是不是代数式:①看它是否符合代数式的定义;②代数式中不能含有“=”,“≠”,“<”,“>”,“≤”,“≥”等关系符号.【例1】下列各式中,哪些是代数式,哪些不是代数式:(1)a +b =5;(2)5a -3y ;(3)2;(4)n ;(5)2(a +b )+7;(6)4a b +c;(7)2+7-6;(8)23;(9)x +5>3. 分析:代数式是用运算符号(加、减、乘、除、乘方等)把数和字母连接而成的式子;而用“=”,“≠”,“<”,“>”,“≤”,“≥”等关系符号连接而成的式子都不是代数式.解:(2),(3),(4),(5),(6),(7),(8)是代数式,而(1),(9)不是代数式.2.代数式的书写规则(1)含有乘法运算的代数式的书写规则①字母与字母相乘,乘号一般省略不写,字母的排列顺序一般按字母表的顺序.如a ×b 写成ab .②数与字母相乘,乘号一般也省略不写,但数一定要写在字母的前面,而且当数是带分数时一定要化为假分数.如a ×8要写成8a ,不要写为a 8;513×m 要写为163m ,不要写成513m . 切记,数字与数字相乘,不能省略乘号,如6×5不能写成65.③带括号的式子与字母的地位相同.如a ×(b -3)可以写为a (b -3),也可以写成(b -3)a ;(m -1)×2可写为2(m -1),但不要写成(m -1)2.(2)含有除法运算的代数式的书写规则当代数式中含有除法运算时,一般不用“÷”号,而改用分数线.如x 与y 的商一般写为x y,而不写成x ÷y ;因为分数线具有括号的作用,所以分数线又称括线.如m 与n 的和除以2的商可以列为m +n 2,而不要列为(m +n )2. (3)含有单位名称的代数式的书写规则①若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位,如甲的身高为x cm ,乙比甲矮6 cm ,那么乙的身高应写成(x -6)cm ,而不能写成x -6 cm.②若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可.如10p 千米,a -2b 5千克等. 【例2】下列各式中符合代数式书写要求的个数为( ).①514x 2y ②y ×3 ③ab ÷2 ④a 2-b 6A .4B .3C .2D .1解析:根据代数式的书写要求,不能出现带分数,故①不符合;数字与字母相乘时,乘号省略或用“·”表示,并且数字在前,故②不符合;代数式中不能出现除号,故③不符合.答案:D3.列代数式和代数式表示的意义问题:列代数式,并求值.(1)某公园的门票价格是:成人票每张10元,学生票每张5元.一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?问题3 代数式10x+5y 还可以表示什么?式子意义:x 的10倍与y 的5倍的和.实际意义:(1)如果用x 表示小明跑步的速度,用y 表示小明走路的速度,则10x+5y 表示他跑步10秒和走路5秒所经历的路程;(2)如果用x 和y 分别表示1元和5角硬币的枚数,则10x+5y 就表示x 枚1元硬币和y 枚5角硬币共是多少角钱?【归纳结论】列代数式就是把实际问题中的数量关系用代数式表示出来.用具体数值代替数式中的字母,就可以求出代数式的值.同一个代数式可以表示不同的意义.例3:用代数式表示:(1)x 与2的平方和;(2)x 与2的和的平方;(3)x 的平方与2的和;(4)x 与2的平方的和.解析:这四个小题,都有关键词“平方”和“和”,但这两个词在四个小题中的语序不一样.(1)中是先平方再求和,即x 2+22;(2)中是先求和再平方,即(x +2)2;(3)中是先x 的平方再求和,即x 2+2;(4)中是先2的平方再求和,即x +22.解:(1)x 2+4;(2)(x +2)2;(3)x 2+2;(4)x +4.方法总结:用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.例4:下列代数式可以表示什么?(1)2a -b ;(2)2(a -b ).解析:解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.解:(1)2a 与b 的差;或a 的2倍与b 的差;或用a 表示一本作业本的价格,用b 表示一只铅笔的价格,则2a -b 表示买两本作业本比买一支铅笔多的钱数;(2)2与a -b 的积;或a 与b 的差的2倍.方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.例5:用代数式表示下列各式:(1)王明同学买2本练习册花了n 元,那么买m 本练习册要花多少元?(2)正方体的棱长为a ,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了n 元,得出买1本练习册花n 2元,再根据买了m 本练习册,即可列出算式.(2)根据正方体的棱长为a 和表面积公式、体积公式列出式子.解:(1)∵买2本练习册花了n 元,∴买1本练习册花n 2元,∴买m 本练习册要花12mn 元;(2)∵正方体的棱长为a ,∴它的表面积是6a 2;它的体积是a 3.方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.三、运用新知,深化理解1.下列各式中哪些是代数式?哪些不是?(1)m +5 (2)a +b =b +a (3)0 (4)x 2+3x +4 (5)x +y >1(6)2.用代数式表示(1)f 的11倍再加上2可以表示为______________.(2)数a 与它的18的和可以表示为_________. (3)一个教室有2扇门和4扇窗户,n 个这样的教室共有_____扇门和_____扇窗户.(4)小华、小明的速度分别为x 米/秒,y 米/秒,6分钟后它们一共走了米.3.说出下列代数式的意义:(1)6m 表示.(2)3a 2-b 表示.(3)22b a -表示.(4)2)(b a -表示.(5)22b a +表示.(6)2)(b a +表示 .(7)yx 1-表示. (8)))((b a b a -+表示. (9)(1+8%)x 表示 .四、师生互动,课堂小结1.数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;数字与数字相乘,乘号不能省略;数字要写在字母前面;2.在含有字母的除法中,一般不用“÷”号,而写成分数的形式;3.式子后面有单位时,和差形式的代数式要在单位前把代数式括起来;4.带分数一定要写成假分数.五、板书设计六、课后作业:1.判断下列式子哪些是代数式,哪些不是.(1)、a 2+b 2(2)ts (3)13 (4)x=2 (5)3×4-5 (6)3×4-5=7 (7)x -1≤0 (8)x+2>3 (9)x+2>3 (10)c2.判断下列各式哪是代数式:mn 31,4x+(x -1),5,2x+1=3,31+-x y ,0,b,2510=,x -1>4. 3.(1)一个两位数的个位数字是a ,十位数字是2,请用代数式表示这个两位数;(2)一个两位数的个位数字是a ,十位数字是b ,请用代数式表示这个两位数.如何用代数式表示一个三位数?4.练习册课时作业.课后练习和课后习题.八、教学反思:本节课从学生了解代数式的概念,到列代数式,求代数式的值,培养学生爱思考,爱学习的习惯,让学生学会运用所学知识解决实际问题,提高解决问题的能力.教学过程中,也应拓展学生的思维,培养他们观察、分析及抽象思维能力、语言能力、创造能力和类比联想能力.第4课时 “斜边、直角边”1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边”判定三角形全等如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:Rt △ABF ≌Rt △DCE .解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL ”即可判定Rt △ABF 与Rt △DCE 全等.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF 与△DCE都为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩⎪⎨⎪⎧BF =CE ,AB =CD , ∴Rt △ABF ≌Rt △DCE (HL).方法总结:利用“HL ”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.探究点二:“斜边、直角边”判定三角形全等的运用 【类型一】 利用“HL ”判定线段相等如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .解析:根据“HL ”证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL ”证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD -CD =BF -EF .即BC =BE .方法总结:证明线段相等可通过证明三角形全等解决,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件. 【类型二】 利用“HL ”判定角相等或线段平行如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等. 证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt△ABC 和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2. 方法总结:证明角相等可通过证明三角形全等解决.【类型三】 利用“HL ”解决动点问题如图,有一直角三角形ABC ,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:本题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【类型四】 综合运用全等三角形的判定方法判定直角三角形全等如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL ”外,还有:SSS 、SAS 、ASA 、AAS.三、板书设计“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL ”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL ”,除此之外,还可以选用“SAS ”“ASA ”“AAS ”以及“SSS”.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案例如代数式一、教学目标1.了解代数式的值的概念.2.掌握求代数式的值的方法.3.利用求代数式的值解决较简单的实际问题.4.通过引例培养学生解决实际问题的能力.5.通过例题的讲解培养学生良好的学习习惯和品质,提高运算能力.6.通过求代数式的值渗透特殊与一般的辩证关系思想.二、重点、难点1.重点:求代数式的值.2.难点:代数式的值的概念.三、教学步骤〔一〕创设情境,复习导入师:谁能回忆出上节课研究的什么问题?学生活动:思考后举手答复〔列代数式〕.师:对.上节课同学们表现都很出色,下面看同学们稳固的怎样.〔出示投影1〕1.设教室里座位的行数是m,每行座位数比座位的行数多2,教室里总共有多少个座位?学生活动:个.〔师板书〕师:你能用最快的速度说出我们班的座位数吗?你是怎样算出来的?〔出示投影2〕2.为了开展体育活动,学校要添置一批排球,每班配2个,学校另外留10个,n个班总共需要多少个排球?学生活动:互相讨论后写在练习本上.一个学生板演〔〕个.〔出示投影3〕3.底是a cm,高是h cm的三角形的面积怎样表示?学生活动:答复以下问题.〔〕.师:很好.先看1题,假设甲班座位行数是6,该班总共有__________个座位?〔.假设乙班座位行数是5呢?.座位数在或6时一样吗?这说明m取不同的值时代数式的计算结果不同.再看2题,假设班数是15〔即〕,那么排球总数是:;假设班数是20〔即〕,那么排球总数是师:你由此看出什么结论?〔说明n取不同值时,代数式的计算结果也不同〕,此时,我们说当时,代数式的值是40;当时,代数式的值是50.这就是今天我们要认识的代数式的值.[板书] 1.3代数式的值【教法说明】由学生熟悉的实际问题入手,引出概念,对学生兴趣的培养.学习目的的端正都是有益的.这里应注意学生活动,师不能越俎代庖.〔二〕探索新知,讲授新课问:谁能根据自己理解说明什么叫代数式的值?学生活动:可相互讨论后再答复.一般地,用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值.问:由定义看代数式的值和什么有关呢?〔代数式中字母的取值〕学生活动:思考并答复.师:你能说出1题中代数式的值吗?学生活动:答复以下问题,师注意标准学生语言.师:由自己给出3题中a、h的值并计算相应的面积.学生活动:在练习本上运算.师:根据学生运算结果问:能说的值是2吗?学生活动:不能.须指出字母取值,即当时的值是2.【教法说明】一环紧扣一环的发问,使学生对代数式的值的概念有了清楚的认识,分散了难点,也培养了学生逻辑思维能力.师:在今后解决问题的过程中,往往需要根据代数式中字母取值确定代数式的值,你能根据代数式的值的概念找出求代数式的值的方法吗?学生活动:积极思考,相互讨论,找出方法:一是代入,二是计算.师:很好,下面实践一下,看例1〔出示投影4〕4.当时,求代数式的值.学生活动:找一个学生口述,教师板书过程.[板书]解:当时注意:①代入数值后“乘号〞要填上;②要按数的运算法那么进行运算.【教法说明】由学生探索方法大胆实践有利于培养学生开拓进取精神,养成善于思考总结规律的习惯.〔三〕尝试反响,稳固练习〔出示投影5〕5.根据下面a、b的值,求代数式的值.〔1〕;〔2〕问:a能等于0吗?练习1.〔1〕当时求代数式的值.〔2〕当时,求代数式的值.2.填表…18 12 30 ….师:及时肯定和鼓励.并问:例2和练习1两题与练习2题在问法上有什么不同?学生活动:观察思考并答复.〔例2和练习1题求的是当字母取不值时同一代数式的值;练习2题是两个字母分别取定某一数值时,不同代数式的值.〕【教法说明】师在学生活动时注意巡视,指导学生开展尝试活动,培养学生运算能力.〔四〕变式训练,培养能力〔出示投影6〕6.〔1〕下题是某同学所做,你同意他的做法吗?假设不同意请按你的想法写出过程:当时,求代数式的值.解:当时,〔2〕自编2道求代数式的值的题目,要求:代数式至少有两种运算符号,至少含两个字母.学生活动:自己思考并解答,全班相互交流.【教法说明】通过辨析,澄清错误认识,培养学生的批判性;自编题目,可培养学生的创新精神.〔五〕归纳小结师:〔1〕什么叫代数式的值?它与代数式有什么不同?〔2〕求代数式的值的方法:先代入,后计算.运算时既要分清运算种类,又要注意运算顺序.〔3〕列代数式是从特殊到一般;求代数式的值是从一般到特殊,表达了特殊与一般的辩证关系.四、随堂练习〔出示投影7〕1.判断题〔1〕当时,的值为2.〔2〕因为当时,的值为4,所以代数式的值就是4.〔3〕当时,的值为3.2.填空题〔1〕当时,〔2〕当时,〔3〕填表0 1 2_________.3.当时,求以下代数式的值〔1〕;〔2〕 .五、布置作业〔一〕必做题:课本第16页A组2、3、4.〔二〕选做题:课本第17页B组1、2.教案点评:教案首先从学生比较熟悉的问题〔计算教室里的座位〕入手,引入新课,让学生即复习了上节课学习的知识,又引出了新课。

接着设计了几个问题,老师问,学生答复,使学生对求代数式的值的问题深刻理解,最后讲解练习,加以稳固。

2.4有理数的加法〔1〕二、教学目标1.使学生掌握有理数加法法那么,并能运用法那么进行计算;2.在有理数加法法那么的教学过程中,注意培养学生的观察、比较、归纳及运算能力.三、教学重点和难点重点:有理数加法法那么.难点:异号两数相加的法那么.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程〔一〕、师生共同研究有理数加法法那么前面我们学习了有关有理数的一些根底知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.假设我们规定赢球为“正〞,输球为“负〞.比方,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5.①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3.②现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;③上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1;④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;⑤上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.⑥上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想方法归纳出进行有理数加法的法那么?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法那么:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.〔二〕、应用举例变式练习例1 计算以下算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7);(4)(+9)+(-4);(5)(+4)+(-4); (6)(+9)+(-2); (7)(-9)+(+2);(8)(-9)+0;(9)0+(+2); (10)0+0.学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法那么.进行计算时,通常应该先确定“和〞的符号,再计算“和〞的绝对值.解:(1) (-3)+(-9) (两个加数同号,用加法法那么的第2条计算)=-(3+9) (和取负号,把绝对值相加)=-12.下面请同学们计算以下各题:(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评.〔三〕、小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法那么.今后我们经常要用类似的思想方法研究其他问题.应用有理数加法法那么进行计算时,要同时注意确定“和〞的符号,计算“和〞的绝对值两件事.七、练习设计1.计算:(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4 )(+6)+(+9);(5)67+(-73); (6)(-84)+(-59); (7)33+48;(8)(-56)+37.2.计算:(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78; (5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77);(9)(-0.78)+0.4*.用“>〞或“<〞号填空:(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.5*.分别根据以下条件,利用|a|与|b|表示a与b的和:(1)a>0,b>0; (2) a<0,b<0;(3)a>0,b<0,|a|>|b|; (4)a>0,b<0,|a|<|b|.八、板书设计九、教学后记“有理数加法法那么〞的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法那么,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法那么;另一类是适当加强法那么的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法那么的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.第一种方案,教学的重点偏重于让学生通过练习,熟悉法那么的应用,这种教法近期效果较好.第二种方案,注重引导学生参与探索、归纳有理数加法法那么的过程,主动获取知识.这样,学生在这节课上不仅学懂了法那么,而且能感知到研究数学问题的一些根本方法.这种方案减少了应用法那么进行计算的练习,所以学生掌握法那么的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法那么〞进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程〞,失去了培养学生观察、比较、归纳能力的一次时机.权衡利弊,我们主张采用第二种教学方。

相关文档
最新文档