煤矿采区通风系统优化方案
通风系统专项整治实施方案

通风系统专项整治实施方案X煤集团大平煤矿二〇一四年四月二十一日大平煤矿通风系统专项整治实施方案根据X大【2021】1 号文"关于做好2021年平安生产工作的决定",结合矿井实际,决定于 5 月份开展矿井通风系统专项整治活动,实现矿井通风系统稳定可靠,具体方案如下:一、治理目标〔一〕排查通风设施存在的缺陷,实现通风设施结实。
〔二〕开展矿井专回隐患整治,实现风流畅通、稳定。
〔三〕开展通风设备隐患整治,保证其运行平安。
〔四〕优化通风系统,降低内部漏风,提升通风效率。
二、实施方案〔一〕第一阶段:宣传发动阶段5 月 10 日前,各科队组织职工学习"通风系统专项整治实施方案"和"集团公司“一通三防〞手册" ,使其认识通风系统专项整治的工作部署及重点。
〔二〕第二阶段:实施阶段〔 5 月 20 日前〕1、主要通风机由机电运输科牵头,组织通风、安监及有关区队对矿井主要通风机及附属设施进展检查,重点排查风硐变形状况、反风设施损坏、防爆门漏风、通风机运转异常及平安防护缺失等隐患,对查出的问题机电运输科分类汇总,按“五定〞原那么落实整改。
2、通风网络〔 1〕由矿总工程师牵头,组织通风、安监、生产等部门对矿井专用回风巷进展检查,重点排查通风断面不符合要求、风速超限及杂物堆积等隐患,对查出的问题通风科分类汇总,按“五定〞原那么落实整改。
(2〕①结合生产实际,对矿井风量进展全面的测算及分析,合理分配矿井风量,提出可行的通风系统优化方案。
②深入排查各采区通风系统,结合矿井风量分析情况优化通风系统,降低通风系统风量损耗,提升通风效率。
3、通风设施由通风科牵头,组织安监、生产、机电及有关区队对井下各采区通风设施、设备进展排查,重点查处通风设施损坏、墙体未实现连体加固、墙体脱皮或变形、调节风窗损坏等隐患,对查出的问题通风科分类汇总,按“五定〞原那么落实整改。
4、局部通风(1〕由通风科牵头,组织生产、防突、机电及相关区队对各采区掘进工作面通风路线进展排查,重点排查巷道各拐角处、皮带运输地点、管路架接处及支护地点是否存在挤压风筒现象,对查出的问题由责任部门进展整改,通风科负责监视落实。
煤矿主通风机的优化改造

煤矿主通风机的优化改造煤矿作为煤炭生产的重要基地,通风系统的优化改造对于保障矿工安全、提高生产效率具有重要意义。
通风系统是煤矿安全生产的重要保障措施之一,其功能包括排除瓦斯和粉尘、调节矿井的温度和湿度、保持矿井内气体的新鲜度等。
通风系统的主要设备之一是主通风机,其运行状态直接影响到矿井内的通风效果。
对主通风机进行优化改造具有重要的现实意义。
一、现状分析目前大多数煤矿使用的主风机设备大多数是风量较小的离心风机和轴流风机。
这类风机设备结构简单,维护成本较低。
但是由于其效率较低、噪音较大、振动较明显、占地面积较大等问题,在提高通风效果、减少能源消耗、改善工作环境等方面存在一定的不足。
在当前国家对煤矿通风系统的要求日益提高的情况下,这种风机已经不能满足通风系统的发展需要。
需要对主通风机进行优化改造,以适应现代煤矿通风系统的要求。
二、改造目标1. 提高风机的通风效率,保障矿井内的气体新鲜度和温湿度的稳定性。
2. 减少风机的能耗,降低通风系统的运行成本。
3. 减少风机的噪音和振动,改善工作环境,保障矿工的健康。
4. 减少风机的占地面积,节约资源,提高矿山的整体效益。
三、改造方案1. 优化风机叶轮结构,提高通风效率。
通过对风机叶轮的结构进行优化设计,提高风机的风量和风压,从而提高通风效率。
2. 采用高效节能电机,减少风机的能耗。
选用高效节能型电机,降低风机的能耗,减少通风系统的运行成本。
3. 加装减震降噪设备,减少风机的噪音和振动。
通过加装减震降噪设备,减少风机的噪音和振动,改善工作环境,保障矿工的健康。
4. 改进风机结构,减少占地面积。
改进风机的结构设计,减少风机的占地面积,节约资源,提高矿山的整体效益。
四、改造效果预期1. 通风效果提高:经过改造优化后的主通风机,可以提高通风效率,保障矿井内的气体新鲜度和温湿度的稳定性。
五、改造实施1. 选用合适的风机设备并进行优化设计,确保风机的通风效率和节能性能。
2. 加装减震降噪设备,改善工作环境,保障矿工的健康。
矿井通风系统调整方案及安全技术措施

山西天润煤化集团德通煤业有限公司矿井通风系统调整方案及安全技术措施编制单位:通防技术科编制人:杨震2018年9月16日矿井通风系统调整方案及安全技术措施一、编制目的根据《山西天润煤化集团德通煤业有限公司通风系统变更初步设计》要求,待后期风井装备完成具备挂网运行条件后,对矿井通风系统进行调整,为保证新旧通风系统切换时的安全,特制定矿井通风系统调整方案及安全技术措施.二、编制依据1、《山西天润煤化集团德通煤业有限公司通风系统变更初步设计》;2、临煤审发【2017】10号文,关于山西天润煤化集团德通煤业有限公司通风系统变更初步设计的批复;3、《煤矿安全规程》(2016);4、《煤矿井工开采通风技术条件》 AQ1028—2006。
三、风险辨识1、通风系统调整方案及安全技术措施贯彻不到位,参与人员未按照系统调整顺序进行系统调整,造成系统紊乱、风流短路、用风地点风量不足,造成窒息、中毒.防范措施:通风系统调整前,制定详细通风系统调整流程图,召开预备会,进行详细安排部署,将通风系统调整方案及安全技术措施传达至每个参与人员并签字确认。
2、通风设施施工不到位或施工质量较差,造成通风系统紊乱,局部地点风量不足。
防范措施:通风设施严格按设计施工,系统调整前要经通防技术科和安全监察科共同验收合格,方可进行通风系统调整。
3、系统调整过程中,仪器仪表不完好或操作不当,导致通风参数测定不准确,影响通风。
防范措施:各种仪器仪表不完好不得入井,现场使用仪器仪表时,必须再次检查完好性.4、系统调整过程中,现场警戒未设置或设置不到位,人员进入微风、无风区,造成窒息、中毒。
防范措施:通风系统调整期间,对可能存在微风、无风区域要设置警戒,悬挂“严禁入内”警戒牌,严禁人员进入。
四、组织机构为保证调整工作顺利进行,成立通风系统调整领导组.组长:孙毅(矿长)副组长:李云义(总工程师)魏庆阳(生产矿长) 徐衍超(通风矿长)孙玉宝(机电矿长)王荣年(安全矿长)成员:王志刚(通防副总)徐小波(机电副总)周成(安全副总)李建华(技术副总) 娄峰(生产副总)于刚(地测副总)阴法滨(通防技术科科长)武明刚(安全监察科科长)刘院(机电技术科科长)杜建廷(采掘技术科科长)高照全(地测技术科科长)孙兆军(调度室主任)巩金涧(监测监控队队长)张广勇(通防工区区长)设立井筒贯通与风机挂网运行指挥部,指挥部设在调度室。
煤矿通风系统的优化方案

煤矿通风系统的优化方案煤矿作为我国的重要能源产业,其安全生产一直备受关注。
通风系统作为煤矿安全生产中不可或缺的组成部分,对于确保矿井内空气的流通、降低有害气体浓度、减少火灾和瓦斯爆炸等事故的发生具有重要意义。
本文将对煤矿通风系统进行优化方案的探讨。
一、现状分析在进行通风系统的优化方案之前,首先需要对现状进行分析。
通过实地考察和数据分析,我们发现煤矿通风系统存在以下问题:1. 通风系统设计不合理:存在部分通风道路过长、支护不力等问题,导致系统阻力增大、通风效率低下。
2. 部分通风设备老化:煤矿通风设备的老化导致设备运行效率下降,无法满足实际需求。
3. 安全监测手段不完善:通风系统内的安全监测手段不完善,无法及时准确地掌握矿井内的气体浓度和温湿度等参数。
二、优化方案针对以上问题,提出以下煤矿通风系统的优化方案:1. 通风系统设计优化:结合矿井的实际情况,对通风系统进行设计优化。
通过减少通风道路长度、优化支护结构,降低系统阻力,提高通风效率。
2. 设备更新升级:对通风设备进行更新升级,采用先进的风机、加强型换气机等设备,提高设备的运行效率和可靠性。
3. 安全监测系统改进:引入先进的安全监测技术,如实时气体监测仪、温湿度自动监测仪等,实现对矿井内气体浓度、温湿度等参数的实时监测和报警功能。
4. 通风系统运行管理优化:建立完善的通风系统运行管理制度,加强对通风系统的定期巡检和维护,及时发现和解决潜在的问题,确保通风系统的稳定运行。
三、优化方案的效果通过对煤矿通风系统的优化方案实施,预计可以获得以下效果:1. 提高通风效率:通过优化通风系统的设计和设备升级,降低系统阻力,提高通风效率,保障矿井内空气的流通,有效降低有害气体浓度。
2. 提升安全监测能力:通过改进安全监测系统,实现对矿井内气体浓度、温湿度等参数的实时监测和报警功能,提升对安全状况的监测能力。
3. 减少事故发生率:通过优化通风系统的运行管理,加强巡检和维护,及时发现和解决潜在问题,减少事故的发生概率,提高矿井的安全性。
矿山井下通风系统设计与优化

矿山井下通风系统设计与优化摘要矿山井下通风系统是保障矿山井下工作环境安全和提高作业效率的重要设施之一。
本文基于对矿山井下通风系统设计与优化的研究,探讨了通风系统设计的原理和方法,并对现有的通风系统进行了优化提升。
通过优化设计与改进,提高了井下通风系统的效率和安全性。
1. 引言矿山井下通风系统是矿业生产中必不可少的一个环节,它对保护矿工的生命安全、提高矿山生产效率具有重要作用。
井下通风系统能够有效地排除废气、降低井下工作环境温度、调节湿度,保证矿工的健康和生产的顺利进行。
2. 井下通风系统设计原理井下通风系统设计的基本原理是根据矿区井下空气流动特点和需求,通过合理设置通风设施和通风路线,使井下空气保持适宜温度、湿度和含氧量,降低有害气体浓度,确保矿工的健康和生产的平稳进行。
井下通风系统设计需要考虑以下几个方面的因素:2.1 矿井地质条件不同矿区的地质条件存在差异,如矿层结构、岩石性质、厚度等,这些因素会影响通风系统设计的选择和布置。
2.2 矿区单元细分矿区根据井下工作面的划分,需要将矿区划分为不同的单元,通过通风系统为每个单元提供独立的空气供应。
2.3 井下工作面布置井下工作面的布置涉及到通风系统的路径和风流分配问题,需要优化工作面布置以最大化通风效果。
3. 井下通风系统设计方法井下通风系统的设计方法包括计算法、经验法和仿真模拟等几种不同的途径。
3.1 计算法计算法是通过分析井下各个通风终点的通风需求,结合空气流动的物理规律,计算得出通风系统的风量和风压。
计算法需要准确的输入数据,如矿井地质条件、工作面布置、岩石气体含量等。
3.2 经验法经验法是基于以往的通风系统设计经验和实践,根据矿井特点和数据,通过经验公式和统计方法估算通风系统的风量和风压。
经验法建立在大量实验和实际应用的基础上,能够快速给出初步的设计结果。
3.3 仿真模拟仿真模拟是通过计算机软件模拟井下通风系统的流动和分布情况,通过调整参数和变量,达到最佳的通风效果。
矿井通风优化实施方案

矿井通风优化实施方案
矿井通风是煤矿生产中的重要环节,直接关系到矿工的安全和生产效率。
为了提高通风系统的效率和安全性,我们制定了以下矿井通风优化实施方案。
首先,我们需要对现有通风系统进行全面的评估。
这包括对通风设备的性能进行测试,对通风管道的布局进行检查,以及对通风系统的运行情况进行分析。
通过这些评估,我们可以全面了解通风系统的工作状态,找出存在的问题和不足之处。
其次,针对评估结果,我们需要制定相应的改进措施。
这可能包括更新通风设备,修复或重新布置通风管道,优化通风系统的运行参数等。
在制定改进措施时,我们需要充分考虑矿井的地质条件、生产工艺以及矿工的实际需求,确保改进措施能够真正解决问题,提高通风系统的效率和安全性。
接下来,我们需要实施改进措施,并对其效果进行监测和评估。
在实施改进措施时,我们需要严格按照设计要求进行施工,确保改进措施能够真正落实到位。
同时,我们还需要对改进后的通风系统进行监测,以确保其运行状态符合设计要求,能够满足矿工的实际需求。
最后,我们需要建立健全的通风系统管理制度。
这包括制定通风系统的运行维护规程,建立通风系统的运行数据记录和分析机制,培训通风系统操作和维护人员等。
通过建立健全的管理制度,可以确保通风系统能够持续稳定地运行,提高通风系统的效率和安全性。
总之,矿井通风优化实施方案是一个系统工程,需要全面评估、科学规划、精心实施和健全管理。
只有这样,才能真正提高通风系统的效率和安全性,保障矿工的安全和生产的顺利进行。
矿井通风系统的设计与优化方案

矿井通风系统的设计与优化方案矿井通风系统在矿山生产中扮演着至关重要的角色,它不仅关乎矿工的健康和安全,也直接影响到矿山的生产效率和经济效益。
因此,合理设计和优化通风系统对于矿山的可持续发展至关重要。
本文将针对矿井通风系统的设计与优化方案进行探讨。
一、矿井通风系统的设计1. 矿井通风系统的结构矿井通风系统可分为主风机系统、辅助风机系统和通风道路系统。
主风机系统是通风系统的核心,负责为矿井提供主要的通风动力;辅助风机系统则为主风机系统提供支持,保证矿井通风的全面和充分;通风道路系统则是通风气流的传输通道,要求通风道路布局合理,通风阻力小。
2. 矿井通风系统的参数设计在设计矿井通风系统时,需要确定一系列参数,包括通风量、风速、阻力损失、风机数量和位置等。
通风量决定了煤矿内部的空气流通情况,风速影响矿工的舒适度和安全性,阻力损失直接影响通风系统的能效,合理确定这些参数是通风系统设计的核心。
3. 矿井通风系统的控制设计矿井通风系统的控制设计包括采用智能控制系统实现通风系统的自动化控制、通过监测设备实时监测通风系统运行状态以及建立预警机制,确保通风系统的可靠性和稳定性。
同时,合理设置通风系统的运行模式和运行参数,以适应矿山生产的不同需求。
二、矿井通风系统的优化方案1. 优化风机配置根据煤矿的实际情况和通风需求,合理配置风机数量和位置,避免盲目增加风机数量,提高通风系统的能效。
可以采用CFD仿真技术对矿井通风系统进行模拟,找出通风系统中的瓶颈和不足,优化通风系统的布局和结构。
2. 优化风门和风堰设计通过合理设置风门和风堰,控制通风系统中的气流分布,避免气流短路和死角,提高通风系统的通风效率。
在设计风门和风堰时,考虑通风系统的整体结构和气流传输路径,保证通风系统的全面、均匀通风。
3. 优化通风道路设计通风道路是通风系统的重要组成部分,通风道路的设计直接关系到通风系统的通风效果和能效。
在设计通风道路时,应考虑通风道路的长度、截面形状、材料和阻力损失,合理设计通风道路的曲线和分岔,降低通风道路的阻力损失,提高通风系统的通风效率。
矿井配风工作计划方案

一、前言矿井配风工作对于确保矿井安全生产至关重要。
为了提高矿井通风效果,确保矿井空气质量,预防事故发生,特制定本工作计划方案。
二、工作目标1. 确保矿井空气质量,满足安全生产要求;2. 提高矿井通风效果,降低通风能耗;3. 优化矿井通风系统,提高通风系统运行稳定性;4. 加强矿井通风管理,提高通风设备维护保养水平。
三、工作内容1. 矿井通风系统优化(1)根据矿井实际生产需求,合理配置矿井通风系统,确保各用风地点风量充足、风流稳定;(2)对矿井通风系统进行定期检查,发现问题及时整改,确保通风系统运行正常;(3)优化矿井通风系统布局,提高通风系统运行效率。
2. 矿井配风计划制定(1)根据矿井生产需求,制定矿井配风计划,明确各用风地点的风量要求;(2)依据矿井通风系统优化结果,调整配风计划,确保矿井通风效果;(3)对配风计划进行实时监控,根据实际情况进行调整,确保矿井通风系统稳定运行。
3. 通风设备维护保养(1)建立健全通风设备维护保养制度,确保通风设备正常运行;(2)定期对通风设备进行检修,发现故障及时排除,防止设备损坏;(3)提高通风设备维护保养水平,降低设备故障率。
4. 通风安全管理(1)加强通风安全管理,确保通风设施完好,通风系统运行正常;(2)加强通风人员培训,提高通风人员安全意识;(3)定期开展通风安全检查,发现安全隐患及时整改。
四、工作步骤1. 矿井通风系统优化:收集矿井通风系统资料,分析矿井通风现状,制定通风系统优化方案。
2. 矿井配风计划制定:根据矿井生产需求,结合通风系统优化结果,制定矿井配风计划。
3. 通风设备维护保养:建立健全通风设备维护保养制度,定期对通风设备进行检修。
4. 通风安全管理:加强通风安全管理,开展通风安全检查,提高通风人员安全意识。
五、工作要求1. 各部门要高度重视矿井配风工作,加强组织领导,确保工作计划顺利实施;2. 矿井配风工作要紧密结合实际生产需求,确保矿井通风效果;3. 加强通风设备维护保养,提高通风设备运行效率;4. 严格通风安全管理,确保矿井安全生产。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤矿通风系统优化方案通风防突办二〇一二年二月二十九日1通风系统现状分析***煤矿此次通风系统改造时间紧迫、任务重,为保证矿井正常生产,对于矿井通风风量进行调整,同时为保证整体优化方案与局部整改措施的统一,必须以矿井阻力测定(详细内容见阻力测定报告)数据为基础,准确获取全矿井的总阻力。
1.1 矿井通风现状参数1.1.1 通风系统矿井通风方式采用分区抽出式通风,现有2个采区,通风方法为机械抽出式。
矿井主要由***平硐、***平硐排水巷、一采区回风井、二采区回风井。
矿井主要通风机型号:一采区BDK54-6-№15-04型对旋轴流式通风机两套,功率55×2kw,额定风压:1470Pa,额定风量:2021.6m3/min,一台工作,一台备用。
一采区配风量2400 m3/min(见风量分配表),实测风量2673 m3/min;二采区:FBCDZ-6-№19型对旋轴流式通风机两套,功率185×2kw,额定风压:987-3737Pa,额定风量: 6300m3/min,一台工作,一台备用。
二采区配风量2580 m3/min(见风量分配表),实测风量2881 m3/min;矿井通风系统布置合理,所有工作面、采区均为独立通风,井下局部通风机采用FBDY№6.0/30型对旋风机,并实现了双风机双电源自动切换和风电、瓦斯电闭锁。
通风路线:矿井新鲜风流经***主平硐、8#排水巷分别进入一采区、二采区。
一采区新鲜风流经***主平硐分别进入两条支路后汇至***m水平7#联络巷:一条经一采区7#车场通风道(+***m水平7#联络巷)→一采区材料道→***m水平7#联络巷;一条经一采区石门皮带巷→7#石门皮带巷(中段)→+***m水平7#联络巷;+***m水平7#联络巷→7#主运输下山→***运输巷→***综采面→***回风巷→***上山→17121上山→17121回风巷→一采区回风石门、一采区总回风巷→风井→经一采区主通抽出地面;+1935m水平7#联络巷→7#材料下山→+1830m水平石门绕道→37122回风巷→27121上山→17121上山→17121回风巷→一采区回风石门、一采区总回风巷→风井→经一采区主通抽出地面;+1890m水平7#联络巷→7#主运输下山→由局部通风机压至37123开切眼(已停掘)→37123运输巷→37123上山→37122上山→37121上山→27121上山→17121上山→17121回风巷→一采区回风石门、一采区总回风巷→风井→经一采区主通抽出地面;+1890m水平7#联络巷→由局部通风机压至36123行人下山掘进工作面(另一局部通风机压至36123回风巷掘进工作面)→6#回风上山→17121上山→17121回风巷→一采区回风石门、一采区总回风巷→风井→经一采区主通抽出地面;+1890m水平7#联络巷→7#主运输下山→37123运输联络巷→37123下山→37122上山→27121上山→17121上山→17121回风巷→一采区回风石门→一采区回风石门→一采区总回风巷→风井→经一采区主通抽出地面;+1890m水平7#联络巷→7#材料道→一采区7#水仓→37123运输联络巷→37123上山→37122上山→27121上山→17121上山→17121回风巷→一采区回风石门→一采区回风石门→一采区总回风巷→风井→经一采区主通抽出地面;+1890m水平7#联络巷→一采区下部变电所→下部变电所回风下山→一采区上部变电所→16121下山→16121回风巷→一采区回风石门→一采区总回风巷→风井→经一采区主通抽出地面;二采区新鲜风流经***主平硐、二采区主大巷、二采区斜石门、二采区集中运输上山、二采区集中运输石门分别进入各支路;一条经+1870m水平运输石门→4#猴车道中部联络巷→4#猴车道→4#人行上山及4#材料上山→七一平峒→二采区风井→经二采区主通抽出地面;一条经6#运输下山→36211运输联络巷→36211行人上山→36211回风联络巷→26221轨道下山→26221回风巷→***回风石门→4#人行上山及4#材料上山→七一平峒→二采区风井→经二采区主通抽出地面;一条经6#运输下山→36211运输联络巷→36211运输巷→36211中部运煤下山→36211回风巷→36211回风联络巷→26221轨道下山→26221回风巷→***回风石门→4#人行上山及4#材料上山→七一平峒→二采区风井→经二采区主通抽出地面;一条经6#运输下山→36211运输联络巷→36211运输巷→36211综采工作面→36211回风巷→36211架子通道→36211回风联络巷→26221轨道下山→26221回风巷→***回风石门→4#人行上山及4#材料上山→七一平峒→二采区风井→经二采区主通抽出地面;一条经6#运输下山→36211运输联络巷→36211运输巷→36211综采工作面→36211中间巷→36211回风联络巷→26221轨道下山→26221回风巷→***回风石门→4#人行上山及4#材料上山→七一平峒→二采区风井→经二采区主通抽出地面;一条经6#运输下山→由局部通风机压至二采区6#主运输大巷掘进工作面(另一局部通风机压至6#排水巷掘进工作面)→二采区6#主运输大巷→36221上山→36221回风联络巷→26221轨道下山→26221回风巷→***回风石门→4#人行上山及4#材料上山→七一平峒→二采区风井→经二采区主通抽出地面;一条经6#运输下山→+1800m水平集中运输石门→+1800m水平5#联络巷→5#副水仓→5#轨道下山→***回风石门→4#人行上山及4#材料上山→七一平峒→二采区风井→经二采区主通抽出地面;一条经6#运输下山→+1800m水平集中运输石门→+1800m水平4#联络巷→4#猴车道→4#人行上山及4#材料上山→七一平峒→二采区风井→经二采区主通抽出地面;另一条经***回风石门→4#人行上山及4#材料上山→七一平峒、二采区风井→经二采区主通抽出地面。
1.1.2 矿井3月份风量分配计划表1 一九三○煤矿2012年3月份风量分配计划日期:2012年2月22日1.1.3矿井2月中旬实测风量1.1.3.1一采区表2 一九三〇煤矿测风报旬表(2月中旬)测定日期:2012年2月15日1.1.3.2二采区表3 一九三〇煤矿测风旬报表(2月中旬)测定日期:2012年2月14日1.1.4 阻力测定结果(1)一采区总阻力Ht =hs—22OOVP+hN=1086.4进行全矿阻力测定的过程中,同时记录了矿井主要通风机入风口相对静压hs=590Pa,平均值为590Pa,以及速压为342 Pa从以上计算中可知矿井自然风压约为 6.4Pa,忽略掉通风机扩散器出口处的风速,根据以上数据矿井通风总阻力为:ht=590+342+6.4=938.4Pa一采区等级孔为1.79 m2,可见为通风中等时期。
(2)二采区总阻力Ht =hs—22OOVP+hN=1035 Pa进行全矿阻力测定的过程中,同时记录了矿井主要通风机入风口相对静压hs=860Pa,平均值为860Pa,以及速压为150Pa。
从以上计算中可知矿井自然风压约为25Pa,忽略掉通风机扩散器出口处的风速,根据以上数据矿井通风总阻力为:ht=860+150+25=1035 Pa目前矿井有三套反映矿井总阻力的数据:1)风机房水柱计:静压1600Pa,速压200Pa;2)风机在线监控数据:2100-2300Pa(负压);3)KJ66监控系统:2500-2800Pa(负压);由于反映矿井总阻力的三组数据之间存在较大的差别,因此对于矿井总阻力究竟是多少,需要阻力测定来确认。
经过对测定数据的分析,实测总阻力为1350.5Pa、自然风压6.8Pa,因此确认风机房水柱计的数值是准确的,并按以下公式计算出矿井总阻力:h t = hr-hv+HN=1615.5– 215.5 +6.8 =1406.8 Pa二采区通风等级孔为1.58 m2,可见为通风中等时期。
1.2当前系统存在的主要问题***煤矿属于老矿井,基础条件较差、井巷系统复杂、通风设施杂多、采空区多,难以管理、巷道维护困难。
存在以下问题:1.2.1回风段通风阻力大***煤矿一直被鉴定为低瓦斯矿井,矿井目前采用分区抽出式通风系统。
矿井有一、二采区总回风井,均为通风断面小,阻力大,风速超标。
2优化方案2.1 优化目标基本参数:产量:2012年原煤产量47万吨;回采工作面数:2个综采工作面,一、二采区各一个;掘进工作面数:4个,一、二采区各两个;开采煤层:6、7;拟解决的主要问题:(1)简化通风系统,提升通风能力,增加通风系统的合理性、可靠性和抗灾变能力;(2)充分减少一、二采区总回风量,以达到一、二采区总回风巷的通风标准;(3)有效降低矿井总回风段通风阻力。
2.2方案选择方案一、调整局部通风巷道2.2.1优化方案基本思路2.2.1.1 采区通风系统优化方案(1)一采区通风优化现7#材料下山与7#运输下山、7#运输下山与7#回风下山之间的统联络巷较多,造成总回风量超额,在遵循《煤矿安全规程》的前提下,需对局部用风地点进行降风,对一些联络巷进行密闭。
即降低风量与封闭的巷道如下:建密闭巷道:27121运输巷、1836联络巷、1795联络巷、7#水仓通风道、37123回风巷(东)、26121运输巷;风量调整巷道:6#运输下山。
(2)二采区通风优化建筑密闭巷道:36211人行上山;风量调整巷道:6#主运输大巷(东)。
(3)矿井优化后风量分配计划由表1可知:矿井原来计划配风总进风4980 m3/min、一采区总回风2400 m3/min、二采区计划总回风2580 m3/min;由表6可知:调整后矿井计划总进风4550m3/min,一采区总回风2120 m3/min,二采区总回风2490 m3/min。
优化后,通过计算一采区总回风巷计划风速 4.65m/s;二采区总回风巷计划风速5.12m/s。
可知符合《煤矿安全规程》规定。
(4)调整后总回风巷实际风速一采区:27121运输巷80m3/min、1836联络巷89m3/min、1795联络巷89m3/min、7#水仓通风道61 m3/min、37123回风巷(东)60m3/min、26121运输巷60m3/min;6#运输下山264m3/min,调整为130m3/min,合计可降573 m3/min。
二采区:36211人行上山108 m3/min 、6#主运输大巷(东)250 m3/min,调整为240 m3/min,合计可降118 m3/min。
由以上参数可知:一采区总回风巷实测数据2637 m3/min,调整后为2100 m3/min,风速为 4.6m/s。