几何三大变换讲义及答案

合集下载

初中数学学--几何三大变换含答案

初中数学学--几何三大变换含答案
1 【2017年江苏南京鼓楼区九年级下学期中考二模数学试卷】
平面直⻆坐标系中,原点 关O 于直线y = − 4 x + 对4 称点O1的坐标是 3
答案
, 96
(
72
)
25
25
解析
图 如 ,
线 对称点 ∵ 原点O关于直
4
y= − x+4
, O1
3
∴ OO1⊥AB
设 线 为 轴于 OO1 与直
的 交 点 4
x
4/9
(1)
答案
标为 ① k = −8; ② 存在,点P 的坐
或 或 或 ; (−4, 2) (−2, 4) (4, −2) (2, −4)
解析
过点 轴于点 ,过点 轴于点 图 ①
作 A AE⊥x
E
作 B BF ⊥x
F,如 1所示.
轴 轴 , , ∵BF ⊥x
AE⊥x
, ∘
∴∠BF O = ∠OEA = 90
2
2
4 【2016年江苏南京玄武区八年级下学期期末考试数学试卷】
如图,在平面直⻆坐标系中,点B是反比例函数y = k 的图象上任意一点,将点B绕原点 顺O 时针方向旋转
到点 . ∘
90
A
x
(1) 若点A的坐标为(4, ,2) ①求k的值;②在反比例函数y=的图象上是否存在一点P,使得△AOP是等 腰三⻆形且∠AOP是顶⻆,若存在,写出点P的坐标;若不存在,请说明理由; (2) 当k = −1,点B在反比例函数y = k 的图象上运动时,判断点A在怎样的图象上运动?并写出表达式.
AC = √(2 + √3)
+
2
1
=
√6

几何三大变换(对应点、新关系)(北师版)(含答案)

几何三大变换(对应点、新关系)(北师版)(含答案)

学生做题前请先回答以下问题问题1:平移的思考层次的第二层是什么?问题2:旋转的思考层次的第二层是什么?问题3:轴对称的思考层次的第二层是什么?问题4:拿到一个几何三大变换的题目,若转移边转移角之后不能解决问题应该怎么做?几何三大变换(对应点、新关系)(北师版)一、单选题(共8道,每道11分)1.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数是90°,则∠B的度数是( )A.70°B.60°C.50°D.40°答案:B解题思路:试题难度:三颗星知识点:旋转的性质2.如图,在△ABC中,AC=8,BC=6,AB=10,把△ABC沿AB边翻折到△ABC′(在同一个平面内),则CC′的长为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:折叠问题3.如图所示直角三角板ABC,斜边AB=6,∠A=30°,现将其绕点C沿顺时针方向旋转90°至△A′B′C的位置,再沿CB向左平移使点B′落在原三角板ABC的斜边AB上.则三角板向左平移的距离为( )A.1B.C. D.答案:C解题思路:试题难度:三颗星知识点:旋转的性质4.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为8cm,则MN的长为( )A.12cmB.12.5cmC.cmD.13.5cm答案:C解题思路:试题难度:三颗星知识点:折叠问题5.如图,矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是( )cm.A. B.3C. D.答案:C解题思路:试题难度:三颗星知识点:折叠问题6.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α角,得到△DEC,CD与AB交于点F,连接AD.当旋转角α的度数为( )时,△ADF是等腰三角形.A.30°或60°B.20°或40°C.25°或50°D.20°或40°或60°答案:B解题思路:试题难度:三颗星知识点:旋转的性质7.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线OD交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠FEC的度数为( )A.50°B.52.5°C.60°D.54°答案:D解题思路:试题难度:三颗星知识点:折叠问题8.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为( )A. B. C. D.1答案:C解题思路:试题难度:三颗星知识点:旋转的性质二、填空题(共1道,每道12分)9.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着BC平移得到△A′B′C′,若重叠部分的面积为1cm2,则平移的距离AA′=____cm.答案:1解题思路:试题难度:知识点:平移的性质。

几何变换详解

几何变换详解

几何变换详解在三维图形学中,几何变换大致分为三种,平移变换(Translation),缩放变换(Scaling),旋转变换(Rotation)。

以下讨论皆针对DirectX,所以使用左手坐标系。

平移变换将三维空间中的一个点[x, y, z, 1]移动到另外一个点[x', y', z', 1],三个坐标轴的移动分量分别为dx=Tx, dy=Ty, dz=Tz, 即x' = x + Txy' = y + Tyz' = z + Tz平移变换的矩阵如下。

缩放变换将模型放大或者缩小,本质也是对模型上每个顶点进行放大和缩小(顶点坐标值变大或变小),假设变换前的点是[x, y, z, 1],变换后的点是[x', y', z', 1],那么x' = x * Sxy' = y * Syz' = z * Sz缩放变换的矩阵如下。

旋转变换这是三种变换中最复杂的变换,这里只讨论最简单的情况,绕坐标轴旋转,关于绕任意轴旋转,在后续的随笔中介绍。

绕X轴旋转绕X轴旋转时,顶点的x坐标不发生变化,y坐标和z坐标绕X轴旋转θ度,旋转的正方向为顺时针方向(沿着旋转轴负方向向原点看)。

[x, y, z, 1]表示变换前的点,[x', y', z', 1]表示变换后的点。

变换矩阵如下。

关于旋转的正方向,OpenGL与多数图形学书籍规定旋转正方向为逆时针方向(沿着坐标轴负方向向原点看),比如ComputerGraphics C Version,p409。

绕Y轴旋转绕Y轴旋转时,顶点的y坐标不发生变化,x坐标和z坐标绕Y轴旋转θ度。

[x, y, z, 1]表示变换前的点,[x', y', z', 1]表示变换后的点。

变换矩阵如下。

绕Z轴旋转绕Z轴旋转时,顶点的z坐标不发生变化,x坐标和y坐标绕Z轴旋转θ度。

初中数学总复习《几何三大变化—平移》讲义

初中数学总复习《几何三大变化—平移》讲义

教师辅导讲义学员姓名:辅导课目:数学年级:九年级学科教师:汪老师授课日期及时段课题初中数学总复习——几何三大变化——平移学习目标教学内容初中数学总复习——几何三大变化——平移轴对称、平移、旋转是平面几何的三大变换。

平移变换是指在同一平面内,将一个图形(含点、线、面)整体按照某个直线方向移动一定的距离,这样的图形变换叫做图形的平移变换,简称平移。

平移由移动的方向和距离决定。

经过平移,平移前后图形的形状、大小不变,只是位置发生改变;平移前后图形的对应点所连的线段平行且相等;平移前后图形的对应线段平行且相等,对应角相等。

在初中数学以及日常生活中有着大量的平移变换的知识,是中考数学的必考内容。

结合2011和2012年全国各地中考的实例,我们从下面七方面探讨平移变换:(1)构造平移图形;(2)点的平移;(3)直线(线段)的平移;(4)曲线的平移;(5)三角形的平移;(6)四边形的平移;(7)圆的平移。

【一、构造平移图形:】例1、(2012江苏泰州10分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1 绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC在变换到A1C2的过程中扫过区域的面积(重叠部分不重复计算)1、(2012福建泉州9分)如图,在方格纸中(小正方形的边长为1),反比例函数ky x=与直线的交点A 、B 均 在格点上,根据所给的直角坐标系(点O 是坐标原点),解答下列问题: (1)分别写.出点A 、B 的坐标后,把直线AB 向右平移平移5个单位, 再在向上平移5个单位,画.出平移后的直线A ′B ′. (2)若点C 在函数ky x=的图像上,△ABC 是以AB 为底边的等腰三角形, 请写出点C 的坐标.【二、点的平移:】例1、(2012辽宁鞍山3分)在平面直角坐标系中,将点P (﹣1,4)向右平移2个单位长度后,再向下平移 3个单位长度,得到点P 1,则点P 1的坐标为 .例2、(2012安徽省4分)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线 ,与⊙O 过A 点的 切线交于点B ,且∠APB=60°,设OP= x ,则△PAB 的面积y 关于x 的函数图像大致是【 】例3、(2012浙江嘉兴、舟山4分)如图,正方形ABCD 的边长为a ,动点P 从点A 出发, 沿折线A →B →D →C →A 的路径运动,回到点A 时运动停止.设点P 运动的路程长为 长为x ,AP 长为y ,则y 关于x 的函数图象大致是【 】A .B .C .D .例4、(2012湖北黄石3分)如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1y x=图像上的两点,动点 P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是【 】A. 1(,0)2B. (1,0)C. 3(,0)2D. 5(,0)2例5、(2012辽宁大连3分)如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为【】A.1B.2C.3D.4例6、(2012江苏常州9分)已知,在矩形ABCD中,AB=4,BC=2,点M为边BC的中点,点P为边CD上的动点(点P异于C、D两点)。

几何三大变换(作图)(北师版)(含答案)

几何三大变换(作图)(北师版)(含答案)

学生做题前请先回答以下问题问题1:平移的思考层次分别是什么?问题2:旋转的思考层次分别是什么?问题3:轴对称的思考层次分别是什么?几何三大变换(作图)(北师版)一、单选题(共5道,每道20分)1.如图,已知,将△AOB绕点O旋转150°后,得到,则此时点A的对应点的坐标为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:旋转三要素2.如图,Rt△ABC中,∠C=90°,∠B=α,将△ABC绕点C逆时针旋转得到,当点落在直线AB上时,旋转角为(其中),那么之间的数量关系为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:旋转三要素3.在梯形纸片ABCD中,AD∥BC,.将纸片沿过点D的直线折叠,使点C落在AD 边上的点处,折痕DE交BC于点E,连接,则四边形的形状准确地说应为( )A.矩形B.菱形C.梯形D.平行四边形答案:B解题思路:试题难度:三颗星知识点:旋转三要素4.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形纸片ABCD(矩形纸片要足够长),我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF 交AD于F.则∠AFE=( )A.60°B.67.5°C.72°D.75°答案:B解题思路:试题难度:三颗星知识点:折叠的性质5.在直角三角形纸片ABC中,∠ACB=90°,,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB,AC边分别交于点E,点F.若折叠后的△CDF与△BDE均为等腰三角形,则纸片中∠B的度数为( )A.45°B.30°或45°C.30°或22.5°D.30°,22.5°或45°答案:B解题思路:试题难度:三颗星知识点:折叠的性质。

第7讲 几何三大变换问题及答案

第7讲 几何三大变换问题及答案

1.如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AM BN的值.类比归纳:在图(1)中,若13CE CD =,则AM BN 的值等于;若14CE CD =,则AM BN 的值等于;若1CE CD n =(n 为整数),则AM BN的值等于.(用含n 的式子表示)联系拓展:如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AM BN的值等于__.(用含m n ,的式子表示)2. 2.如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或边CD(含端点)交于点F,然后再展开铺平,则以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.图一图二图三(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个_________三角形;(2)如图②,在矩形ABCD中,AB=2,BC=4.当它的“折痕△BEF”的顶点E位于边AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标;若不存在,为什么?3.课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.实验与论证设旋转角∠A1A0B1=α(α<∠A1A0A2),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示.(1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;(2)图1-图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n边形A0A1A2…A n-1与正n边形A0B1B2…B n-1重合(其中,A1与B1重合),现将正n边形A0B1B2…B n-1绕顶点A0逆时针旋转α(n1800<< ).(3)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数;(4)试猜想在n边形且不添加其他辅助线的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.4.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)5.刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90°,B ∠=306cm °,;A BC ∠==图②中,90D ∠=°,45E ∠=°,4cm DE =.图③是刘卫同学所做的一个实验:他将DEF △的直角边DE 与△ABC 的斜边AC 重合在一起,并将DEF △沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在DEF △沿AC 方向移动的过程中,刘卫同学发现:F C 、两点间的距离逐渐_________.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF △移动至什么位置,即AD 的长为多少时,F C 、的连线与AB 平行?问题②:当DEF △移动至什么位置,即AD 的长为多少时,以线段AD FC BC 、、的长度为三边长的三角形是直角三角形?问题③:在DEF △的移动过程中,是否存在某个位置,使得15FCD ∠=°?如果存在,求出AD 的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.1.如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.图1图2图3。

中考复习几何三大变换

中考复习几何三大变换

几何综合——三大变换【例1】已知△ABC ,AD ∥BE ,若∠CBE =4∠DAC =80°,求∠C 的度数。

CDEBA【例2】已知在梯形ABCD 中,AD ∥BC ,AB =DC ,且BD =BC ,AC ⊥BD 。

求证:AD +BC =2CM 。

MDCB A【例3】已知:如图,正方形ABCD 中,E 是AB 上一点,FG ⊥DE 于点H 。

⑴求证:FG =DE 。

⑵求证:FD EG 。

HGFEDC BA【例4】如图,△ABC 中,AB =AC ,D 、E 是AB 、AC 上的点且AD =CE 。

求证:2DE ≥BC 。

EDCB A【例5】(2007北京)如图,已知△ABC 。

⑴请你在BC 边上分别取两点D 、E (BC 的中点除外),连结AD 、AE ,写出使此 图中只存在...两对..面积相等的三角形的相应条件,并表示出面积相等的三角形;⑵请你根据使⑴成立的相应条件,证明AB +AC >AD +AE 。

板块二 轴对称变换【例6】把正方形沿着EF 折叠使点B 落在AD 上, B 'C '交CD 于点N ,已知正方形的边长为1,求△DB'N的周长。

NC'FEB'D C BA【例7】(2009山西太原)问题解决:如图1,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D 、重合),压平后得到折痕MN 。

当12CE CD 时,求AMBN的值。

图1N MF ED CBA【例8】⑴(2009浙江温州)如图,已知正方形纸片ABCD 的边长为8,⊙O 的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA '恰好与⊙O 相切于点A '(△EF A '与⊙O 除切点外无重叠部分),延长F A '交CD 边于点G ,则A 'G 的长是________。

G FC⑵将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD =4,DB =5,则BC 的长是________。

中考几何三大变换(含答案17页)

中考几何三大变换(含答案17页)

中考几何变换专题复习(针对几何大题的讲解)几何图形问题的解决,主要借助于基本图形的性质(定义、定理等)和图形之间的关系(平行、全等、相似等).基本图形的许多性质都源于这个图形本身的“变换特征”,最为重要和最为常用的图形关系“全等三角形”极多的情况也同样具有“变换”形式的联系.本来两个三角形全等是指它们的形状和大小都一样,和相互间的位置没有直接关系,但是,在同一个问题中涉及到的两个全等三角形,大多数都有一定的位置关系(或成轴对称关系,或成平移的关系,或成旋转的关系(包括中心对称).这样,在解决具体的几何图形问题时,如果我们有意识地从图形的性质或关系中所显示或暗示的“变换特征”出发,来识别、构造基本图形或图形关系,那么将对问题的解决有着极为重要的启发和引导的作用.下面我们从变换视角以三角形的全等关系为主进行研究.解决图形问题的能力,核心要素是善于从综合与复杂的图形中识别和构造出基本图形及基本的图形关系,而“变换视角”正好能提高我们这种识别和构造的能力.1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).考点:旋转的性质;全等三角形的判定与性质;直角三角形斜边上的中线;正方形的性质。

专题:压轴题。

分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG.解答:(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD,同理,在Rt△DEF中,EG=FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG,∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG;在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.(3)解:(1)中的结论仍然成立.即EG=CG.其他的结论还有:EG⊥CG.点评:本题利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质.2.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E 是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条件和结论.考点:矩形的性质;全等三角形的判定与性质;等腰三角形的性质;正方形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何三大变换(讲义)
一、知识点睛
1.________、________、____________统称为几何三大变换.几
何三大变换都是_______________,只改变图形的________,不改变图形的_________________.
2.三大变换思考层次




基本要素基本性质延伸性质应用
平移平移方向
平移距离
1.对应点所连的线
段平行且相等
2.对应线段平行且
相等
3.对应角相等
平移出现
__________
天桥问题、
平行四边形
存在性等
旋转旋转中心
旋转方向
旋转角度
1.对应点到旋转中
心的距离相等
2.对应点与旋转中
心的连线所成的角
等于旋转角
3.对应线段、角相
等,对应线段的夹
角等于旋转角
4.对应点所连线段
的垂直平分线都经
过旋转中心
旋转出现
__________
旋转结构
(等腰)等

对称对称轴
1.对应线段、对应
角相等
2.对应点所连线段
被对称轴垂直平分
3.对称轴上的点到
对应点的距离相等
4.对称轴两侧的几
何图形全等
折叠出现
__________
折叠问题、
最值问题等
二、精讲精练
1. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到
△DEF ,则四边形ABFD 的周长为( ) A .6
B .8
C .10
D .12
F
C
E
D
B
A
B 1
A 1
y
x B
A O
第1题图 第2题图
2. 如图,在平面直角坐标系xOy 中,已知点A ,B 的坐标分别
为(1,0),(0,2),将线段AB 平移至A 1B 1,若点A 1,B 1的坐标分别为(2,a ),(b ,3),则a b +=___________.
3. 如图,在44⨯的正方形网格中,△MNP 绕某点旋转一定的角
度得到△M 1N 1P 1,则其旋转中心可能是( ) A .点A
B .点B
C .点C
D .点D
D C B A
N 1
M 1
P 1N M
P
4. 如图,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90°,
∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,则当点A 第3次落在直线l 上时,点A 所经过的路径长为________________.(结果保留π)
C
B
A
l …
5. 如图,菱形OABC 的顶点O 在
坐标原点,顶点A 在x 轴正半轴上,且∠B =120°,OA =2.将菱形OABC 绕原点O 顺时针旋转105°至菱形OA ′B ′C ′的位置,
则点B ′的坐标为___________.
6. 如图1,把正方形ACFG 和Rt △ABC 重叠在一起,已知AC =2,
∠BAC =60°.将Rt △ABC 绕直角顶点C 按顺时针方向旋转,使斜边AB 恰好经过正方形ACFG 的顶点F ,得到△A ′B ′C .若AB 分别与A ′C ,A ′B ′相交于点D ,E ,如图2所示,则△ABC 与△A ′B ′C 重叠部分(图中阴影部分)的面积为_________.
B
C G F
A
图1 图2
7. 如图,O 是等边三角形ABC 内一点,且OA =3,OB =4,OC =5.将
线段OB 绕点B 逆时针旋转60°得到线段O ′B ,则下列结论:①△A O′B 可以由△COB 绕点B 逆时针旋转60°得到; ②∠AOB =150°;③633AOBO'S =+四边形; ④93
64
AOB AOC S S +=+
△△. 其中正确的是____________.(填写序号)
B'
E
D
A'
B
G
F
C
A
C'
B'
A'C
B
A
O
y
x
O'
O
C
A
8. 如图,在矩形ABCD 中,AD AB ,将矩形ABCD 折叠,使
点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积之比为1:4,则MN
BM
的值为( ) A .2
B .4
C .25
D .26
N M E D
C
B
A
9. 如图,在矩形纸片ABCD 中,已知AB =5cm ,BC =10cm ,点
E ,P 分别在边CD ,AD 上,且CE =2cm ,PA =6cm ,过点P 作P
F ⊥AD ,交BC 于点F .将纸片折叠,使点P 与点E 重合,折痕交PF 于点Q ,则线段PQ 的长为_____________.
Q
F
E P D
C B
A
10. 如图,在菱形纸片ABCD 中,∠A =60°,P 为AB 边的中点.将
纸片折叠,使点C 落在直线DP 上,若折痕经过点D ,且交BC 于点E ,则∠DEC =____________.
C'
P E D
C
B
A
11. 如图,在菱形纸片ABCD 中,∠A =60°,将纸片折叠,点A ,
D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕.当 D ′F ⊥CD 时,CF
DF
的值为( ) A .
31
2
- B .
36
C .
231
6
-
D .
31
8
+ E F
D'
A'
C
B
D
A
12. 如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,BC =3.D 是
BC 边上一动点(不与点B ,C 重合),过点D 作DE ⊥BC ,交AB 于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处.当△AEF 为直角三角形时,BD 的长为________.
D
E
F
C
B
A
A
B
C
13. 阅读下面的材料:
小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O .若梯形ABCD 的面积为1,试求以AC ,BD ,AD +BC 的长度为三边长的三角形的面积.
C O
D B
A
图1 图2
小伟是这样思考的:要想解决这个问题,应想办法移动这些分散的线段,构造一个三角形,再计算其面积.他发现 AD ∥BC ,因为平移可以产生平行四边形,利用平行四边形对边相等就可转移边,所以考虑通过平移来解决这个问题.他的方法是过点D 作AC 的平行线,交BC 的延长线于点E ,得到的△BDE 即是以AC ,BD ,AD +BC 的长度为三边长的三角形(如图2).
参考小伟同学思考问题的方法,解决下列问题: 如图3,△ABC 的三条中线分别为AD ,BE ,CF .
F
E
D
C
B
A
图3
(1)在图3中利用图形变换画出并指明以AD ,BE ,CF 的长度为三边长的一个三角形;
(2)若△ABC 的面积为1,则以AD ,BE ,CF 的长度为三边长的三角形的面积为_____________.
三、回顾与思考
E
O
D
C B
A
【参考答案】
知识点睛
1.平移、旋转、轴对称.全等变换,位置,形状和大小.2.平行四边形,等腰三角形,等腰三角形.
精讲精练
1.C
2.2
3.B
4.(43)

5.(2,2
-)
6.
53 6
2 -
7.①②④8.D
9.25
cm 6
10.75°11.A 12.1或2
13.(1)作图略;(2)3
4
.。

相关文档
最新文档