大学物理机械波

合集下载

大学物理 机械波

大学物理 机械波


O
X
2m
解:波源处振动函数为: y Acos(t 0)
这里A=0.01, = 2 =200 T
由旋转矢量图可判断出:
y
0
2
于是波源处的振动方程为: y 0.01cos(200t )
以A为坐标原点,建立坐标系,任取一点P,P比波源O2点落后,
故应该“-”
y 0.01cos[200π(t x 2) π ]
第6章 机械波
出天 电线 磁发 波射
声波
水波
地震波造成的损害
第六章 机械波
§6.1 机械波的基本概念 §6.2 平面简谐波 §6.3 波的能量 §6.4 惠更斯原理 §6.5 波的干涉 §6.6 驻波
波动: 振动在空间的传播过程叫做波动
波的分类: 1. 机械波 机械振动以一定速度在弹性介质中由近及远地传
T0
2
3、能流密度(波的强度):
垂直通过单位面积的能流。
S P ωu σ
4、平均能流密度:
uρA2ω2
sin2
ω
t
x u
S ωu 1 uρA2ω2
2
S ωu
电磁学中称为“坡印亭矢量”, 光学中称为“波的强度”,用 I 表示
I A2
三、平面波和球面波的能流
1、平面波

波线
面u
x
S1
纵波的波动过程 波的传播方向 质点振动方向
纵波的波动过程 波的传播方向 质点振动方向
纵波的波动过程 波的传播方向 质点振动方向
纵波的波动过程 波的传播方向 质点振动方向
纵波的波动过程 波的传播方向 质点振动方向
纵波的波动过程 波的传播方向 质点振动方向
纵波的波动过程 波的传播方向 质点振动方向

大学物理课件PPT第16章机械波

大学物理课件PPT第16章机械波
干涉类型
根据波源和观察点的位置关系,干涉可分为双缝干涉、薄膜干涉等类 型。
驻波形成原理及特点讨论
驻波形成原理
当一列波在媒质中传播遇到障碍物或边界时,反射波和入射波在 障碍物或边界附近叠加,形成驻波。
驻波特点
驻波的波形不传播,只是在特定区域内振动;在驻波的波节处, 质点振幅为零,而在波腹处,质点振幅最大。
03
波动能量与能流密度
Chapter
波动能量概念及计算方法
波动能量定义
波动能量是指波动现象中所具有的能 量,包括动能和势能两部分。
计算方法
波动能量可以通过对波动场中各点的 能量密度进行积分得到。对于一维简 谐波,波动能量与振幅的平方、波的 频率以及介质密度等参数有关。
能流密度定义及物理意义
能流密度定义
驻波应用
驻波在乐器、声纳等领域有广泛应用。
干涉和驻波在实际问题中应用
测量微小长度
利用光的干涉现象可以测量微小长度,如双缝干涉实验可 用于测量光的波长。
检测表面平整度
通过观察薄膜干涉条纹的形状和分布,可以判断被测表面 的平整度。
声学应用
在声学中,利用驻波原理可以设计各种乐器和音响设备, 如管风琴、吉他等。
能流密度是指单位时间内通过垂 直于波传播方向的单位面积的能 量,也称为能流密度矢量。
物理意义
能流密度描述了波动能量在空间 中传播的方向和速率,是表征波 动现象中能量传输特性的重要物 理量。
能量传播特点与影响因素
传播特点
波动能量在介质中传播时,遵循能量守恒定律。能流密度的大小与波的振幅、 频率以及介质特性等参数有关。
影响因素
波动能量的传播受到多种因素的影响,如介质的吸收、散射、色散等。此外, 波源的特性以及边界条件也会对波动能量的传播产生影响。

大学物理(机械波篇)ppt课件

大学物理(机械波篇)ppt课件

液晶显示
利用偏振光的特性,实现液晶 屏幕对图像的显示和控制。
科学研究
在物理学、化学、生物学等领 域中,利用偏振光研究物质的 光学性质和结构特征。
06
总结回顾与拓展延伸
机械波篇重点知识点总结
机械波的基本概念
机械波是介质中质点间相互作用力引起的振动在介质中的传播。机械波的产生条件、传播方 式、波动方程等基本概念是学习的重点。
驻波形成条件 两列波的频率相同、振幅相等、相位差恒定。
3
驻波特点
波形固定不动,节点和腹点位置固定;相邻节点 间距离等于半波长;能量在节点和腹点之间来回 传递。
03
非线性振动和孤立子简介
非线性振动概念及特点
非线性振动定义
指振动系统恢复力与位移之间不满足线 性关系的振动现象。
振幅依赖性
振动频率和波形随振幅变化而变化。
当障碍物尺寸远大于波长时,衍射现象不 明显。
衍射规律
衍射角与波长成正比,与障碍物尺寸成反 比。
双缝干涉实验原理及结果分析
实验原理:通过双缝让 单色光发生干涉,形成 明暗相间的干涉条纹。
01
干涉条纹间距与光源波 长、双缝间距及屏幕到
双缝的距离有关。
03
05 通过测量干涉条纹间距,
可以计算出光源的波长。
天文学领域
通过测量恒星光谱中谱线的多普勒频移,可以推断出恒星相对于观察 者的径向速度,进而研究恒星的运动和宇宙的结构。
05
光的衍射、干涉和偏振现 象
光的衍射现象及规律总结
衍射现象:光在传播过程中遇到障碍物或 小孔时,会偏离直线传播路径,绕到障碍 物后面继续传播的现象。
当障碍物尺寸与波长相当或更小时,衍射 现象显著。
多个孤立子相互作用后,各自保持 原有形状和速度继续传播。

大学物理第15章机械波

大学物理第15章机械波
2222???????????????????22cosyxatxuu???????222cosyxa?ttu?????????????????????222221yyxut?????这就是一维谐波满足的微分关系
第四篇
波动与光学
§15.1
波动
机械波的产生与传播
振动状态(相位)的传播称为波动,简称波。
y ( m)
0.01
y ( m)
0.01
u
x ( m)
0 .2
t (s)
0 .1
a
b
第四篇
波动与光学
直接读出振动特征量:

y ( m)
0.01
t (s)
0 .1
A 0.01m T 0.1 s 20 (rad / s)


2 ya (t ) 0.01 cos( 20t
第四篇
波动与光学
二、波动微分方程
1.一维波动方程的导出 对于一维波动方程:
可分别对自变量x、t求偏导得:
x y x, t A cos t u
2 y 2 x A 2 cos t 2 x u u 2 y x 2 A cos t 2 t u
频率 波速

u
uT
u

讨论
①波的周期、频率与介质无关,由波源确定。 ②不同频率的波在同一介质中波速相同。
③波在不同介质中频率不变(由波源决定)。
第四篇
波动与光学
六、弹性介质与波的传播
在一种弹性介质中能够传播的是横波还是纵波,波速能够有多大, 都与介质的弹性有关。 1.长变变形 应力 单位截面上的受力称为应力。

大学物理机械波

大学物理机械波

x u
u
dWp
1 2
A2 2
sin
2
(t
ux )dV
dWk
2024/1/12
机械波
3) 介质元的总能量:
机械波
dW dWk dWp A22 sin 2 (t ux)dV
结论
(1) 介质元dV 的总能量:
A2 2
sin
2
t
x u
dV
——周期性变化
(2) 介质元的动能、势能变化是同周期的,且相等.
y(x)
A
cos
t0
x u
A cos
x u
(t0
)
表示各质元的位移分布函数.
对应函数曲线——波形图.
2024/1/12
(3) 波形图的分析: a. 可表示振幅A,波长λ;
u
y
A
λ
O
x1
机械波
x2
x
b. 波形图中 x1 和 x2 两质点的相位差:
y1
A cos t
(
x1 u
)
1
x1 u
y2
BA
机械波
x
(3) 若 u 沿 x 轴负向,以上两种情况又如何?
解: (1) 在 x 轴上任取一点P ,该点
振动方程为:
yp
Acos[4π
(t
x u
1)] 8
x1
BA
u
x
P
波函数为:
y(x,t) Acos[4π (t x 1)] u8
2024/1/12
机械波
(2)
B
点振动方程为:yB (t)
2024/1/12
机械波
6.1.4 波速 波长 周期(频率) 波长(): 同一波线上相邻两个相位差为 2 的质点之间的

大学物理-机械波

大学物理-机械波
v1
v2
注意
波的叠加原理仅适用于线性波的问题
二. 相干波与相干条件
一般情况下,叠加问题复杂。
干涉实验与干涉现象:
当两列(或多列)波叠加时,其合振动的振幅 A 和合强度 I 将在空间形成一种稳定的分布,即某些点上的振动始终加强,某些点上的振动始终减弱的现象。
相干波
相干条件
频率相同、振动方向相同、相位差恒定。

(1)与标准形式比较
(2)


不仅适用于机械波,也适用于电磁波、对于热传导、扩散过程也存在这样的方程;
上式是一切平面波所满足的微分方程(且正、反传播);
若物理量是在三维空间中以波的形式传播,波动方程为
说明
三.平面波的波动微分方程
四.固体棒中纵波的波动方程
1.某截面处的应力、应变关系
o
x
x + x
3. 物质波(概率波)
物质波是微观粒子的一种属性,与经典的波相比具有完全不同的本质。
(遵循量子力学理论)
{波的共同特点:1...,2...,3...}
二. 横波和纵波
横波:
介质质点的振动方向与波传播方向相互垂直的波;如弹性绳上传播的波.
纵波:
介质质点的振动方向和波传播方向相互平行的波;如空气中传播的声波.
远离
u
靠近
u
观察者
二. 观察者静止,波源运动
S 运动的前方波长变短
三. 波源和观察者同时运动
远离
靠近
符号正负的选择与上述相同
u
观察者
若波源和观测者的运动方向不在二者连线上
·
·
O
S
S
o
vS
vo

大一物理知识点机械波

大一物理知识点机械波

大一物理知识点机械波机械波是指通过物质介质传播的波动。

它是由质点在物质介质中传递的能量引起的,具有能量、动量和信息传递的功能。

在大一物理学习中,我们需要掌握一些关键的机械波知识点。

本文将介绍机械波的性质、类型、传播特性和相关公式等内容。

一、机械波的性质1. 振动与波动:机械波是由物质的振动引起的,振动是指物体围绕平衡位置做往复运动。

当振动的能量传递到介质中时,就形成了机械波。

2. 传播介质:机械波需要物质介质来传播,例如空气、水、弹簧等。

机械波无法在真空中传播,因为真空中没有物质介质。

3. 传播方向:机械波沿着与振动方向垂直的方向传播,称为纵波;沿着振动方向传播,称为横波。

4. 能量传递:机械波在传播过程中能量会从波源处传递到周围介质中,周围介质上的质点会进行振动,从而传递能量。

二、机械波的类型1. 纵波:纵波是指粒子在传播方向上振动,振动方向与波的传播方向相同。

例如声波就是一种纵波,声波的传播是由气体、液体和固体中质点的纵向振动引起的。

2. 横波:横波是指粒子在传播方向上不振动,振动方向与波的传播方向垂直。

例如水波就是一种横波,水波的传播是由液体表面上质点的横向振动引起的。

三、机械波的传播特性1. 波长(λ):波长是指波的传播过程中,两个相邻的振动状态之间的空间距离。

波长与波速和频率有关,可以使用公式λ = v / f 来计算,其中v是波速,f是频率。

2. 频率(f):频率是指单位时间内波的振动次数,单位是赫兹(Hz)。

频率与振动周期的倒数成正比,可以使用公式f = 1 / T 来计算,其中T是振动周期。

3. 波速(v):波速是指波的传播速度,单位是米每秒(m/s)。

波速与波长和频率有关,可以使用公式v = λ × f 来计算。

四、机械波相关公式1. 振动周期(T):振动周期是指物体完成一次完整振动所需要的时间,单位是秒(s)。

2. 振动频率(f):振动频率是指单位时间内振动的次数,单位是赫兹(Hz)。

《大学物理》机械波

《大学物理》机械波
解: 1) 按所给条件, 取波函数为
t x y A cos[ 2 ( ) ] T
式中为坐标原点振动的初相


2
15
代入所给数据, 得波动方程
t x y 1.0 cos2 m 2.0 2.0 2
2) 将t=1.0s代入式(1), 得此时刻各质点的位移分别为
ห้องสมุดไป่ตู้ x ut yt t A cos t t 0 u x A cos t 0 yt u
波函数的物理意义描述了波形的传播。
12
三、波动中质点振动的速度和加速度
B-容变模量, -流体密度 理想气体:
RT u
p 容变
8
= Cp/Cv , -摩尔质量
§2.平面简谐波
?简谐波:若波源作简谐振动,介质中各质点也将相继作 同频率的简谐振动, 这种波称之为简谐波。 ?平面简谐波:若波面为平面,则该波称为平面简谐波。
一、平面简谐波的波函数
设有一平面简谐波, 在无吸收、均匀、无限大的介质中传播。
1. 沿x轴正方向传播(右行波)
设原点O处振动位移的表达式为:
y

O
u
y0 A cos (t 0)
P
x
设波的位相速度,即波速为u,则对P点:
x
9
x y A cos 〔 (t ) 0〕 u
2 f , u f
x y A cos 2 ft 0
y x v A sin [ (t ) 0] t u
2 y x 2 a 2 A cos [ (t ) 0] t u
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 机械波10.1机械波振动物体在一定的平衡位置附近的往返运动称为机械振动。

10.1.1简谐振动的描述一、简谐振动方程在光滑的水平面上,质量不计的轻弹簧左端固定,右段与质量为m 的物体相连,构成一个震动系统,物体为弹簧振子。

物体所受的弹簧弹力的方向始终指向平衡位置,称为回复力。

有胡克定律可知F=-kx弹簧振子的位移与时间关系的形式为x=Acos(ωt+φ)于是,把这种运动参量随时间按正弦或余弦函数规律变化的振动,叫做简谐振动,式子称为简谐振动方程。

由位移,速度和加速度的微分关系可得,简谐振动物体的速度v 和加速度a 分别为V=dx/dt=-ωAsin(ωt+φ)a=(dx)^2/d(x^2)=-ω^2Acos(ωt+φ)简谐振动物体的位移随时间的变化曲线,称为振动曲线。

二、震动的特征物理量(1) 振幅A :指振动物体离开平衡位置的最大位移。

(2) 周期T ,频率V 与圆周率W :物体完成一次全振动所经历的时间为振动周期,用T 表示;单位时间内物体所做的完全振动的次数为振动频率,用V 表示;单位时间内物体所做的完全振动的次数的2倍W 表示,国际单位是rad/s.三者关系为 :ν=1/T, T=2 π/ω, W=2π ν 。

(3) 相位和初相位 A=2^/2^02^0W V X φ=arctan(-ν0)/(ωx0) 三、旋转矢量沿着逆时针方向匀速振动矢量A 代表了一个X 方向的简谐振动,这个矢量称为旋转矢量。

四、简谐振动的能量整个振动系统的能量应包括弹簧振子的振动能量Ek 和震动引起的弹性能量Ep.设弹簧振子在平衡位置的势能为0,他的任意时刻的是能与动能为Ek=1/2kx^2=1/2m ω^2A^2π(cos(ωt+φ))^2Ep=1/2kx^2=1/2m ω^2A^2π(sin(ωt+φ))^2则系统能量为E=Ek+Ep=1/2mw^2A^2=1/2kA^2简谐振动的总能量是守恒的,在振动过程中动能与势能相互转换。

10.1.2 受迫振动和共振实际物体的振动都是非简谐振动。

在周期外力作用下进行的振动称为受迫振动。

如果物体或建筑在外界驱动下做受迫振动,当驱动力频率W接近或等于物体或建筑的Wd时,其受迫振动的振幅更大,这种现象叫做共振。

共振条件ω=ωd。

但是,不论ω>ωd还是ω<ωd时,物体或建筑的振幅就都比共振时小得多。

共振的弊端。

10.1.3机械波的形成机械振动在弹性介质中传播形成机械振动。

10.2 机械波的描述10.2.1 机械波的分类与特征物理量一、机械波的种类横波:媒质的振动方向与波动的传播方向相垂直的机械波,称为横波。

纵波:弹簧上各处的振动方向与震动传递的方向是平行的,这种机械波称为纵波。

二、机械波的特征物理量(1)波长λ:在波的传播方向上两个相邻的振动完全相同的质点之间的距离。

(2)周期T:波传播一个波长所需的时间。

(3)频率ν:单位时间内传播的完整波形的数目。

(4)波速u:单位时间内波动传播的距离,则有 u=λ/T 或 u=λV 机械波在不同的介质中的传播速度不同,波速取决于介质的特性,弹性波的波速取决于介质的密度及弹性模量两个因素。

三、机械波的几何描述波线:波的传播方向带箭头的线。

波面:不同波线上相位相同的点所构成的曲面。

波前:处于最前面的波面。

(一列博波的波面有任意多个,但波前只有一个)平面波:波面是平面的机械波。

球面波:波面是球面的机械波。

波面与波线相互垂直。

10.2.2 平面简谐波的波函数简谐振动在介质中传播而形成的机械波,称为简谐波,当波源做简谐运动在均匀,无吸收的介质中传播而形成的简谐波,称为平面简谐波。

一、波函数Y=Acos[2π(t/T-x/λ)+φ] 可以代表波动区域内中所有质点的运动,该式称为简谐波的波函数。

定义k=2/λ, 则可以改为 y=Acos[k(ut-x)+φ] 沿Ox轴正向传播的波动,称为右行波,若波动沿轴OX轴负方向传播,称为左行波,其波函数应为:y=Acos[w(t+x/u)+φ]二、波图形质点介质位置为横坐标,指点的振动位移为纵坐标,可作出在不同时刻所有质点的位移曲线,称为波形图。

三、波的能量在波动传播的区域,播的能量应该包括媒质中所有质点的振动动能和弹性介质的形变势能,可以证明在dV体积的媒质中,波动的总能量为dW=(ρdV)A^2*w^2(sin(t-x/u)^2)^2 波动的能量不守恒,波动是能量传递一种形式。

随着波动的传播,能量也不断从振源向介质中传递,若要维持波动,就必须不停地给振源补充能量。

10.2.3地震产生的波动汶川地震10.3 机械波的传播规律10.3.1 衍射现象与惠更斯原理当机械波遇到带小孔或小缝等障碍物后,波动后可以继续在障碍物后的区域传播,这种现象称为波的衍射现象。

介质中波动传到各点都可以看做是发射子波的波源,在其后的任意时刻,这些波的包络就是新的前波,这成为惠更斯原理。

10.3.2 衍射现象与波的叠加一、播的干涉现象在波的传播过程中,当频率相同,振动方向相同和相位差恒定的两列水波相遇时,在交叠区域,某些地方振动始终加强,而另一些地方振动始终减弱,从而使水面出现稳定的,规则的,凹凸的图样。

这种现象称为干涉现象。

当频率相同,振动方向相同和相位差恒定的波源,称为相干波源。

二、波的叠加原理当几列机械波相遇时,相遇区域中任一点振动为各列波单独存在时在该点引起的振动位移的矢量和。

相遇后,它们任然保持各自原有的特征不变,并按原来的方向继续前进,好像没有遇到过其他波一样。

三、干涉的相长,相消条件S1和S2为相干波源,他们激发的机械波的波函数分别为y1=A1cos(ωt-(2πx/λ)+φ1)y2=A2cos(ωt-(2πx/λ)+φ2)两列波传播到P点时,引起的P点振动为:y=y1+y1=Acos(ωt+φ)则P的合振幅为2122^2^1AAAA++*(cos∆φ)^(1/2)其中∆φ为想干波在P点的相位差,且∆φ=φ2-φ1-2π(r2-r1)/λ因此,相干波引起的合振动的振幅和相位差都不随时间变化,干涉图样是稳定的。

P点振动的初相位φ为Φ=arctan[(A1sin(φ1-2πr1/λ)+A2sin(φ2-2πr2/λ))/(A1cos(φ1-2πr1/λ)+A2cos(φ2-2πr2/λ))](1)∆φ=±2kπ(k=0,1,2,.....) 时,A=A1+A2,想干区域中对应点的振幅始终最大,这种现象称为干涉相长。

(2)当∆φ=±(2k+1)π(k=0,1,2,.....) 时,A=21AA-,想干区域中对应点的振幅始终最小,这种现象称为干涉相消。

若φ2=φ1,有∆φ=2π(r2-r1)/ λ(1)当波程差δ= r2-r1=±2k(λ/2)时,干涉加强,称为干涉相长条件。

(2)当波程差δ= r2-r1=±(k+1)(λ/2)时,干涉减弱,称为干涉相消条件。

(3)相位差∆φ或波程差δ介于以上两种情况之间的点,合振动的振幅则介于振幅最大值和这幅最小值之间。

10.3.3 驻波现象及应用入射波与反射波的叠加,在弦线上可以观察一种波形不随时间变化的波动,称为驻波。

当驻波出现时,弦线上有些点始终静止,称为波节;有些点的振幅始终最大,称为波腹。

一、驻波方程y=y1+y2=2Acos(2πx/λ)cosωt 该式称为驻波方程。

其中,)2cos(2λπχ÷A视为驻波振幅。

二、相位突变形成驻波时如果反射处为波节,则反射波与入射波相波相比,相位发生了π的变化,这种现象称为相位突变。

由于π的相位差相当于半个波长的波程差,于是相位突变也称为“半波损失”。

三、驻波应用1 弦线上的驻波2 空气中驻波3 管弦乐器的工作原理10.4 声波10.4.1 声波的特征与种类一、声波的特性(1)声速:声音在介质中的传播速度。

(2)声音三要素音色,音调,响度。

二、声强与声强级声强为单位时间内通过垂直于声波传播方向的单位面积的声波能量,也称为声波的能留密度。

任意声波的强度I与人类能听到的最弱声音I0的比值的对数量,为声波的声强级,以L表示。

三、次声波与超声波频率小于20Hz的低频声波称为次声波:(1)波长长,频率低,大气对次声波的吸收少,传播距离远。

(2)穿透能力强,能够穿透建筑物或金属壳。

频率大于20000Hz的声波称为超声波:(1)方向性强,只沿直线传播。

(2)能量大,且易于集中使用。

10.4.2多普勒效应当声源与观察者之间存在着相对运动时,观察者所收到的波源频率与波源的实际频率有所不同,有时频率会升高,有时频率会降低,这种现象称为声波的多普勒效应。

一、波源与观察者相向运动二、波源与观察者相离运动10.4.3多普勒效应雷达与多普勒彩超一、多普勒雷达多普勒雷达是利用多普勒效应进行定位,测速,测距等工作的雷达。

二、多普勒彩超彩超是将声波的多普勒效应应用于影像诊断的一种手段,彩超其实是高清晰度的黑白B超加上彩色多普勒效应。

相关文档
最新文档