数字的找规律类型的总结

合集下载

数字找规律方法3则

数字找规律方法3则

数字找规律方法3则以下是网友分享的关于数字找规律方法的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。

数字找规律的方法(1)数字规律第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。

1、等差数列的常规公式。

设等差数列的首项为a1,公差为 d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数) 。

[例1]1,3,5,7,9,()A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。

从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。

故选C 。

2、二级等差数列。

是指等差数列的变式,相邻两项之差之间有着明显的规律性, 往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列, 所以括号内的数与26的差值应为11, 即括号内的数为26+11=37.故选C 。

3、分子分母的等差数列。

是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。

[例3] 2/3,3/4,4/5,5/6,6/7,()A 、8/9 B、9/10 C、9/11 D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。

故选D 。

4、混合等差数列。

是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。

[例4] 1,3,3,5,7,9,13,15,,(),()。

A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。

第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。

5、等比数列的常规公式。

完整版数字找规律类型总结归纳

完整版数字找规律类型总结归纳

欢迎共阅数字找规律类型总结在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、数列中每一个数字都是n的平方构成或者是n的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,必须掌握。

但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。

这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案。

数字推理题的一些经验1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一点模式,各数之间的差有规律,如1、2、5、10、17。

数字找规律汇总

数字找规律汇总

数字找规律汇总《数字找规律汇总》在数字的世界里,存在着各种各样奇妙的规律。

数字找规律,简单来说,就是通过对一系列数字的观察、分析,找出数字之间内在的、有逻辑的联系模式。

让我们先从最常见的等差数列说起。

想象一下,数字就像一个个小士兵,在等差数列这个队伍里,相邻的两个小士兵之间的距离是固定不变的。

比如说,1、3、5、7、9……这里每个数字都比前一个数字大2,就像小士兵们整齐地迈着固定长度的步伐前进。

这个2就被称为公差。

我们可以把这个公差看作是这个数字队伍的“节奏”,只要按照这个节奏,就能轻松地找到这个数列后面的数字。

再比如,10、8、6、4、2……这是一个公差为-2的等差数列,就好像小士兵们在按照固定的节奏后退呢。

再来看等比数列,等比数列里的数字就像是在玩“翻倍”或者“减半”的游戏。

例如,2、4、8、16、32……每个数字都是前一个数字的2倍,这就像是一个数字家族在按照一个固定的“繁殖规则”繁衍后代。

2就是这个数列的公比,它像一把魔法钥匙,只要知道了这个钥匙,就能打开这个数列的大门,预测后面的数字。

要是公比是1/2的话,就像16、8、4、2、1……数字就像在不断地“瘦身”。

还有一种有趣的规律是斐波那契数列,这个数列就像是数字世界里的“黄金组合”。

它的规律是从第三项开始,每一项都等于前两项之和,就像0、1、1、2、3、5、8、13……这个数列就像一群小魔法师在合作施展魔法,每个小魔法师的力量都是前两个小魔法师力量之和。

这个数列在自然界中也有很多体现呢,比如说向日葵的花盘,它的种子排列就呈现出斐波那契数列的规律。

仿佛是大自然也对这个神奇的数列情有独钟,按照这个数列来安排种子的位置,既能保证空间的合理利用,又能让向日葵长得更加美观。

另外,数字规律还有一些周期性的规律。

就像日历一样,每7天就是一个周期,星期几会不断地循环。

比如说,1、5、1、5、1、5……这组数字就是以2为周期在循环。

这就像一个小陀螺,转了一圈又回到原点,然后又开始新的一轮旋转。

数字找规律题解题技巧

数字找规律题解题技巧

数字找规律题解题技巧
数字找规律题是数学中的一类常见题型,这类题目需要我们通过观察和分析,找出数字之间的规律,从而解决问题。

下面介绍一些数字找规律题的解题技巧。

一、观察法
观察法是数字找规律题中最常用的一种方法。

通过观察数字的增减、奇偶、大小关系等,可以发现数字之间的规律。

例如,观察一串数字[1, 2, 3, 5, 8, 13, 21] 可以发现每个数字都是前两个数字的和,这是一个斐波那契数列。

二、差分法
差分法是通过计算相邻两项的差来找出数字之间的规律。

如果差值有固定规律或者差值之间也存在某种规律,那么原数列就可以通过差值得到简化,问题就变得简单多了。

三、代数法
代数法是通过代数运算来找出数字之间的规律。

例如,对于数列[1, 2,
4, 8, 16] 可以发现每个数字都是前一个数字的2倍,这是一个等比数列。

四、归纳法
归纳法是通过观察和分析少量数据来推测出整个数列的规律。

有时候我们无法直接观察出数字之间的规律,但是可以通过归纳总结来找出规律。

五、方程法
方程法是通过建立数学方程来找出数字之间的规律。

有时候数字之间的规律可以通过一些数学方程来表示,通过解方程可以找到数字之间的规律。

六、倍数法
倍数法是通过计算某个数的倍数来找规律。

有时候数字之间存在某种倍数关系,通过计算倍数可以找到规律。

七、函数法
函数法是通过函数关系来找出数字之间的规律。

有时候数字之间的规律可以用一些函数关系来表示,通过观察函数关系可以找到规律。

数字之间的关系找出规律

数字之间的关系找出规律

数字之间的关系找出规律数字之间的关系是数学中一个重要的研究领域,人们通过观察数字序列中的特点和规律,寻找其中蕴含的数学关系,有助于深入理解数学的本质。

本文将通过几个示例,展示数字之间关系的寻找规律的过程。

示例一:等差数列在等差数列中,每个数字与它的前一个数字之间的差值保持恒定。

比如,1, 3, 5, 7, 9就是一个等差数列,差值为2。

这种关系可以用公式来表示:an = a1 + (n-1)d,其中,an代表第n个数字,a1代表第一个数字,d代表差值。

示例二:等比数列在等比数列中,每个数字与它的前一个数字之间的比值保持恒定。

比如,1, 2, 4, 8, 16就是一个等比数列,比值为2。

这种关系可以用公式来表示:an = a1 * r^(n-1),其中,an代表第n个数字,a1代表第一个数字,r代表比值。

示例三:斐波那契数列斐波那契数列是一个非常特殊的数列,每个数字都是前两个数字之和。

比如,1, 1, 2, 3, 5, 8, 13就是一个斐波那契数列。

这种关系可以用递推公式来表示:an = an-1 + an-2,其中,an代表第n个数字,an-1代表第n-1个数字,an-2代表第n-2个数字。

示例四:平方数序列在平方数序列中,数字是前一个数字的平方。

比如,1, 4, 9, 16, 25就是一个平方数序列。

这种关系可以用公式来表示:an = n^2,其中,an代表第n个数字。

通过观察数字序列中的特点和规律,我们可以发现各种各样的数字关系。

这些关系不仅存在于数列中,还可以在数学中的各个领域中找到。

例如,在代数中,我们可以通过观察多项式的系数和次数之间的关系推导出多项式的展开式;在几何中,我们可以通过观察图形的形状和尺寸之间的关系推导出图形的性质。

在数学的学习过程中,寻找数字之间的关系并找出规律是一项重要的技能。

通过观察和思考,我们可以逐渐提高对数字的理解和抽象能力。

同时,通过寻找数字关系,我们也可以培养出逻辑思维和问题解决能力,这些都是在数学以及其他领域中非常有价值的能力。

找规律知识点总结小学

找规律知识点总结小学

找规律知识点总结小学一、数字规律1、顺序规律从1开始,按照一定的规律依次排列数字。

例如,1, 3, 5, 7, 9,可以根据规律得到下一个数字是11。

学生需要通过观察数字之间的关系,找出规律,从而预测后面的数字。

2、图形数字规律通过一些特殊的排列和组合,形成一定规律的数字,如等差数列、等比数列等。

学生需要通过观察数字之间的差异或比例关系,找出规律,进而求解未知的数字。

3、数列规律通过给出的数列,学生需要找出数列中的规律,这个规律可以是加法规律、减法规律、乘法规律或除法规律。

通过找规律的方法,可以帮助学生发现数列的规律,并且预测数列中的下一个数字。

二、图形规律1、拼图规律通过一定的规则,将图形拼接在一起形成一个完整的图形,学生需要观察图形之间的排列规律,找出规律,进而预测下一个图形的位置和形状。

2、图形变换规律通过对图形进行旋转、镜像、翻转等操作,形成一定的规律。

学生需要通过观察图形之间的变换规律,找出规律,进而预测变换后的图形。

三、字母规律1、字母组合规律通过给出的字母组合,学生需要找出其中的规律,这个规律可以是字母之间的排列顺序、字母之间的差异或比例关系等。

通过找规律的方法,可以帮助学生预测未知的字母组合。

2、字母变换规律通过对字母进行大小写、颜色、形态等操作,形成一定的规律。

学生需要通过观察字母之间的变换规律,找出规律,进而预测变换后的字母。

以上是小学阶段找规律的知识点总结,通过系统地学习和掌握这些知识点,可以帮助学生提高解决问题的能力,加深对数学问题的理解,培养逻辑思维能力,从而更好地掌握数学知识。

希望本文对学生们的学习有所帮助。

数学找规律技巧和方法

数学找规律技巧和方法

数学找规律技巧和方法以数学找规律技巧和方法为题,我们来探讨一下数学中寻找规律的一些常用技巧和方法。

一、观察法观察法是最基本的方法之一。

通过观察数列中的数字或图形的特点,找出其中的规律。

例如,观察以下数列:1, 4, 9, 16, 25, …我们可以观察到这个数列是由每个数字的平方组成的,即第n个数字是n的平方。

这种方法适用于寻找数字规律或图形规律。

二、递推法递推法是指通过已知的一些数值,推导出后面的数值。

这种方法常用于数列或数学问题中。

例如,观察以下数列:1, 3, 6, 10, 15, …我们可以观察到每个数字是前一个数字加上当前的位置。

即第n个数字是前n-1个数字之和加1。

这种方法适用于寻找数列中的数字规律。

三、代数法代数法是通过建立代数表达式或方程来寻找规律。

例如,观察以下数列:2, 4, 8, 16, 32, …我们可以观察到每个数字都是前一个数字乘以2。

即第n个数字是2的n-1次方。

这种方法适用于寻找数列中的数字规律。

四、差分法差分法是通过对数列中的数字进行差分运算,寻找数字之间的规律。

例如,观察以下数列:1, 4, 9, 16, 25, …我们可以观察到每个数字之间的差值是递增的,即1, 3, 5, 7, …。

这种方法适用于寻找数字之间的规律。

五、数形结合法数形结合法是将数学问题中的数字和几何图形结合在一起,通过观察图形的形状和属性,寻找规律。

例如,观察以下图形:□, ■, ▲, ●, ☆, …我们可以观察到每个图形的边数和顶点数是依次递增的。

即第n个图形有n个边和n个顶点。

这种方法适用于寻找图形规律。

六、归纳法归纳法是通过已知的一些例子,总结出规律。

例如,观察以下数列:1, 1, 2, 3, 5, 8, 13, …我们可以观察到每个数字是前两个数字之和。

即第n个数字是前两个数字之和。

这种方法适用于寻找数列中的数字规律。

七、逆向思维法逆向思维法是指从结果出发,倒推出前面的数字或规律。

数字找规律的方法与技巧

数字找规律的方法与技巧

数字找规律的方法与技巧在数学中,数字的规律是一个非常有趣的研究领域。

通过寻找数字之间的模式和规律,我们可以更好地理解数字之间的关系,并运用这些规律解决实际问题。

本文将介绍一些以数字找规律的方法与技巧,帮助读者更好地理解和应用数字规律。

一、观察法观察法是最常用的方法之一。

我们可以通过对一组数字进行观察和分析,找出其中的规律。

例如,我们观察以下数字序列:2, 4, 6, 8, 10。

通过观察我们可以发现,这是一个等差数列,公差为2。

因此,下一个数字应该是12。

通过观察法,我们可以找到很多数字序列中隐藏的规律。

二、递推法递推法是一种通过已知的数字推导出下一个数字的方法。

这种方法常用于斐波那契数列等递推数列的求解。

例如,斐波那契数列的规律是每个数字都是前两个数字之和。

通过递推法,我们可以得到斐波那契数列的前几个数字:0, 1, 1, 2, 3, 5, 8, 13...通过不断地递推,我们可以得到更多的数字。

三、数位法数位法是一种通过数字的各个位数之间的关系来找规律的方法。

例如,我们观察以下数字序列:16, 22, 28, 34, 40。

通过观察我们可以发现,这些数字的个位数都是6,十位数依次递增。

因此,下一个数字应该是46。

通过数位法,我们可以找到数字中隐藏的规律。

四、平方与立方法平方与立方法是一种通过数字的平方和立方来找规律的方法。

例如,我们观察以下数字序列:1, 4, 9, 16, 25。

通过观察我们可以发现,这些数字分别是1的平方、2的平方、3的平方、4的平方、5的平方。

因此,下一个数字应该是36,即6的平方。

通过平方与立方法,我们可以找到数字中隐藏的规律。

五、质数法质数法是一种通过质数来找规律的方法。

质数是只能被1和自身整除的数,如2, 3, 5, 7, 11等。

通过观察质数的规律,我们可以发现一些有趣的现象。

例如,质数大多分布在自然数中,但它们的分布并不均匀。

通过研究质数的分布规律,数学家们发现了许多重要的数论问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字找规律类型总结在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数& 前一个数的平方再加或者减一个常数等于第二个数9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、数列中每一个数字都是n的平方构成或者是n的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,必须掌握。

但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。

这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案。

数字推理题的一些经验1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622 ,规律为a*3-2=b2)深一点模式,各数之间的差有规律,如1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

3)看各数的大小组合规律,做出合理的分组。

如7,9,40,74,1526,5436 , 7和9 ,40和74 ,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40,9*9-7=74,40*40-74=1526,74*74-40=5436 ,这就是规律。

4)如根据大小不能分组的,A,看首尾关系,如7 , 10 , 9 ,12 ,11 , 14,这组数7+14 =10+11 = 9+12。

首尾关系经常被忽略,但又是很简单的规律。

B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。

如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2A3-2=6 、3A3-3=24 、4A3-4=60 、5A3-5=120 、6A3-6=210 。

这组数比较巧的是都是6的倍数,容易导入歧途。

6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14 的差为3,如论坛上答:256 , 269 , 286 , 302 , () , 2+5+6=13 2+6+9 =17 2+8+6 = 16 3+0+2 = 5, v 256+13 = 269 269+17 = 286286+16 = 302 •••下一个数为302+5 = 307。

7)再复杂一点,如0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。

8)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。

而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1 。

数字推理题经常不能在正常时间内完成,考试时也要抱着先易后难的态度(废话,嘿嘿)。

应用题个人觉得难度和小学奥数程度差不多(本人青年志愿者时曾在某小学辅导奥数),各位感觉自己有困难的网友可以看看这方面的书,还是有很多有趣、快捷的解题方法做参考。

国家公务员考试中数学计算题分值是最高的,一分一题,而且题量较大,所以很值得重视(国家公务员125题,满分100分,各题有分值差别,但如浙江省公务员一共120题,满分120 分,没有分值的差别)补充:1 )中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略女口1/2、1/6、1/3、2、6、3、1/22)数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉如看到2、5、10、17,就应该想到是1、2、3、4的平方加1如看到0、7、26、63,就要想到是1、2、3、4的立方减1对平方数,个人觉得熟悉1~20就够了,对于立方数,熟悉1~10就够了,而且涉及到平方、立方的数列往往数的跨度比较大,而且间距递增,且递增速度较快3)A人2 —B=C 因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来如数列5 , 10 , 15 , 85 , 140 , 7085如数列5, 6, 19, 17,344 , —55如数列5, 15, 10, 215 , —115这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就考虑这个规律看看4 )奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项如数列1, 8, 9, 64, 25,216奇数位1、9、25分别是1、3、5的平方偶数位8、64、216是2、4、6的立方先补充到这儿。

5)后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系如数列:1、2、3、6、12、24由于后面的数呈2倍关系,所以容易造成误解!数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案数字推理题型及讲解按照数字排列的规律,数字推理题一般可分为以下几种类型、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1 5 3 7 ()A .2 B.8 C.9 D.12解析:答案是C,整个数列中全都是奇数,而答案中只有答案C是奇数2、全是偶数:例题:2 6 4 8 ()A. 1B. 3C. 5D. 10解析:答案是D,整个数列中全都是偶数,只有答案D是偶数。

3、奇、偶相间例题:2 13 4 17 6 ()A.8B. 10C. 19D. 12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C练习:2,1,4,3,(),5 99年考题、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35, 20, 36()A.19B.18C.17D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A。

三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,(),14,23,37A.6B.7C.8D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解4+5=9 5+9=14 9+14=23 14+23=37 ,因此,答案为D ; 析:练习:6, 9, () , 24 , 39 // 1 , 0,1 , 1 , 2, 3, 5,()2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,()99 年考题A . 162 B.156 C.148 D.145解析:22+35-仁56 35+56-仁90 56+90-仁145,答案为D四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6, 3, 3, () , 3 , -3A.0B.1C.2D.3答案是A解析:6-3=3 3-3=0 3-0=3 0-3=-3提醒您别忘了:“空缺项在中间,从两边找规律”2、等差数列:例题:5,10, 15,()A. 16B.20C.25D.30答案是B.解析:通过相减发现:相邻的数之间的差都是5,典型等差数列;3、二级等差:相减的差值之间是等差数列例题:115,110,106,103,()A.102B.101C.100D.99 答案是B解析:邻数之间的差值为5、4、3、(2),等差数列,差值为1103-2=101// 1 , 3, 7, 13 , 21 , 31 ,() 练习:8, 8, 6 , 2 ,()4、二级等比:相减的差是等比数列例题:0,3,9,21,45,()相邻的数的差为3,6,12,24,48,答案为93例题:-2,-1,1,5,( ),29 ---99 年考题解析:-1- ( -2)=1 ,1-( -1)=2,5-1=4 ,13-5=8 ,29-13=16 后一个数减前一个数的差值为:1,2,4, 8,16,所以答案是135、相减的差为完全平方或开方或其他规律例题:1 , 5, 14 , 30 , 55 ,()相邻的数的差为4, 9 ,16 , 25,则答案为55+36=916、相隔数相减呈上述规律:例题:53,48,50,45,47A.38B.42C.46D.51解析:53-50=3 50-47=3 48-45=3 45-3=42答案为B注意:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数例题:1,2,2,4,8,32,()前两个数的乘积等于第三个数,答案是2562、前一个数乘以一个数加一个常数等于第二个数,n1 Xm+a=n2例题:6,14,30,62,()A.85B.92C.126D.250解析:6 X2+2=14 14 X2+2=30 30 X2+2=62 62 X2+2=126,答案为C 练习:28,54,106,210,()3、两数相乘的积呈现规律:等差,等比,平方,…例题:3/2,2/3,3/4,1/3,3/8 ()(99 年海关考题)A. 1/6 B.2/9 C.4/3 D.4/9解析:3/2 X2/3=1 2/3 X3/4=1/2 3/4 X1/3=1/4 1/3 X3/8=1/83/8 X?=1/16 答案是A六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,七、平方:1、完全平方数列:正4,9,16,25序:逆100,81,64,49,36序:间序:1,1,2,4,3,9,4,(16)2、前一个数的平方是第二个数。

相关文档
最新文档