投影与视图(中考专题复习总结)

合集下载

中考总复习:投影与视图--知识讲解

中考总复习:投影与视图--知识讲解

中考总复习:投影与视图—知识讲解【考纲要求】1.通过实例了解平行投影和中心投影的含义及简单应用;2.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图,左视图、俯视图),能根据三视图描述基本几何体或实物的原型.【知识网络】【考点梳理】考点一、生活中的几何体1.常见的几何体的分类在丰富多彩的图形世界中,我们常见的几何体有长方体、正方体、棱柱体、棱锥体、圆柱体、圆锥体、球体、台体等.2.点、线、面、体的关系(1)点动成线,线动成面,面动成体;(2)面面相交成线,线线相交成点.要点诠释:体体相交可成点,不一定成线.3.基本几何体的展开图(1)正方体的展开图是六个正方形;(2)棱柱的展开图是两个多边形和一个长方形;(3)圆锥的展开图是一个圆和一个扇形;(4)圆柱的展开图是两个圆和一个长方形.考点二、投影1.投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.3.正投影投影线垂直投影面产生的投影叫做正投影.要点诠释:正投影是平行投影的一种.考点三、物体的三视图1.物体的视图当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图.我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.要点诠释:三视图就是我们从三个方向看物体所得到的3个图象.2.画三视图的要求(1)位置的规定:主视图下方是俯视图,主视图右边是左视图.(2)长度的规定:长对正,高平齐,宽相等.要点诠释:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.【典型例题】类型一、三视图及展开图1.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的主视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22 B.19 C.16 D.13【思路点拨】视图、俯视图是分别从物体正面、上面看,所得到的图形.【答案】D;【解析】综合主视图和俯视图,这个几何体的底层最少有3+3+1=7个小正方体,第二层最少有3个,第三层最少有2个,第四层最少有1个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:7+3+2+1=13个.故答案为:13.【总结升华】由三视图判断组成原几何体的小正方体的个数与由相同的小正方体构成的几何体画三视图正好相反.举一反三:【变式1】(2014秋•莲湖区校级期末)用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个.【答案】7.【解析】∵俯视图中有5个正方形,∴最底层有5个正方体;∵主视图第二层有2个正方形,∴几何体第二层最少有2个正方体,∴最少有几何体5+2=7.【高清课堂:《空间与图形》专题:投影与视图例6】【变式2】下图是由几个相同的小正方体搭成的几何体从三个方向看到的图形,则搭成这个几何体的小正方体的个数是()个.A.5 B.6 C.7 D.8【答案】B.2.美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部份围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()A. B.C. D.【思路点拨】动手操作看得到小正方体的阴影部分的具体部位即可.【答案】B左面看正面看上面看【解析】动手操作折叠成正方体的形状放置到白纸的阴影部分上,所得正方体中的阴影部分应紧靠白纸,故选B.【总结升华】用到的知识与正方体展开图有关,考察学生空间想象能力.建议学生在平时的教学过程中应结合实际模型将展开图的若干种情况分析清楚.举一反三:【变式】如图所示的是以一个由一些相同的小正方体组成的简单几何体的主视图和俯视图.设组成这个几何体的小正方体的个数为n,请写出n的所有可能的值.【答案】n为8,9,10,11.3.下列图形中经过折叠能围成一个棱柱的是()A. B. C. D.【思路点拨】利用四棱柱及其表面展开图的特点解题.【答案】D;【解析】A、侧面少一个长方形,故不能;B、侧面多一个长方形,折叠后不能围成棱柱,故不能;C、折叠后少一个底面,不能围成棱柱;只有D能围成四棱柱.故选D.【总结升华】四棱柱的侧面展开图为四个长方形组成的大长方形.举一反三:【高清课堂:《空间与图形》专题:投影与视图课堂练习3】【变式】如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、BB1、BC的中点,沿EG、EF、FG将这个正方体切去一个角后,得到的几何体的俯视图是()A. B. C. D.【答案】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.从上面看易得1个正方形,但上面少了一个角,在俯视图中,右下角有一条线段.故选B.类型二、投影有关问题4.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,求塔高AB的长.【思路点拨】过点D构造矩形,把塔高的影长分解为平地上的BD,斜坡上的DE.然后根据影长的比分别求得AG,GB长,把它们相加即可.【答案与解析】【解析1】解:如图1,过D作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G.可得矩形BDFG.由题意得:.∴DF=DE×1.6÷2=14.4(m).∴GF=BD=CD=6m.又∵.∴AG=1.6×6=9.6(m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.图1 图2【解析2】如图2,作DG∥AE,交AB于点G,BG的影长为BD,AG 的影长为DE,由题意得:AG 1.6=DE2.∴AG=18×1.6÷2=14.4(m).又∵BG 1.6=BD1.∴BG=1.6×6=9.6(m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.【总结升华】运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).类型三、投影视图综合问题5.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体最多要小立方体.【思路点拨】从正视图和侧视图考查几何体的形状,从俯视图看出几何体的小立方块最多的数目.【答案】17.【解析】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第二列各3块,第三列1块,从空中俯视的块数只要最低层有一块即可.因此,综合两图可知这个几何体的形状不能确定;如图,最多时有3×5+2×1=17块小立方体.故答案为17.【总结升华】本题考查简单空间图形的三视图,考查空间想象能力,是基础题,但很容易出错.6.(2015•永春县校级自主招生)如图是某中学生公寓时的一个示意图(每栋公寓均朝正南方向,且楼高相等,相邻两栋公寓的距离也相等).已知该地区冬季正午的阳光与水平线的夹角为32°,在公寓的采光不受影响(冬季正午最底层受到阳光照射)的情况下,公寓的高为AB,相邻两公寓间的最小距离为BC.(1)若设计公寓高为20米,则相邻两公寓之间的距离至少需要多少米时,采光不受影响?(2)该中学现已建成的公寓为5层,每层高为3米,相邻两公寓的距离24米,问其采光是否符合要求?(参考数据:取sin32°=,cos32°=,tan32°=)【思路点拨】(1)在直角三角形ABC中,已知AB利用锐角三角函数求得BC的长即可;(2)利用楼高求得不受影响时候两楼之间的距离与24米比较即可得到结果;【答案与解析】解:(1)∵在直角三角形ABC中,AB=20米,∠ACB=32°,∴=ta n32°∴BC===32米,∴相邻两公寓之间的距离至少需要32米时,采光不受影响;(2)∵楼高=3×5=15米,∴不受影响时两楼之间的距离为15÷tan32°=24米,∵相邻两公寓的距离恰为24米,∴符合采光要求;【总结升华】本题是将实际问题转化为直角三角形中的数学问题,做到学数学,用数学,才是学习数学的意义.7.如图,不透明圆锥体DEC放在直线BP所在的水平面上,且BP过底面圆的圆心,其高23m,底面半径为2m.某光源位于点A处,照射圆锥体在水平面上留下的影长BE=4m.(1)求∠B的度数;(2)若∠ACP=2∠B,求光源A距平面的高度.【思路点拨】(1)如下图所示,过点D作DF垂直BC于点F.由题意,得DF=23,EF=2,BE=4,在Rt△DFB中,tan∠B= DFBF,由此可以求出∠B;(2)过点A作AH垂直BP于点H.因为∠ACP=2∠B=60°所以∠BAC=30°,AC=BC=8.在Rt△ACH中,AH=AC•Sin∠ACP,所以可以求出AH了,即求出了光源A距平面的高度.【答案与解析】解:(1)过点D作DF垂直BC于点F.由题意,得DF=23,EF=2,BE=4.在Rt△DFB中,tan∠B=DF233==BF2+43,所以∠B=30°;(2)过点A作AH垂直BP于点H.∵∠ACP=2∠B=60°,∴∠BAC=30°,∴AC=BC=8,在Rt△ACH中,AH=AC•Sin∠ACP=38=432,即光源A距平面的高度为43m.【总结升华】本题考查了学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用.为大家整理的资料供学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。

中考复习《图形的变换》投影与视图

中考复习《图形的变换》投影与视图

1
2
3
4
1.【2020·福建·4 分】如图所示的六角螺母,其俯视图是( B )
A
B
C
D
2.【2019·福建·4 分】如图是由一个长方体和一个球组成的几何 体,它的主视图是( C )
A
B
C
D
3.【2018·福建·4 分】某几何体的三视图如图所示,则该几何体
是( C )
A.圆柱
B.三棱柱
C.长方体
教材梳理
第六章 图形的变换 第32课时 投影与视图
目录
01 知识梳理 02 考点突破
03 福建4年中考聚焦
01 知识梳理
·知识点1 投影 ·知识点2 三视图的有关概念与画法 ·知识点3 立体图形的展开与折叠
知识点1 投影
有关 定义
投影
一般地,用光线照射物体,在某个平面上得到
的影子叫做物体的①__投__影______,照射光线 叫做②投__影__线______,投影所在的平面叫做③ __投__影__面____.
图示(选其中一种)
一个圆和一个 扇形
两个全等的三 角形和三个矩 形
2.正方体展开图的常见类型及相对面(如图) (1)“一四一”型:
(2)“一三二”型:
(3)“二二二”型:
(4)“三三”型:
(注:相同颜色表示相对的面)
3.立体图形的折叠 一个几何体能展开成一个平面图形,这个平面图形就可 以折叠成相应的几何体,展开与折叠是一对互逆过程.
中心 由同一点发出的光线形成的投影叫做④ 投影 __中__心__投_影___________.
平行 由平行光线形成的投影叫做⑤ 有关 投影 __平__行__投__影____________.

中考数学投影视图知识点:复习要求

中考数学投影视图知识点:复习要求

中考数学投影视图知识点:复习要求(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如语文资料、数学资料、英语资料、物理资料、化学资料、地理资料、政治资料、历史资料、艺术资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of educational materials for everyone, such as language materials, mathematics materials, English materials, physical materials, chemical materials, geographic materials, political materials, historical materials, art materials, other materials, etc. Please pay attention to the data format and writing method!中考数学投影视图知识点:复习要求似乎说到初中数学视图与投影,很多人都没有什么印象,这在中考数学复习要求中也确实有很小的席位,初中数学介绍视图与投影的篇幅不多,我们来看下中考复习要求。

中考数学专题复习:投影与视图

中考数学专题复习:投影与视图

投影与试图典题探究例2 如图是由八个相同小正方体组合而成的几何体,则其左视图是( )A. B . C . D .例3 下面四个几何体中,俯视图不是圆的几何体的个数是( )A .1B .2C .3D .4例4 如图是由几个相同的小立方块组成的三视图,小立方块的个数是( )A .3个B .4个C .5个D .6个练习一 立体图形、视图和展开图A 组1.下列四个几何体中,三视图(主视图、左视图、俯视图)相同的几何体是( )2.一个几何体的三视图如右图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱锥D.三棱柱3.已知一个几何体的三视图如图所示,则该几何体是()A棱柱 B圆柱 C圆锥 D球4.如图是一个几何体的三视图,则这个几何体的形状是()(A)圆柱(B)圆锥(C)圆台(D)长方体5.下列图形中,不是三棱柱的表面展开图的是()6.圆锥侧面展开图可能是下列图中的()7.右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()8.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活10.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示。

如果记6的对面的数字为a,2的对面的数字为b,那么ba 的值为()A.3 B.7 C.8 D.1111.如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是()12.左下图为主视图方向的几何体,它的俯视图是()13.如图1是一个几何体的实物图,则其主视图是DCBA14.如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()B组15.右图是一个由4个相同的正方体组成的立体图形,它的三视图为()16.如图是由五个小正方体搭成的几何体,它的左视图是()17.如图所示的几何体的俯视图是().A B DC18.如图摆放的正六棱柱的俯视图是()19.沿圆柱体上底面直径截去一部分的物体如图所示,它的俯视图是( )20.下图所示几何体的主视图是()21.一个几何体的三视图如图所示,那么这个几何体是()22.下面四个图形中,是三棱柱的平面展开图的是()23.某物体的展开图如图所示,它的左视图为()练习二中心投影与平行投影A组1.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是 ( )2.视点指的是()A.眼睛的大小 B.眼睛看到的位置C.眼睛的位置 D.眼睛没有看到的位置3.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长 B.变短C.先变短后变长 D.先变长后变短4.于视线的范围,下列叙述不正确的是()A.走上坡路比走平路的视线范围小B.走上坡路比走平路的视线范围大C.在船头比在船尾向前看到的范围大D.在轿车外比在轿车里看到的范围大5.如图所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)6.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()答案例2 考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可.解答:解:从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.例4 考点:由三视图判断几何体.分析:根据三视图的知识,可判断该几何体有两列两行,底面有3个正方形,第二层有1个.解答:解:综合三视图可看出,底面有3个小立方体,第二层应该有1个小立方体,因此小立方体的个数应该是3+1=4个.故选B.点评:本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.练习一立体图形、视图和展开图A组1.【答案】D ;2.【答案】D;3.【答案】B ;4.【答案】B ;5.【答案】D;6.【答案】D7.【答案】B;8.【答案】C;9.【答案】A ;10.【答案】B;11.【答案】A;12.【答案】D13.【答案】C ;14.【答案】AB组15.【答案】B;16.【答案】A;17.【答案】B ;18.【答案】D ;19.【答案】D20.【答案】A ;21.【答案】A;22.【答案】A ;23.【答案】B练习二中心投影与平行投影A组1.【答案】A ;2.【答案】C;3.【答案】C;4.【答案】B ;5.【答案】先连接伞兵的头和脚与对应的影子的直线,两直线的交点即为点P,过点P作过木桩顶端的直线与地面的交点即为F.6.【答案】A。

2023年中考数学解答题专项复习:投影与视图(附答案解析)

2023年中考数学解答题专项复习:投影与视图(附答案解析)

第 1 页 共 16 页
2.(2020•丛台区校级一模)如图(1)是一种包装盒的表面展开图,将它围起来可得到一个 几何体的模型.
(1)图(2)是根据 a,h 的取值画出的几何体的主视图和俯视图,请在网格中画出该几 何体的左视图. (2)已知 h=4.求 a 的值和该几何体的表面积.
第 2 页 共 16 页
9.(2021 秋•玄武区期末)如图,是由一些棱长都为 acm 的小正方体组合成的简单几何体.
第 5 页 共 16 页
(1)请在如图的方格中画出该几何体的俯视图和左视图.
(2)该几何体的表面积(含下底面)是
cm2;
(3)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以
再添加
(1)这个几何体的名称是
,其侧面积为

(2)画出它的一种表面展开图;
(3)求出左视图中 AB 的长.
6.(2021•抚顺县模拟)某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视
图,如图 1.
(1)由三视图可知,密封纸盒的形状是

(2)根据该几何体的三视图,在图 2 中补全它的表面展开图;
(3)请你根据图 1 中数据,计算这个密封纸盒的表面积.(结果保留根号)
第 4 页 共 16 页
7.(2021 秋•三明期末)在平整的地面上,把棱长都为 1 的若干个小正方体摆成如图的几何 体.
(1)请分别在网格中画出从上面,左面看到的形状图(用签字笔将对应的虚线描为实线 即可); (2)如果在这个几何体上再添加一些同样大小的小正方体,若保持从上面看和从左面看 的形状图不变,那么最多可以再添加几个小正方体?在这样的条件下,当添加最多的小 正方体后,求得到的新几何体的体积. 8.(2021 秋•安居区期末)如图所示的是一个用小正方体搭成的几何体的俯视图,小正方形 中的数字表示在该位置的小正方体的个数,请你画出它的主视图与左视图.

(完整版)投影与视图知识点总结

(完整版)投影与视图知识点总结

投影与视图知识点总结知识点一:中心投影有关概念1. 投影现象:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面。

2. 手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影n知识点三:平行投影及应用1.平行投影的定义太阳光线可以看成是平行光线,平行光线所形成的投影称为平行投影当平行光线与投影面垂直,这种投影称为正投影2.平行投影的应用:(1)等高的物体垂直地面放置时,太阳光下的影长相等。

(2)等长的物体平行于地面放置时,太阳下的影长相等。

3.作物体的平行投影:由于平行投影的光线是平行的,而物体的顶端与影子的顶端确定的直线就是光线,故根据另一物体的顶端可作出其影子。

例1:如图,小华(线段CD)在观察某建筑物AB(1)请你根据小华在阳关下的影长(线段DF),画出此时建筑物AB在阳光下的影子。

(2)已知小华身高1.65m,在同一时刻,测得小华和建筑物AB的影长分别为1.2m 和8m,求建筑物AB的高。

例2:小明在公园游玩,想利用太阳光下的影子测量一颗大树AB的高,他发现大树的影子恰好落在假山坡面CD和地面BC上,如图所示,经测量CD=4m,BC=10m,CD与地面成30度的角,此时量得1m标杆的影长为2m,请你帮助小明求出大树AB的高度?知识点四:视图1.常见几何体的三视图2.三视图的排列规则:俯视图放在主视图的下面,长度与主视图的长度一样;左视图放在主视图的右面,高度与主视图的高度一样,宽度与俯视图的宽度一样,可简记为“长对正;高平齐;宽相等”。

注意:在画物体的三视图时,对看得见的轮廓线用实线画出,而对看不见的轮廓线要用虚线画出。

在三种视图中,主视图反映的是物体的长和高、俯视图反映的是物体的长和宽、左视图反映的是物体的宽和高.因此,在画三视图时,对应部分的长要相等。

例1:如图是几个相同的小正方体组成的一个几何体,请画出它的三视图。

《常考题》初中九年级数学下册第二十九章《投影与视图》知识点总结(含答案解析)

《常考题》初中九年级数学下册第二十九章《投影与视图》知识点总结(含答案解析)

一、选择题1.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm 2.如图所示的几何体的俯视图是( )A .B .C .D . 3.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是( )A .B .C .D . 4.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?( )A .12个B .13个C .14个D .15个 5.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是( ) A .正方形 B .平行四边形 C .矩形 D .等边三角形 6.由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是( )A.6 B.5 C.4 D.37.一个几何体由若干大小相同的小立方块搭成,从它的正面、左面看到的形状图完全相同(如下图所示),则组成该几何体的小立方块的个数至少有()A.3个B.4个C.5个D.6个8.下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A.1个B.2个C.3个D.4个9.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)10.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm211.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥12.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A .7B .8C .9D .1013.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是( )A .5个B .6个C .7个D .8个14.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是( )A .12πB .6πC .12π+D .6π+ 15.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( ) A . B . C . D .二、填空题16.如图是由一些相同的小正方体构成的立体图形从三个方向看到的图形,那么构成这个立体图形的小正方体有_______个.17.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是____________.18.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最多需要__________个小立方块.19.如图,用棱长为1cm的小立方块组成一个几何体,从正面看和从上面看得到的图形如图所示,则这样的几何体的表面积的最小值是__cm2.20.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.21.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.22.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这对小方块共有____________块.23.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于___米.24.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.25.如图,是由一些相同的小正方体构成的立体图形的三视图这些相同的小正方体的个数是______.26.如图,在A 时测得某树的影长为4米,在B 时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.三、解答题27.晚上,小亮在广场乘凉,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.(1)请你在图中画出小亮在照明灯P 照射下的影子BC (请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m =,测得小亮影长2BC m =,小亮与灯杆的距离13BO m =,请求出灯杆的高PO .28.树AB 和木杆CD 在同一时刻的投影如图所示,木杆CD 高2m ,影子DE 长3m ;若树的影子BE 长7m ,则树AB 高多少m ?29.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.30.如图1,是一个由正方体截成的几何体,请在图2的网格中依次画出这个几何体从正面、上面、和左面看到的几何体的平面图形.。

新课标九年级数学中考复习强效提升分数精华版视图与投影

新课标九年级数学中考复习强效提升分数精华版视图与投影

视图与投影本章主要反映空间观念的内容,在承接七年级上册的《丰富的图形世界》,八年级上册的《图形的平移与旋转》、《位置的确定》等基础上,本章再研究空间观念的另一重要内容——视图与投影。

在生产实际中,我们经常用到投影和视图来表达空间形体,描述物体的形状与大小。

我们在七年级已经积累了画立方体及简单组合体的三种视图的有关经验,在本章还将进一步研究另外几种特殊几何体——圆柱、圆锥、球、直三棱柱和直四棱柱的三种视图。

除此之外,本章还将对平行投影与中心投影、视点、视线和盲区进行初步的探讨,这此内容看似相互独立,但本质上都有首密切联系。

事实上,在特殊位置下,物体的平行投影便是物体的三种视图;人看物体时的情形与中心投影本质上是一致的;影子与盲区也有很大相似性。

本章知识结构网络是:重点难点:1、会画三视图,了解中心投影和平行投影的含义及其简单应用,了解视点、视线、盲区的含义及其在生活中的应用。

2、通过画三视图实现几何体与三种视图的互相转化,通过对中心投影与平行投影的认识进行物体与投影之间的互相转化等。

中考趋向:本章知识在初中阶段是一个新增补的知识点,在中考试题中涉及本章的试题大多以填空题、选择题形式出现,当然也有少数地区以解答题的形式出现,命题所反映的主要考点有如下几个方面:1、考查三视图的基本概念及画几何体的三视图,或由三视图构造几何体的形状。

2、能正确区分与识别平行投影和中心投影。

3、能利用物体在太阳光线下或灯光下的影长,求物体的高度。

4、本单元主要考查观察能力和抽象能力。

学法指点:1、画三视图时应注意三视图的位置要准确,看得见的部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线,这是画三视图的一种规定。

2、通过学习和实践活动,激发对视图与投影学习的好奇心,体会数学与现实生活的联系。

3、通过实例能够判断简单物体的三种视图,能根据三种视图描述基本几何体或实物原型,实现简单物体与其三种视图之间的相互转化。

4、会画圆柱、圆锥、球的三种视图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③俯视图 从上面看到的图
2.画“三视图” 的原则
主视图
左视图

高 高平 齐
长对长 正
宽相等

俯视图
①位置:
主视图 左视图 俯视图
②大小:
长对正,高平齐, 宽相等.
③虚实:
在画图时,看得见 部分的轮廓线通常 画成实线,看不见 部分的轮廓线通常 画成虚线.
做一做
1.(2007福建龙岩) .如图,一桶未启封的方便面
知识结构图:
平行投影
投影


中心投影



圆柱、圆锥、球、直三棱柱、直
视图 四棱柱等简单几何体的三视图
考点聚焦
考点1 投影
(1)投影:一般地,用光线照射物体,在某个平面 (地面、墙壁等)上得到的影子叫做物体的投影,其中 照射光线叫做投影线,投影所在的平面叫做投影面.
(2)平行投影:由平行光线(如太阳光线)所形 成的投影,称为平行投影.其中正投影是指投影线 垂直投影面产生的平行投影.
摆放在桌面上,则它的俯视图是( C )
2.(2007重庆)将如图所示的Rt△ABC绕直角边
AC旋转一周,所得几何体的主视图是( D )
A
C
B
2题图
A.
B.
C.
D.
3.(2007山西临汾)右图是由相同小正方形搭的几何体
的俯视图(小正方形中所标的数字表示在该位置上小
正方体的个数),则这个几何体的左视图是( C )
左视图
主视图
A. 9 B. 10
C. 11
俯视图
D. 12
8.有一实物如图,那么它的主视图(B)
A
B
C
D
9.如图所示是某种型号的正六角螺
c m 母毛坯的三视图,则它的表面积为(12 3 36.)
2
3cm
主视图 2cm
左视图
俯视图
10.(2013湖南怀化)九年级(1)班课外活动小组
利用标杆测量学校旗杆的高度,已知标杆高度
CD=3m,标杆与旗杆的水平距离BD=15m,人的眼
睛与地面的高度EF=1.6m,人与标杆的水平距离
DF=2m,求旗杆AB的高度.
A
解:过点E作EH⊥AB,交CD于点G C
CD⊥FB AB⊥FB
E G
H
CD∥AB △ C G E ∽ △ A H E
FD
B
CG EG AH EH
CDEF FD AH FDBD
况,无意之中,他发现这四个时刻向日葵影子的
长度各不相同,那么影子最长的时刻为【D】
A.上午12时
B.上午10时
C.上午9时30分 D.上午8时
做一做
3.已知两棵小树在同一时刻的 影子,你如何确定影子是在太 阳光线下还是在灯光的光线下 形成的。
两条光线是平行,因此 它们是太阳光下形成的.
两光线相交于一点,因 此它们是灯光下形成的.
31.6 2 AH 215
AH11.9
A B A H H B A H E F 1 1 . 9 1 . 6 1 3 . 5 ( m )
做一做
4.如图所示,快下降到地面的某伞兵在灯光下的
影子为AB.试确定灯源P的位置,并画出竖立
在地面上木桩的影子EF.(保留作图痕迹,不要
求写作法)
P
B
A(
EF
考ห้องสมุดไป่ตู้2 物体的三视图
1.三视图 ①主视图 从正面看到的图
到 的 图
从 上 面 看
俯 视 图
②左视图
左视图 从左面看到的图
从左面看到的图
太阳光
(3)中心投影:手电筒、路灯和台灯的光线可 以看成是从一点出发的,像这样的光线所形成 的投影称为中心投影.
做一做
1、晚上,小华出去散步,在经过一盏路灯时,他
发现自己的身影是【 D 】
A. 变长
B.变短
C. 先变长后变短 D.先变短后变长
2、小亮在上午8时、9时30分、10时、12时四次到
室外的阳光下观察向日葵的头茎随太阳转动的情
1
32
211
A.
B.
C.
D.
4.(2007吉林)如图,小芳和爸爸正在散步,爸爸身高
1.8m,他在地面上的影长为2.1m.若小芳比爸爸矮0.3m,
则她的影长为( ) C
A.1.3m B.1.65m
C.1.75m D.1.8m
7、如下图,是由一些相同的小正方体构成的几何体的 三视图,请问这几何体小正方体中的个数是 A .
相关文档
最新文档