半导体物理习题答案(1-3章)
半导体物理学(刘恩科第七版)前五章课后习题解答

半导体物理学(刘恩科第七版)前五章课后习题解答( ) 半导体物理学(刘恩科第七版)前五章课后习题解答第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h 2 k 2 h 2 ( k ? k1 ) 2 h 2 k 21 3h 2 k 2 Ec= + , EV (k ) = ? 3m0 m0 6m 0 m0 m0 为电子惯性质量,k1 =(1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:由2? 2 k 2? 2 (k ? k1 ) + =0 3m0 m0π, a = 0.314nm。
试求:a3 k14 d 2E 2? 2 2? 2 8? 2 又因为:2c = + = >0 3m0 m0 3m0 dk 得:k = 所以:在k = 价带:3 k处,Ec取极小值4dEV 6? 2 k =? = 0得k = 0 dk m0 d 2 EV 6? 2 又因为=? < 0, 所以k = 0处,EV 取极大值m0 dk 22 k123 因此:E g = EC ( k1 ) ? E V (0) = = 0.64eV4 12m0 ?2 = 2 d EC dk 2 3 = m0 83 k = k1 4(2)m* nC* (3)mnV =2 d 2 EV dk 2=?k = 01m0 6(4)准动量的定义:p = ?k 所以:?p = (?k )3 k = k1 43 ? (?k ) k =0 = ? k1 ? 0 = 7.95 × 10 ? 25 N / s 42. 晶格常数为0.25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f = qE = h ? (0 ??k ?t 得?t = ??k ? qEπ ) a ?t1 = = 8.27 × 10 ?8 s ?19 2 ? 1.6 × 10 × 10 π ? (0 ? ) a ?t 2 = = 8.27 × 10 ?13 s ?19 7 ? 1.6 × 10 × 10第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
《半导体物理学》试题与及答案

练习1-课后习题7
第二章 半导体中杂质和缺陷能级
锑化铟的禁带宽度E g = 0.18 e V ,相对介电常数 εr = 17 ,电子的 有效质量mn∗ = 0.015 m0, m 0为电子的惯性质量,求 ⅰ)施主杂质的电离能, ⅱ)施主的弱束缚电子基态轨道半径。
解:
练习2
第二章 半导体中杂质和缺陷能级
所以样品的电导率为: q(n0 n p0 p )
代入数据得,电导率为2.62 ×1013S/cm 所以,电场强度 E J 1.996103 mA / cm
作业-课后习题2
第四章 半导体的导电性
试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1450cm2/V·S 和500cm2/V·S。当掺入百万分之一的As 后,设杂质全部电离,试计算其电 导率。比本征Si 的电导率增大了多少倍?(ni=1.5×1010cm-3; Si原子浓度为 =5.0×1022cm-3,假定掺杂后电子迁移率为900cm2/V·S)
m0为电子惯性质量,k1=1/2a; a=0.314nm。试求: (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化。
练习2-课后习题2
第一章 半导体中的电子状态
2.晶格常数为0.25nm的一维晶格,当外加102V/m和107V/m 的电 场时,试分别计算电子自能带底运动到能带顶所需的时间。
所以,300k时,
nT 300
(1.05 1019
5.7
1018 )
exp(
0.67 1.61019 21.381023 300)
1.961013cm3
77k时,
半导体物理学第七版完整答案修订版

半导体物理学第七版完整答案修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ (1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=(, 式中a 为 晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,?1,?2…)进一步分析an k π)12(+= ,E (k )有极大值,ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MINMAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量能带底部 an k π2=所以m m n2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理课后习题

半导体物理学课后习题第一章 半导体的电子状态1. [能带结构计算]设晶格常数为a 的一维晶格,导带极小值附近能量)(k E c 和价带极大值附近能量)(k E v 分别为()()02120223m k k m k k E c -+= ()022021236m k m k k E v -= 式中,0m 为电子惯性质量,a k /1π=,nm a 314.0=。
试求: ① 禁带宽度;② 导带底电子有效质量; ③ 价带顶电子有效质量;④ 价带顶电子跃迁到导带底时准动量的变化。
解:①先找极值点位置()023201202=-+=m k k m k dk dE c 得出,当143k k =时,0212(min)4m k E c =同理由0=dk dE v 得当0=k 时,0212(max)6m k E v = 所以禁带宽度0212(max)(min)12m k E E E v c g =-==0.636eV ②830222*m dk E d m c nc== ③60222*m dk E d m v nv-==④由①可知,准动量的变化为)(109.7834301291--⋅⋅⨯-=-=⨯-⨯=∆=-=∆s m kg ahk k P P P c v2. [能带动力学相关]晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子能带底运动到能带顶所需要的时间。
解:设晶格常数为a ,则电子从能带底到能带顶过程中准动量的变化为ak π=∆,因为dt dk qE f==,所以qEdt dk =所以所需要的时间为:E =∙∆=∆=∆qa qE k dtdk k t π,当m V /102=E 时,s t 81028.8-⨯=∆ 当m V /107=E 时,s t 131028.8-⨯=∆第二章 半导体中杂质和缺陷能级1. [半导体、杂质概念]实际半导体与理想半导体的主要区别是什么? 解:杂质和缺陷的存在是实际半导体和理想半导体的主要区别。
半导体物理习题答案完整版

半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
半导体物理 课后习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。
解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
半导体物理分章答案第一章

01
本章主要讨论半导体中电子的运动状态。
02
定性介绍能带理论,利用Schrodinger方程
03
和Kroning-Penney模型近似推导关于半导体
04
中电子的状态和能带特点。引入有效质量和
05
空穴的概念,阐述本征半导体的导电机构。
06
最后简单介绍几种半导体材料的能带结构。
第一章 半导体中的电子状态
布里渊区的特征
”
02
08
原子的能级和晶体的能带
孤立原子的能级
(2)晶体的能带
电子共有化运动
能级的分裂
(1)导体、绝缘体和半导体的能带模型 (2)本征激发 定义:价带电子吸收声子跃迁到导带的过程→本征激发。 3、导体、半导体、绝缘体的能带
(1)有效质量引入 问题的提出 真空中的自由电子,其运动规律满足经典力学公式,而晶体中电子的加速度 原因在于周期性势场的存在。 为与经典力学一致,引入一个参量 使得 它综合了周期性势场的作用,反映了晶体中电子抵抗外场力的惯性
(1) 空穴的引入 电子状态本是虚无,因为有电子它才有了实际意义。 空穴是为了处理价带中电子导电问题而引入的假想粒子。价带中每出现一个空状态(缺少一个电子)便相应引入一个空穴,并赋予其有效质量和电荷量刚好与该状态下电子的相反,即 这样引入的假想粒子——空穴,其形成的假想电流刚好等于价带中的电子电流。因此在计算半导体电流时,虽然只计算空穴电流,但实际上算的是价带中电子的电流。
学习重点:
1.1** 半导体的晶体结构和结合性质 Crystal Structure and Bonds in Semiconductors 晶体结构: 金刚石型:Ge、Si 闪锌矿型:GaAs 化合键: 共价键: Ge、Si 混合键: GaAs
半导体物理课后习题答案(精)

半导体物理课后习题答案(精)第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k22(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14 (3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解 232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1VZ0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2 Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。
试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。
解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:min 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为0.25 nm 的一维晶格,当外加102 V/m 、107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102 V/m 时,88.310t s -=⨯;当E = 107 V/m 时,138.310t s -=⨯。
第2章 半导体中的杂质和缺陷能级1. 实际半导体与理想半导体间的主要区别是什么?答:(1) 实际半导体中原子并不是静止在具有严格周期性的晶格的格点位置上,而是在其平衡位置附近振动;(2) 实际半导体材料并不是纯净的,而是含有若干杂质,即在半导体晶格中存在着与组成半导体材料的元素不同的其他化学元素的原子;(3) 实际半导体晶格结构并不是完整无缺的,而存在着各种形式的缺陷,如点缺陷、线缺陷、面缺陷等。
2. 以As 掺入Ge 中为例,说明什么是施主杂质、施主杂质电离过程和n 型半导体。
答: As 有5个价电子,其中的四个价电子与周围的四个Ge 原子形成共价键,还剩余一个电子,同时As 原子所在处也多余一个正电荷,称为正离子中心。
所以,一个As 原子取代一个Ge 原子,其效果是形成一个正电中心和一个多余的电子。
多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As 原子形成一个不能移动的正电中心。
这个过程叫做施主杂质的电离过程。
能够施放电子而在导带中产生电子并形成正电中心,称为施主杂质或N 型杂质,掺有施主杂质的半导体叫N 型半导体。
3. 以Ga 掺入Ge 中为例,说明什么是受主杂质、受主杂质电离过程和p 型半导体。
答:Ga 有3个价电子,它与周围的四个Ge 原子形成共价键,还缺少一个电子,于是在Ge 晶体的共价键中产生了一个空穴,而Ga 原子接受一个电子后所在处形成一个负离子中心。
所以,一个Ga 原子取代一个Ge 原子,其效果是形成一个负电中心和一个空穴,空穴束缚在Ga 原子附近,但这种束缚很弱,很小的能量就可使空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而Ga 原子形成一个不能移动的负电中心。
这个过程叫做受主杂质的电离过程,能够接受电子而在价带中产生空穴,并形成负电中心的杂质,称为受主杂质,掺有受主型杂质的半导体叫P 型半导体。
4. 以Si 在GaAs 中的行为为例,说明IV 族杂质在III-V 族化合物中可能出现的双性行为。
答:Si 取代GaAs 中的Ga 原子则起施主作用,Si 取代GaAs 中的As 原子则起受主作用。
导带中电子浓度随硅杂质浓度的增加而增加,当硅杂质浓度增加到一定程度时趋于饱和。
硅先取代Ga 原子起施主作用,随着硅浓度的增加,硅取代As 原子起受主作用。
第3章 半导体中载流子的统计分布1. 计算能量在c E E =到2*21008c n h E E m L ⎛⎫=+ ⎪⎝⎭之间单位体积中的量子态数。
解:导带底c E 附近单位能量间隔的量子态数为:*3/21/23(2)()4()n c c m dZg E V E E dE hπ==- 在dE 范围内单位体积中的量子态数为:()c g E dE dZ V V⋅=所以 222*211*3/21001/283()(2)14()c n ch E E E c n m L c E E E g E m Z dZ dE E E dE V V h π⎛⎫+ ⎪⎪⎝⎭===-⎰⎰⎰()3/23/223*222410038dn n m h h m L π⎛⎫=⋅⋅ ⎪⎝⎭代入数值得:31000/3Z L π=。
7. (1) 在室温下,锗的有效密度1931.0510c N cm -=⨯,1835.710v N cm -=⨯,试求锗的载流子有效质量*n m 和*p m 。
计算77 K 时的c N 和v N ,已知300 K 时,0.67eV gE =。
77 K 时,0.76eV g E =,求这两个温度时锗的本征载流子浓度。
(2) 77 K 时,锗的电子浓度为17310cm -,假定受主浓度为零,而0.01eV c D E E -=,求锗中施主浓度D N 为多少?解:(1) 室温时,T = 300 K ,230 1.38010J/K k -=⨯,346.62510J s h -=⨯⋅,对于锗:1931.0510c N cm -=⨯,1835.710v N cm -=⨯由3*203(2)2n c m k T N hπ=可以推出232*022c n N h m k Tπ⎛⎫⋅ ⎪⎝⎭=,代入数值得:()()2193234*31231.05106.625102 5.09710kg 2 3.14 1.38010300n m ---⎛⎫⨯⨯⋅ ⎪⎝⎭==⨯⨯⨯⨯⨯; 由3*203(2)2p v m k T N hπ=可以推出232*022v p N h m k Tπ⎛⎫⋅ ⎪⎝⎭=,代入数值得:()()2183234*31235.7106.625102 3.39210kg 2 3.14 1.38010300p m ---⎛⎫⨯⨯⋅ ⎪⎝⎭==⨯⨯⨯⨯⨯。
77 K 时的c N 和v N :由3*'203''233*203(2)2(2)2n c c n m k T N T h N T m k T h ππ⎛⎫== ⎪⎝⎭可得:3'2'c c T N N T ⎛⎫=⋅ ⎪⎝⎭ 所以()3219183(77K)77 1.0510 1.36510300c N cm -⎛⎫=⨯⨯=⨯ ⎪⎝⎭; 同理,可得:3'2'v v T N N T ⎛⎫=⋅ ⎪⎝⎭,所以 ()3218173(77K)77 5.7107.4110300v N cm -⎛⎫=⨯⨯=⨯ ⎪⎝⎭。
锗的本征载流子浓度:1/20()exp()g i c v E n N N k T=-300 K 时,0.67eV g E =,此时(300K)i n :()19119181332(300K)230.67 1.6101.0510 5.710exp 1.844102 1.38010300i n cm ---⎛⎫⨯⨯=⨯⨯⨯⋅-=⨯ ⎪⨯⨯⨯⎝⎭; 77 K 时,0.76eV g E =,此时(77K)i n :()1911917732(77K)230.76 1.6101.365107.4110exp 4.497102 1.3801077i n cm ----⎛⎫⨯⨯=⨯⨯⨯⋅-= ⎪⨯⨯⨯⎝⎭。
(2) 77 K 时,这时处于低温电离区,锗导带中的电子全部由电离施主杂质提供,则有00p =,0Dn n +=,故1/200()exp()22D c c DN N E E n k T -=-推出2002exp()2c D D cE E n k T N N ⎡⎤-⋅⋅⎢⎥⎣⎦= 已知173010n cm -=, 0.01eV c D E E -=,183(77K) 1.36510c N cm -=⨯,可得:2191723163180.01 1.610210exp 2 1.3801077 6.604101.36510D N cm ---⎡⎤⎛⎫⨯⨯⨯⨯⎢⎥ ⎪⨯⨯⨯⎝⎭⎣⎦=⨯⨯8. 利用题7所给的c N 和v N 数值及0.67eV g E =,求温度为300 K 和500 K 时,含施主浓度153510D N cm -=⨯、受主浓度93210A N cm -=⨯的锗中电子及空穴浓度为多少? 解:(1) 当T = 300 K 时,对于锗:153510D N cm -=⨯,93210A N cm -=⨯ 由于D A N N >>,则有1591530510210510D A n N N cm -=-=⨯-⨯≈⨯因为()191/21/219182301330.67 1.610()exp() 1.0510 5.710exp 1.380103001.9610g i c v E n N N k Tcm ---⎛⎫⨯⨯=-=⨯⨯⨯- ⎪⨯⨯⎝⎭=⨯ 所以()21321030151.96107.710510inp cm n -⨯===⨯⨯。
(2) 当T = 500 K 时2424.77410500(500)(0)0.74370.581e 500235g g T E K E V T αβ-⨯⨯=-=-≈++查图3-7(教材64页),可得:1632.210i n cm -≈⨯,属于过渡区,221/20[()4]()22D A i D A N N n N N n -+-=+,代入数值得1630 2.46410n cm -=,()21321630150 1.9610 1.96410510in p cm n -⨯===⨯⨯【也可以用3'2'c c T N N T ⎛⎫=⋅ ⎪⎝⎭,3'2'v v T N N T ⎛⎫=⋅ ⎪⎝⎭,1/2()exp()g i c v E n N N k T =-求得i n 。