高聚物分子间的作用

合集下载

高分子化合物名词解释

高分子化合物名词解释

高分子化合物名词解释高分子化合物:具有一定空间结构的线型或支链型的高分子化合物。

①具有线性结构的高分子化合物。

包括线型高分子、支链高分子及交联高分子等。

前者为原来的高聚物,后两者是在热、光、辐射、机械力等因素作用下,使其分子间发生化学反应而得到的产物。

②线型高分子化合物,又称高聚物。

这类化合物在常温和一般条件下,是以线型结构存在的。

通常所谓高聚物实际上指的是高聚物中含有长度为1~1000μm的长链。

在高聚物中,通过聚集态结构的某些特殊变化,可以使高聚物具有不同于天然高聚物的新性能。

②主要用途。

高聚物在工业中可用作塑料、纤维、橡胶、粘合剂、涂料等。

另外,高聚物还广泛地用作电线、电缆、漆包线、纸管、绳索、胶合板、各种人造革等的基本材料,并可用作海洋船舶、运输车辆、体育器材、医疗器械、农业机械、纺织工业机械、文化用品、日常生活用品等的制造材料。

③高聚物是由相对分子质量较大的低分子化合物在一定条件下(如高温、催化剂、氧气等)加工而成的,是一种重要的工程材料。

④一种使用的高聚物主要根据其聚合方法和组成材料来确定。

按聚合方法可分为熔融缩聚和本体缩聚;按所用单体可分为碳链聚合物和杂链聚合物。

主要用途。

高聚物在工业中可用作塑料、纤维、橡胶、粘合剂、涂料等。

另外,高聚物还广泛地用作电线、电缆、漆包线、纸管、绳索、胶合板、各种人造革等的基本材料,并可用作海洋船舶、运输车辆、体育器材、医疗器械、农业机械、纺织工业机械、文化用品、日常生活用品等的制造材料。

③高聚物是由相对分子质量较大的低分子化合物在一定条件下(如高温、催化剂、氧气等)加工而成的,是一种重要的工程材料。

④一种使用的高聚物主要根据其聚合方法和组成材料来确定。

按聚合方法可分为熔融缩聚和本体缩聚;按所用单体可分为碳链聚合物和杂链聚合物。

3。

交联:使分子间产生化学键联系的聚合物叫做交联高分子。

这种高分子的性能更优越,应用范围也更广泛。

4。

碳链聚合物:含有由碳原子组成的碳链。

物性学——精选推荐

物性学——精选推荐

食品物性学复习材料第一章:食品的主要形态与物理性质1、食品物性学是研究食品物理性质的一门科学。

2、食品形态微观结构按分子的聚集排列方式主要有三种类型:晶态、液态、气态,其外,还有两种过渡态,它们是玻璃态和液晶态。

各自特点:晶态:分子(或原子、离子)间的几何排列具有三维远程有序;液态:分子间的几何排列只有近程有序(即在1-2分子层内排列有序),而远程无序;气态:分子间的几何排列不但远程无序,近程也无序。

玻璃态(无定形):分子间的几何排列只有近程有序,而无远程有序,即与液态分子排列相同。

它与液态主要区别在于黏度。

玻璃态粘度非常高,以致阻碍分子间相对运动液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性(如动植物细胞膜和一定条件下的脂肪)。

4、粒子凝胶:球状蛋白、脂肪晶体等5、分子分散体系是一种单相体系。

6、表面活性物质是由亲水性极性基团和疏水性非极性基团组成的,能使溶液表面张力降低的物质,具有稳定泡沫的作用。

蛋白质是很好的界面活性物质。

7、影响泡沫稳定的主要因素:气泡壁液体由于重力作用产生离液现象和液体蒸发,表面黏度和马兰高尼效果。

8、果胶作为细胞间质,与纤维素、半纤维素、糖蛋白一起发挥细胞壁的作用。

二、判断1、制作食品泡沫时,一般都是先打发泡,然后再添加糖,以使泡沫稳定。

三、名词解释1、离浆:凝胶经过一段时间放置,网格会逐渐收缩,并把网格中的水挤出来,把这种现象称为离浆2、马兰高尼效果:当气泡膜薄到一定程度,膜液中界面活性剂分子就会产生局部的减少,于是这些地方的表面张力就会比原来或周围其它地方的表面张力有所增大。

因此,表面张力小的部分就会被局部表面张力大的部分所吸引,企图恢复原来的状态。

这种现象称作马兰高尼效果。

四、简答与分析1、淀粉糊化过程中的粘度变化:淀粉糊化过程中的粘度变化颗粒代表支链淀粉,曲线代表直链淀粉答:天然淀粉是一种液晶态结构。

在过量水中加热时,淀粉颗粒吸水膨胀,使处于亚稳定的直链淀粉析出进入水相,并由螺旋结构伸展成线形结构。

高分子物理知识点

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列柔性:高分子链中单键内旋的能力;高分子链改变构象的能力;高分子链中链段的运动能力;高分子链自由状态下的卷曲程度。

链段:两个可旋转单键之间的一段链,称为链段影响柔性因素:1支链长,柔性降低;交联度增加,柔顺性减低。

2一般分子链越长,构象数越多,链的柔顺性越好。

3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。

分子链的规整性好,结晶,从而分子链表现不出柔性。

控制球晶大小的方法:1控制形成速度;2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶;3外加成核剂,可获得小甚至微小的球晶。

聚合物的结晶形态:1单晶:稀溶液,慢降温,螺旋生长2球晶:浓溶液或熔体冷却3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出;4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列;5串晶:溶液低温,边结晶边搅拌;6柱晶:熔体在应力作用下冷却结晶;7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。

结晶的必要条件:1内因:化学结构及几何结构的规整性;2外因:一定的温度、时间。

结晶速度的影响因素:1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长;2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶;3分子量:M小结晶速度块,M大结晶速度慢;熔融热焓?H m:与分子间作用力强弱有关。

作用力强,?H m 高熔融熵?S m:与分子间链柔顺性有关。

分子链越刚,?S m小聚合物的熔点和熔限和结晶形成的温度T c有一定的关系:结晶温度Tc低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低;结晶温度Tc高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。

取向:在外力作用下,分子链沿外力方向平行排列。

聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。

高分子材料的力学性能

高分子材料的力学性能
目录
高分子材料的力学性能
01 高聚物的抗拉强度
02 长期强度
高分子材料的力学性能
抗拉强度:
在规定的温度、湿度和加载速度下,在试样上沿轴 向施加拉力直到试样被拉断为止,断裂前试样所承受的 最大载荷与试样截面之比称为抗拉强度。
宽度b
厚度d
P
t
p bd
p A0
抗拉强度越大,说明材料越不易断裂、越结实
高分子材料的力学性能
高分子材料的力学性能
玻璃纤维是将玻璃材料通过拉丝形成的纤维状的玻璃, 没有固定的熔点。是一种综合性能优异的无机非金属材料, 通常作为复合材料增强基材、电绝缘材料、耐热绝热材料、 光导材料、耐蚀材料和过滤材料等,广泛应用于国民经济各 个领域。
玻璃纤维
高分子材料的力学性能
玻璃纤维对高聚物的增强:
短玻璃纤维可以提高热塑性塑料的强度,还可以用玻璃纤维与其 他织物复合而制成玻璃钢。
玻璃钢的性能优越,其强度高于钢,是以玻璃纤维制成玻璃布,
以不同的角度排列,以环氧树脂、酚醛树脂、呋喃树脂的顺序形成涂 层,经加热、层压、固化而成。
材料
拉伸强度/MPa
未增强
23
聚乙烯
右表为一些热塑性
增强
76
塑料用玻璃纤维增
未增强
58
聚苯乙烯
强后其拉伸强度的
增强
96
变化
未增强
62
聚碳酸酯
增强
140
未增强
在高分子材料中长期强度指一定时间后,高分子材料 不发生断裂时的强度值。
长期
t
谢谢!
高分子材料的力学性能
2、应力和缺陷:
缺陷的存在将使材料受力时内部压力分布不平均, 缺陷附近范围内的应力急剧地增加,远远超过压力平均 值,这种现象称为应力集中,缺陷就是应力集中物,包 括裂缝、空隙、缺口、银纹和杂质等,缺陷成为材料的 薄弱环节,材料的破坏就从这些缺陷处开始而扩展到 整个体系,严重降低材料的强度。

高分子物理——第四章 非晶态高聚物ppt课件

高分子物理——第四章  非晶态高聚物ppt课件

(三)、高弹态(橡胶态)
力学特征:ε大,约100 ~1000%,且可逆,具有高 弹性,称为高弹态,为聚合物特有的力学状态。模量 E进一步降低—聚合物表现出橡胶行为
分子运动:链段运动
热运动 T↑,链段运动能力↑,ε↑
外力
蜷曲
伸长
T↑,大分子链柔性↑,回复力↑
高弹形变是链段运动使分子发生伸展

曲的宏观表现。回复力↑(抵抗形变)与流动性
主价力(键合力、化学键)
共价键:由原子的价电子自旋配对所形成的键。 C—C(键长、键角、键能) 特点:不离解、不导电、具饱和性和方向性 类型:σ键(电子云分布轴对称)、π键(对称面)
离子键:由正负离子间的静电相互作用形成的键。 金属键:由金属原子的价电子和金属离子晶格之间的相互作用
形成的
次价力(此作用力的大小决定了分子结构,特别是聚集态结构)
⑴ 静电力(取向力,偶极力) 极性分子、永久偶极间
其大小同
偶极矩
↑而↑
定向程度 有关 ↑而↑
T
↑而↓
它是极性分子间的主要作用力
12~21KJ/mol
⑵ 诱导力 永久偶极与由它引起的诱导偶极间 极性分子之间或极性分子与非极性分子间 6~12KJ/mol
⑶ 色散力 是分子瞬时偶极之间的相互作用力 存在于一切分子中(极性或非极性),具加和
4、晶区的分子运动:晶区缺陷的运动、 晶型转变、晶区的局部松驰、折叠链的“手 风琴式”运动。
2,3,4都是小尺寸运动,或者微布朗运动
在上述运动单元中,对聚合物的物理和力 学性能起决定性作用的、最基本的运动单元, 只有1、2两种,而整链运动是通过各链段协同 运动来实现的,因此链段运动最为重要,高分 子材料的许多性能都与链段运动有直接关系。

高分子物理习题答案

高分子物理习题答案

高分子物理部分复习题构象;由于单键(6键)的内旋转,而产生的分子在空间的不同形态。

它是不稳定的,分子热运动即能使其构象发生改变构型;分子中由化学键所固定的原子在空间的排列。

稳定的,要改变构型必需经化学键的断裂、重组柔顺性;高聚物卷曲成无规的线团成团的特性等同周期、高聚物分子中与主链中心轴平行的方向为晶胞的主轴,其重复的周期假塑性流体、无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体取向;高分子链在特定的情况下,沿特定方向的择优平行排列,聚合物呈各向异性特征。

熵弹性、聚合物(在Tg以上)处于高弹态时所表现出的独特的力学性质粘弹性;外力作用,高分子变形行为有液体粘性和固体弹性的双重性质,力学质随时间变化的特性玻尔兹曼叠加、认为聚合物在某一时刻的弛豫特性是其在该时刻之前已经历的所有弛豫过程所产生结果的线性加和的理论原理球晶、球晶是由一个晶核开始,以相同的速度同时向空间各方向放射生长形成高温时,晶核少,球晶大应力损坏(内耗)、聚合物在交变应力作用下产生滞后现象,而使机械能转变为热能的现象应力松弛、恒温恒应变下,材料的内应变随时间的延长而衰减的现象。

蠕变、恒温、恒负荷下,高聚物材料的形变随时间的延长逐渐增加的现象玻璃化转变温度Tg:玻璃态向高弹态转变的温度,链段开始运动或冻结的温度。

挤出膨大现象、高分子熔体被强迫挤出口模时,挤出物尺寸大于口模尺寸,截面形状也发生变化的现象时温等效原理、对于同一个松驰过程,既可以在低温下较长观察时间(外力作用时间)观察到,也可以在高温下较短观察时间(外力作用时间)观察出来。

杂链高分子、主链除碳原子以外,还有其他原子,如:氧、氮、硫等存在,同样以共价键相连接元素有机高分子、主链含Si、P、Se、Al、Ti等,但不含碳原子的高分子键接结构、结构单元在高分子链中的联结方式旋光异构、具有四个不同取代基的C原子在空间有两种可能的互不重叠的排列方式,成为互为镜像的两种异构体,并表现出不同的旋光性均相成核、处于无定型的高分子链由于热涨落而形成晶核的过程异相成核、是指高分子链被吸附在固体杂质表面而形成晶核的过程。

高聚物结构-问答计算题

高聚物结构-问答计算题

1.简述聚合物的结构层次。

答聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构和远程结构。

一级结构包括化学组成,结构单元链接方式,构型,支化与交联。

二级结构包括高分子链大小和分子链形态。

三级结构属于凝聚态结构,包括晶态结构,非态结构,取向态结构和织态结构。

2.高密度聚乙烯,低密度聚乙烯和线形低密度聚乙烯在分子链上的主要差异是什么?答高密度聚乙烯为线形结构,低密度聚乙烯为具有长链的聚乙烯,而线形低密度聚乙烯的支链是短支链,由乙烯和高级的a–烯烃如丁烯,己烯或辛烯共聚合而生成。

共聚过程生成的线形低密度聚乙烯比一般低密度聚乙烯具有更窄的相对分子质量分布。

高密度聚乙烯易于结晶,故在密度,熔点,结晶度和硬度等方面都高于低密度聚乙烯。

3.假假设聚丙烯的等规度不高,能不能用改变构象的方法提高等规度?答不能,提高聚丙烯的等规度须改变构型,而改变构型与构象的方法根本不同。

构象是围绕单键内旋转所引起的分子链形态的变化,改变构象只需克服单键内旋转位垒即可实现;而改变够型必须经过化学键的断裂才能实现。

4.试从分子结构分析比较以下各组聚合物分子的柔顺性的大小:〔1〕聚乙烯,聚丙烯,聚丙烯腈;〔2〕聚氯乙烯,1,4-聚2-氯丁二烯,1,4-聚丁二烯;〔3〕聚苯,聚苯醚,聚环氧戊烷;〔4〕聚氯乙烯,聚偏二氯乙烯。

答〔1〕的柔顺性从大到小排列顺序为:聚乙烯>聚丙烯>聚丙烯腈;〔2〕的柔顺性从大到小排列顺序为:1,4-聚丁二烯>1,4-聚2-氯丁二烯>聚氯乙烯〔3〕的柔顺性从大到小排列顺序为:聚环氧戊烷聚苯醚聚苯〔4〕的柔顺性从大到小排列顺序为:聚偏二氯乙>烯聚氯乙烯5.请排出以下高聚物分子间的作用力的顺序,并指出理由:〔1〕顺1,4-聚丁二烯,聚氯乙烯,聚丙烯腈;〔2〕聚乙烯,聚苯乙烯,聚对苯二甲酸乙二酯,尼龙66。

答〔1〕分子间作用力从大到小的顺序为:聚丙烯腈>聚氯乙烯>顺1,4-聚丁二烯聚丙烯腈含有强极性基团,所以分子间作用力大;聚氯乙烯含有极性基团,分子间作用力较大;顺序1,4-聚丁二烯是非极性分子,不含庞大的侧基,所以分子间力作用小。

高分子物理结晶

高分子物理结晶

性状 橡胶状物质
塑料 纤维
2.2.1 晶体结构的基本概念 晶体:物质内部的质点三维有序周期性排列
把组成晶体的质点抽象成为几何点,由这些等同的几何点的集合所以形成的格子,称为空间格子,也称空 间点阵。 点阵结构中,每个几何点代表的是具体内容,称为晶体的结构单元。 晶体结构=空间点阵+结构单元
点阵 直线点阵——分布在同一直线上的点阵 平面点阵——分布在同一平面上的点阵 空间点阵——分布在三维空间的点阵
两束不同的光通过样品时产生一定的相位差而发生干涉现象,使通过球晶的一部分区域的光可以通过与起 偏器处在正交位置的检偏器,而另一部分区域不能,最后分别形成球晶照片上的亮暗区域。
②球晶的对称性。 样品沿平面方向转动,球晶的黑十字消光图像不变,即球晶的所有半径单元在结晶学上是等价的。
球晶的生长
• 球晶以折叠链晶片为基本结构单元 • 这些小晶片由于熔体迅速冷却或其他条件限制,来不
高分子物理结晶
凝聚态(聚集态)与相态
凝聚态:物质的物理状态, 是根据物质的分子运动在宏观力学性能上的表现来区分的, 通常包括固、 液、气体(态),称为物质三态
相态:物质的热力学状态,是根据物质的结构特征和热力学性质来区分的,包括晶相、液相和气相 (或态)
一般而言,气体为气相,液体为液相,但固体并不都是晶相。如玻璃(固体、液相)
质的主要因素。对于实际应用中的高聚物材料或制品,其使用性能直接决定于在加工成型过程中形成
的聚集态结构。
链结构只是间接影响高聚物材料的性能,而聚集态结构才是直接影响其性能的因素。
链结构是在高分子的合成过程中形成的,而聚集态结构是在高分子加工、成型过程中形成的。
小分子的共价键和次价键
共价键键能: 100-900kJ/mol
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


力 色散 力 各种分子之间的瞬间偶极 距相互作用的吸引力
§3-1
高聚物分子间的相互作用Fra bibliotek★氢键 氢键是特殊的范德华力,具有方向性和饱和性。 氢键的形成条件是一个电负性强、半径小的原子X与氢原子H形成的共价键 (X-H),而这个氢原子又与另外一个电负性强、半径小的原子Y以一种特殊的偶 极作用结合成氢键(X-H· · · Y)。 氢键的形成可以是分子内,也可以是分子间。分子间形成氢的高聚物有聚丙 烯酸、聚酰胺等。
Tg Tmax Tm
高聚物结晶速率与温度的关系
高聚物非结晶结构
非晶高聚物的结构是指玻璃态、橡胶态、熔融态及结晶高聚物中的非晶区中 的结构。在非晶高聚物中高分子链的排列为远程有序,近程无序。
缨状-胶束模型 均相无规线团模型 折叠链缨状胶束模型 可折叠球模型 回文波形模型
非晶高聚物结构模型
均相无规线团模型
~ C-C C C C C ~ C-C O-H O
H-O
C-C C O O
~ C
O C- H-O
C
O-H O
C
C -C
O O-H
H-O
C-C
C ~
聚丙烯酸分子间的氢键示意
§3-1
高聚物分子间的相互作用
★次价力与高聚物的使用 次价力小于4.4×103J/mol的高聚物用作橡胶;次价力大于2.1×103J/mol的高 聚物用作纤维;次价力介于两者之间的高聚物用作塑料。 ★次价力的描述 内聚能 将一摩尔分子聚集在一起的全部能量 内聚能密度(CED) 单位体积的内聚能 ★内聚能密度与高聚物的使用 内聚能密度小于290J/cm3的高聚物分子间作用力较小,分子链较柔顺,容易 变形,具有较好弹性,一般可以作为橡胶使用;内聚能密度较高的高聚物,分子 链较刚性,属于典型的塑料;内聚能密度大于400J/cm3的高聚物,具有较高的强 度,一般作为纤维使用。 总之:分子间作用力是使高分子聚集而成聚集态的主要原因之一,其作用的 大小也决定了高聚物的类型和使用性能。
共价键 主价力(又称化学键) 配位键 作用力的类型 离子键 次价力(又称分子间力,包括:范德华力、氢键)
§3-1
高聚物分子间的相互作用
高分子链的形成主要靠主价力(化学键),高分子链聚集成高聚物主要靠次价力(分 子间的力)。
类型 取向 力 范 德 诱导 力 极性分子与非极性分子、 极性分子作用产生的诱导 偶极之间的吸引力 与极性分子偶极距的平方成正比, 静电引 力 与被诱导分子的变形性成正比; 距离大,诱导力小;与温度无关。 范围:0.6×104~1.2×104J/mol 具有普遍性、加和性,与温度无 关。分子变形大、电离程度大, 色散力大;距离大,色散力小 范围:0.8×103~8.4×103J/mol 静电引 力 定义 极性分子永久偶极之间的 静电相互作用产生的吸引 力 特点 分子极性越大,取向力越大;温 度高、距离大,取向力越小。 范围:4.2×104~2.1×104J/mol 本质 静电引 力
项目3
课件一
高聚物分子间的作用
§3-1
高聚物分子间的相互作用
高聚物聚集态
★高聚物聚集态与小分子物质的聚集态、相态的对应关系
气态 小分子物质的聚集态 液态 (力学、分子热运动特征分类) 固态
粘流态 非晶态 固 态 晶 态
气相 液相 小分子物质的相态 晶相 (热力学特征分类)
一、分子间的相互作用力 ★作用力的类型
折叠链缨状胶束模型
可折叠球模型
回文波模型
(a)
折叠链片晶结构模型
(b)
晶区 非晶区 晶区
(a)近邻规则折叠结构模型
(b)松散环圈折叠结构模型
(c)拉线板折叠结构模型
(c)
多层片晶结构模型
高聚物结晶结构
三、高聚物的结晶过程
分子链轴方向 链带发展方向 单晶
高分子链 折叠链带
晶片 (或针状晶体)
球晶
☆结晶度 定义:高聚物中结晶部分所占的质量分数或体积分数。 测定方法:X-线衍射法、红外光谱法、密度法
项目3 课件二
高聚物结晶与非晶结构
高聚物结晶结构
一、高聚物的结晶形态
稀溶液,缓慢降温 浓溶液或熔体冷却
单晶 球晶
高聚物的结晶形态
挤出、吹塑、拉伸
纤维状晶体 柱晶
伸直链晶体
熔体在应力下冷却
极高压力下慢慢结晶
高聚物结晶结构
二、结晶高聚物的结构模型
(a) (b)
缨状-胶束模型
(a)非取向高聚物
(b)取向高聚物
四、影响高聚物结晶的因素
高分子链的化学结构 内因 相对分子质量 影响高聚物结晶的因素 高分子链形状 外因 温度 压力、杂质
高聚物结晶结构
▲内因 △高分子链的化学结构对结晶的影响 高分子链的化学结构简单、对称性好、结构规整性好、分子间作用力大等利 于结晶。 △高聚物相对分子质量对结晶的影响 在相同温度下,相对分子质量越低,结晶速率越快;在同一高聚物中相对分 子质量低的部分结晶度大于相对分子质量高的部分。 △高分子链的形状对结晶的影响 线型高分子链容易结晶,结晶度大;支链型次之;体型难于结晶。 ▲外因 △温度 温度是最主要的外部条件。 3 4 结 1-晶核生成速率 在玻璃化温度与熔融温度之间 1 2 晶 速 2-晶体成长速率 存在最佳的结晶温度,一般情况下, 率 3-结晶总速率 最佳的结晶温度为: 4-黏度
相关文档
最新文档