椭圆参数方程教材课程

合集下载

高中数学教学课例《椭圆的参数方程》课程思政核心素养教学设计及总结反思

高中数学教学课例《椭圆的参数方程》课程思政核心素养教学设计及总结反思

都是我在以后的教学中值得注意并改进的。现对本此活
动进行如下总结:
在本节课的设计上,整体思路是通过类比圆的参数
课例研究综 方程的研究方式,学生选取适当的参数,合作探究椭圆

的参数方程,在探究过程中,教师利用几何画板动态演
示椭圆的形成过程,帮助学生在几何图形中观察获得变
量关系。在例题练习的选择上,考虑文科学生的认知特
问题(3)为什么引入作为参数?
问题(4)怎样建立椭圆的参数方程?
问题(5)怎样说明这个参数方程表示的就是椭圆?
问题(6)参数有怎样的几何意义?
椭圆的参数方程一节,主要目的在于让学生理解并
掌握椭圆的参数方程,培养类比能力及探究意识,让学
生更深入地体会参数方法的优越性。在整个活动中我收
获了很多,评课过程中各位老师提出的宝贵意见,这些
第四,教师亲和性方面有所欠缺。亲和性是“双主 体互动”教学模式对教师提出的具体要求之一,在教学 活动中,应当让学生充分体会到教师在关注每一位学 生,教师是学生的朋友,使学生在轻松愉快而不是严肃 的氛围中接受知识。“微笑教学”的要求没有得到应有 的体现。因此在今后的教学实际中,我会更加注重自己 表情、语调等方面的改善,使学生更有效地完成知识的 学习。
不会有大的问题,那么如果能够大胆地放手,让学生自己交流评价结ຫໍສະໝຸດ ,不仅能够真正地让学生自主,也能提
高学生的评价意识与发现问题的能力,加深对知识的理
解,从而使课堂效果更好、更有效。
第三,在对例 1 的讲解过程中,对于辅助角公式的
应用,应该强调,在例题连续性的设置上,我觉得还可 以更好些,可以直接类比圆的相关题型,从而类比其解 法,获得椭圆相关问题与方法,体现了不同知识结构与 方法的一致性,有助于学生方法体系的建立。通过听其 他老师的课,也注意到设置例题时,如果能够明确与前 后知识的联系,将更有利于学生对数学知识方法体系的 整体把握。

椭圆的参数方程教学课件

椭圆的参数方程教学课件

思考:
椭圆的参数方程中参的数意义与圆的参数方 程xyrrcsions(为参数)中参数的意义类似吗?
由图可以看出, 是参 点 M所 数对应的圆的
径OA(或OB)的旋转(称 角为M 点的离心), 角不
是OM的旋转角,是 参半 数O 径M的旋转角。
椭圆参数方程的推导
从几何变换的角度看,
方程为 ____________________?
解:方程 x2 y2 4xcos 2ysin 3cos2 0 可以化为 (x2cos)2 (ysin)2 1 所以圆心的参数方程xy 为2sicnos(为参数)
化为普通方程x是 2 y2 1 4
3、求(定 2a,0点 )和椭 xy圆 abscions(为参)上 数各
x 100t
1、y

h
1 2
(t为参数,表示时) 间 gt2
2、设经过时t, 间动点的位置是 M(x, y), 则 x23t, y14t, 于是点M的轨迹的参数方程为

x 23t (以时间t为参数) y 14t
4、解:(1)2xy70,直线;
(2)y 2x2, x[1,1],以(1,2),(1,2) 为端点的一段抛物线;
M

o
B
x
A
1、当参数 变化时,动 P(3点 cos,2sin)所
确定的曲线必( 过B )
A、点 (2,3),
B、点 (3,0)
C、点 (1,3),
D、点 (0,)
2
它的焦距是多少?
25
2、已知圆的方程为 x2 y2 4x cos 2 y sin 3cos2 0, (为参数),那么圆心的轨迹的普 通
并求出最小距 . 离

2.2 2.2.1 椭圆的参数方程ppt课件

2.2   2.2.1 椭圆的参数方程ppt课件
栏 目 链 接
题型2
椭圆参数方程的应用
x2 y2 例 2 已知 A, B 分别是椭圆 + =1 的右顶点和上 36 9 顶点,动点 C 在该椭圆上运动,求△ABC 的重心 G 的 轨迹方程.
栏 目 链 接
分析:△ABC 的重心 G 取决于△ABC 的三个顶 点的坐标,为此需要把动点 C 的坐标表示出来,要考 虑用参数方程的形式.
栏 目 链 接
栏 F2 距离之和等于|F1F2|,则点 P
线段F1F2 ;到定点 F1、F2 距离之和大于|F1F2|, 的轨迹是____________ 椭圆 则点 P 的轨迹是 __________ ;到定点 F1、 F2 距离之和小于
不存在 . |F1F2|,则点 P 的轨迹________
解析:由题意可知,a=5,b=4 且焦点在 y 轴上, y2 x2 所以椭圆的标准方程为 + =1, 25 16
x=4cos θ, 故参数方程为 (θ 为参数). y=5sin θ
栏 目 链 接
x-12 y+22 1.写出圆锥曲线 + =1 的参数方程. 3 5
解析:由题意可设 y+2 =sin θ, 5
x2 y2 2 . 椭 圆 2 + 2 = 1(a > b > 0) 的 参 数 方 程 为 a b x = a cos θ , ________________________( θ 为参数).规定 θ 的范围为 y=bsin θ
栏 目 链 接
原点O 、焦点在________ x轴 上的椭圆参 θ∈[0,2π).这是中心在________
x-1 =cos θ, 3
栏 目 链 接
x=1+ 3cos θ, 即 (θ 为参数)为所求. y=-2+ 5 sin θ

椭圆的参数方程课件

椭圆的参数方程课件
∴|OQ|=12-cossinφφ. ∴|OP|·|OQ|=12+cossinφφ×12-cossinφφ=4. 即|OP|·|OQ|=4 为定值.
5.对任意实数,直线
y=x+b
与椭圆xy==42scions
θ θ
(0≤θ≤2π),
恒有公共点,则 b 的取值范围是________.
解析:将(2cos θ,4sin θ)代入 y=x+b 得:
[证明] 设 M(2cos φ,sin φ),φ 为参数,B1(0,-1),B2(0,1). 则 MB1 的方程:y+1=si2ncoφs+φ1·x, 令 y=0,则 x=si2ncoφs+φ1,即|OP|=12+cossinφφ. MB2 的方程:y-1=si2ncoφs-φ1x, 令 y=0,则 x=12-cossinφφ.
若 0<35a≤1,则当 cos θ=35a 时, |PA|min= -45a2+4=1,得 a= 215(舍去); 若 1<35a<95,则当 cos θ=1 时, 由|PA|min= a2-6a+9=1, 得|a-3|=1,∴a=2,故满足要求的 a 值为 2.
[例 2] 已知 A,B 分别是椭圆3x62+y92=1 的右顶点和 上顶点,动点 C 在该椭圆上运动,求△ABC 的重心 G 的轨 迹方程.
代入目标函数得
z=5cos φ-8sin φ= 52+82cos(φ+φ0) = 89cos(φ+φ0)(tan φ0=85).
所以目标函数 zmin=- 89,zmax= 89.
1.已知椭圆2x52+1y62 =1,点 A 的坐标为(3,0).在椭圆上找
一点 P,使点 P 与点 A 的距离最大.
4sin θ=2cos θ+b
∵恒有公共点,∴以上方程有解.

【公开课课件】《椭圆的参数方程》课件

【公开课课件】《椭圆的参数方程》课件

椭圆的参数方程
x a cos ( 为参数 ) 0,2 y b sin
练习
x 2 3 cos P是椭圆 ( 为参数)上一点, y 2 sin
OP的倾斜角为 4 ,则点P的坐标为( (B) (A) )
(A) ( 6 , 2 ) (C) (2 3, 3) (B) ( 3, 3 ) (D) (4,3)
y M B A
A,B,M三点固定,设 MBx |AM|=a,|BM|=b,
M 0
B A

x
设M(x,y)则x=acos ,y=bsin ,
。 所以M点的轨迹为椭圆。
例题与练习
例1、把下列参数方程化为普通方程
x 3cos , (1) y 5sin .
x 8cos , (2) y 6sin .
x2 例3 点P在椭圆 y 2 1 上运动,直线x+2y4
2=0交椭圆于点A、B,问P处于何处时,P到直线
的距离最大?
y A P O B x
例3
已知椭圆 ,点P(x,y)是椭圆 上一点, ⑴求x2+y2的最大值与最小值; ⑵求3x+5y的范围;⑶若四边形ABCD内接于 椭圆,点A的横坐标为5,点C的纵坐标为4, 求四边形ABCD的最大面积。 ⑴方法一(参数法) 方法二(消元法)要注意元的范围22 ⑵参数法,化归法(转化为直线与椭圆有交 点,从而消元所得的一元二次方程的Δ≥0 ⑶ 关键:求出B、D到直线AC的最大距离.
说明:
⑴ 这里参数
叫做双曲线的离心角与直线OM的倾斜角不同.
x2 y 2 ⑵ 双曲线的参数方程可以由方程 2 1与三角恒等式 2 a b 2 2
的实质是三角代换.

《椭圆的参数方程》课件

《椭圆的参数方程》课件

引入参数
引入参数化变量描 述椭圆
求解参数值
确定椭圆参数的具 体数值
应用坐标变换
将椭圆的标准方程 转化为参数方程
椭圆参数方程的性质
可变形
参数值影响椭圆形 状
对称性
某些参数下的椭圆 具有对称性
应用广泛
在物理学、工程学 等领域有广泛应用
多样性
不同参数组合形成 不同椭圆
椭圆参数方程的应用
天体轨道
描述行星绕太阳运 动轨迹
物理模型
描述摆线运动等现 象
数据分析
用参数方程拟合实 验数据
工程设计
绘制椭圆形状的设 计图
01 人工智能
应用于图像识别和处理
02 生物医学
模拟生物运动和疾病分析
03 材料科学
用于纳米结构和材料设计
感谢观看
感谢您观看本次关于椭圆参数方程的PPT课件。通过本课件, 您了解了椭圆参数方程的定义、推导、性质和应用,希望对 您理解椭圆和参数方程有所帮助。在未来,椭圆参数方程将 在更多领域展示其重要性和应用价值。谢谢!
参数方程的几何意义
曲线形状分析
通过参数方程了解 曲线的形状特点
几何问题解决
利用参数方程解决 具体的几何问题
动态变化观察
观察曲线随参数变 化的动态效果
01 运动规律分析
通过参数方程描述物体的运动规律
02 变化趋势预测
根据参数方程预测物体的变化趋势
03 控制参数优化
利用参数方程优化系统控制参数
参数方程的工程 应用
参数方程的物理应用
运动轨迹描述
描述物体在空间中 的运动轨迹
模拟实验
通过参数方程进行 物理实验的模拟
变化过程分析
分析物体随时间变 化的状态

椭圆的参数方程及其应用课件

椭圆的参数方程及其应用课件
模拟结果的分析
通过模拟结果的分析,可以深入理解椭圆参数方程的性质,为后续 的应用提供基础。
椭圆参数方程的数值模拟在物理问题中的应用
力学问题
椭圆参数方程可以用于描述力学 问题中的椭圆运动轨迹,如行星
的运动轨迹等。
电磁学问题
椭圆参数方程可以用于描述电磁 学中的椭圆波函数,如电子的波
函数等。
流体力学问题
椭圆曲线上的线积分等问题。
椭圆的参数方程的积分学分析还 可以用于求解一些物理问题,如 质点的运动轨迹、振动问题等。
05
椭圆的参数方程的数值模拟
用数值模拟方法研究椭圆参数方程的性质
椭圆参数方程的表示形式
椭圆参数方程是一种用参数表示的椭圆方程,通过参数的变化可 以研究椭圆的形状和大小。
数值模拟方法
采用数值计算的方法来模拟椭圆参数方程的性质,如参数的变化对 椭圆形状的影响、椭圆的旋转等。
星绕太阳的运动轨迹可以用椭圆的参数方程表示。
02
椭圆参数方程的极坐标形式
在极坐标系中,椭圆的参数方程通常表示为半径r关于角度θ的函数。这
种形式可以直观地描述椭圆的形状和大小。
03
运动轨迹的解析方法
使用椭圆的参数方程描述物体运动轨迹时,可以通过解析方法求解轨迹
的形状和位置。例如,通过已知的行星运动规律,可以推导出其运动轨
椭圆参数方程可以用于描述流体 力学中的椭圆流动,如涡旋的流
动等。
06
椭圆的参数方程在科技论文中的应用
在物理学领域的应用
粒子运动轨迹
01
椭圆的参数方程可以描述许多物理现象中的粒子运动轨迹,例
如行星绕太阳的运动轨迹、电子在电场中的运动轨迹等。
波动现象
02
椭圆的参数方程可以描述一些波动现象,例如声波、电磁波等

椭圆的参数方程公开课课件

椭圆的参数方程公开课课件
x a r cos 得: y b r sin ( 为参数)
x2 y 2 问题2:你能仿此推导出椭圆 2 2 1的参数方程吗? a b
x y 2 1 2 a b
2
2

x y 1 a b
2
2
x a cos 令 y sin b
x 线AB的方程为 3 y 2
1 2x 3y 6 0
6 13
d
| 6 cos 6 sin 6 | 22 32
2 sin( ) 4
所以当 =

4 这时点P的坐标为( 3 2 2 , 2)
时, d 有最大值, 面积最大
三、课堂小结
(1)椭圆的参数方程与应用
x2 y 2 例2.已知椭圆 2 2 1(a b 0) ,求椭圆内接矩形面积 a b
的最大值.
解:设椭圆内接矩形的一个顶点坐标为(a cos , b sin )
S矩形 4 a cos b sin 2ab sin 2 2ab
k 当 (k Z )时,S矩形 2ab最大。 2 4
椭圆的参数方程 一、知识回顾
问题: 圆( x a) 2 ( y b) 2 r 2的参数方程是什么 ? 是怎样推导出来的 ?
2 2
x a y b 1 r r
x a cos r 令: y b sin r
小结:借助椭圆的参数方程,可以将椭圆上的任意 一点的坐标用三角函数表示,利用三角知识加以解 决。
思考: 与简单的线性规划问题 进行类比,你能在实数 x2 y2 x, y满足 1的前提下,求出 z x 2 y的 25 16 最大值和最小值吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以椭圆内接矩形面积的最大值为2ab.
小 结
(1)椭圆的参数方程以及参数 的几何意义. (2)椭圆的参数方程的应用.
思考:已知A为椭圆 x 2 y 2 1 上任意一点, 25 9
B为圆(x-1)2+y2=1上任意一点;
求 A B 的最大值和最小值。
作业
课时训练P99页:一:2、3、4;三:1。
椭圆的参数方程
福州格致中学 宋建辉
复习
1.圆x2+y2=r2(r>0)的参数方程: xyrrcsions(为参数)
2.圆(x-a)2+(y-b)2=r2的参数方程:
其中参数的几何意义为:
xyabrrcsions(为参数)
θ为圆心角
猜想
椭圆
x2 a2
y2 b2
1(ab0)
的参数方程为:
如图,以原点为圆心,分别以a,b(a>b>0)为半 径作两个圆,点B是大圆半径OA与小圆的交点,过点A 作AN⊥Ox,垂足为N,过点B作BM ⊥ AN,垂足为M,当 半径OA绕点O旋转时点M的轨迹为椭圆.
xyabcsions(为参数)
——此即为椭圆的参
数方程,其中 的几何
意义为——离心角.
y
B

O
A M Nx
问题一:
已知椭圆
x2
y2
1 ,M是椭圆上位于
25 9
第一象限的点且∠XOM=600,求点M的坐标。
注意:离心角∠xOA与旋转角∠xOM的区别
例1.求椭圆 x 2 y 2 1 的点到直线l:x-y+4=0的距离的 8
最小值和最大值。
例2.已知椭圆
x2 a2
by22
1(ab0),求椭圆内接矩形面积
的最大值.
解:设椭圆内接矩形的一个顶点坐标为(acos,bsin)
Q S 矩 形 4 a c o s b s i n 2 a b s i n 2 2 a b
当 k 2 4 (k Z )时 , S 矩 形 2 a b 最 大 。
2005-12-2
相关文档
最新文档