MARSH不等式的加强
S08.内斯比特不等式的类似、推广、加强与应用

关键词: 内斯比特不等式加强 of Square) 差分代换法
类似
猜想
应用
SOS 法 (Sum
形式变换
-3-
The Similarity ,Extension, Enhancement and Application Of Nesbitt's Inequality
Summary
In this article, we have drawn some wonderful conclusions by making further study and generalizing the basic form of Nesbitt's inequality. Meanwhile we have emphasized and associated it . We have made a comprehensive study to the inequality based on the three basic inequalities and various methods of proof. some general rules and sharpening forms have been obtained by the two softwares: maple and bottema2009, which is of great effect to the proof of the other inequalities. In some sense, this article can perform our comprehensive study because it shows the reader such a clear clue: from simplicity to complexity, telling the development of the thoughts and above all, exemplifying how to apply it.
希尔伯特空间柯西施瓦茨不等式-概念解析以及定义

希尔伯特空间柯西施瓦茨不等式-概述说明以及解释1.引言1.1 概述希尔伯特空间是数学中一个重要的概念,它是由德国数学家希尔伯特在20世纪初提出的。
希尔伯特空间是一种完备的内积空间,其内积定义了空间中向量的长度和夹角。
希尔伯特空间不仅在数学领域有广泛的应用,还在物理学、工程学等多个领域中发挥着重要作用。
柯西施瓦茨不等式是希尔伯特空间中的一个基本定理,它描述了两个向量之间内积的性质。
柯西施瓦茨不等式指出,对于任意的两个向量,在希尔伯特空间中,其内积的绝对值不超过两个向量的范数乘积。
这一不等式揭示了希尔伯特空间中向量之间的内积关系,为后续的分析提供了重要的基础。
本文将首先介绍希尔伯特空间的定义和一些基本性质,包括内积的性质、完备性等。
然后引入柯西施瓦茨不等式的概念,并对其进行详细的证明。
最后,我们将讨论希尔伯特空间和柯西施瓦茨不等式在实际问题中的应用,并探讨其重要性和未来的研究方向。
通过本文的研究,读者将能够全面了解希尔伯特空间和柯西施瓦茨不等式的内容和应用。
对于数学、物理和工程等领域的学生和研究人员来说,掌握这些基本概念和定理是非常重要的。
希望本文能够为读者提供有益的知识和启发,促进对希尔伯特空间和柯西施瓦茨不等式的更深入理解和应用。
1.2 文章结构文章结构如下:2.正文2.1 希尔伯特空间的定义和性质2.2 柯西施瓦茨不等式的引入2.3 柯西施瓦茨不等式的证明在正文部分,我们将首先介绍希尔伯特空间的定义和性质,以便读者对后续内容有一个清晰的认识。
希尔伯特空间是一种具有内积的完备线性空间,其内积赋予了空间中向量之间的长度和角度的度量。
我们将讨论希尔伯特空间的定义以及一些重要的性质,例如空间的完备性和内积的连续性等。
接下来,我们将引入柯西施瓦茨不等式。
柯西施瓦茨不等式是希尔伯特空间中一项极为重要的基本定理,它描述了内积中的向量之间的关系。
我们将探讨柯西施瓦茨不等式的具体内容及其在希尔伯特空间中的应用。
柯西施瓦茨不等式 数学归纳法

柯西施瓦茨不等式数学归纳法全文共四篇示例,供读者参考第一篇示例:柯西施瓦茨不等式是数学中一个非常重要的不等式,它在许多领域中都有着广泛的应用。
柯西施瓦茨不等式是由法国数学家柯西(Augustin Louis Cauchy)和瑞士数学家施瓦茨(Hermann Amandus Schwarz)分别独立提出的,后来被称为柯西施瓦茨不等式。
这个不等式可以用来描述内积空间中的向量之间的关系,也可以用来证明各种数学问题。
柯西施瓦茨不等式的数学表达式如下:\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right)\left(\sum_{i=1}^{n} b_i^2\right)a和b都是n维向量,\sum_{i=1}^{n} a_i b_i是向量a和b的内积,\sum_{i=1}^{n} a_i^2和\sum_{i=1}^{n} b_i^2分别是向量a和b的范数的平方。
柯西施瓦茨不等式的几何意义是,两个向量的内积的绝对值不会超过它们的范数的乘积。
这个不等式可以用来证明一系列的数学问题,例如在线性代数、实分析、概率论等领域中经常会用到。
下面我们将通过数学归纳法来证明柯西施瓦茨不等式。
我们来看一下当n=2时的情况。
假设有两个向量a和b,它们的分量分别为a=(a_1,a_2),b=(b_1,b_2)。
根据柯西施瓦茨不等式的定义,我们有:(a_1b_1 + a_2b_2)^2 \leq (a_1^2 + a_2^2)(b_1^2 + b_2^2)展开计算可得:这就证明了当n=2时,柯西施瓦茨不等式成立。
假设当n=k时柯西施瓦茨不等式成立,即对于任意k维向量a=(a_1,a_2,...,a_k)和b=(b_1,b_2,...,b_k),有:假设有两个k+1维向量a=(a_1,a_2,...,a_{k+1})和b=(b_1,b_2,...,b_{k+1})。
(完整版)各种Schwarz积分不等式的归纳及其应用举例

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)前言 (1)1. 预备知识 (1)2.Cauchy-Schwarz积分不等式及其推广 (2)2.1 Cauchy-Schwarz积分不等式 (2)2.2 Cauchy-Schwarz积分不等式形式上的推广 (4)2.3 Holder积分不等式 (5)2.4 Minkowski积分不等式 (9)3. 实例应用 (10)3.1 Cauchy-Schwarz积分不等式的实例 (10)3.2 Cauchy-Schwarz积分不等式形式推广的运用 (12)3.3 Holder积分不等式的应用 (12)3.4 运用Minkowski积分不得不等式证明范数 (13)4. 结束语 (13)参考文献 (14)各种Schwarz 积分不等式的归纳及其应用举例学生姓名: 学号:数学与信息科学学院 数学与应用数学指导老师: 职称:摘 要:本文归纳和总结给出不同形式的Schwarz 积分不等式,然后对其进行证明,并举例说明它在一些实际问题中的应用.关键词:Cauchy-Schwarz 积分不等式;行列式;Holder 积分不等式;Minkowski 积分不等式The examples of application and induction on some forms ofSchwarz integration inequalitiesAbstract :This paper will enumerate and then prove some forms of Schwarz integration inequality, thereby illustrate its implementation in practical problems.Key words :Cauchy-Schwarz integral inequality; D eterminant; Holder integral inequality; Minkowski integral inequality前言本文主要从三个方面归纳和总结了Schwarz 积分不等式,首先我们给出了Schwarz 积分不等式的一般形式、Schwarz 积分不等式的形式推广和Schwarz 积分不等式最出名的推广就是Holder 积分不等式以及Minkowski 积分不等式;其次运用理论来证明它的合理性;最后通过一些实例说明它在数学中,生活中的实际应用.1. 预备知识定理1.1 (Cauchy 不等式)[3]已知12,,...,,n a a a 12,,...,n b b b 为实数,则222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑. (1)等式成立当且仅当i i a b λ=,1,2,,i n =.这是最常见的Cauchy 不等式,其实当n=3可追朔至法国数学家grange . Cauc-hy 不等式可以推广至复数. 如何推广呢? 不等式只在实数时才有意义,对于复数自然的选择其长度. 对任意复数z x iy =+,其长度z =(1)而言我们只须将平方的意义,更改为复数的模数的平方即可.定理1.2 (Cauchy 不等式)[3]已知12,,...,,n a a a 12,,...,n b b b 为复数, 则222111nn ni ii i i i i a ba b ===⎛⎫⎛⎫≤ ⎪⎪⎝⎭⎝⎭∑∑∑ (2) 等式成立当且仅当i i a b λ=,1,2,,i n =,λ为复数.定理1.3 (Cauchy 不等式)[3]已知i a ,i b ∈C ,则112222,111i j i j i j i j a b a b ∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑ (3) 等式成立当且仅当i i a b λ=,1,2,,i n =,λ∈C .如果21i i a ∞=<∞∑、21i i b ∞=<∞∑,则1i ii a b∞=<∞∑.从Cauchy 不等式的角度而言,无穷数列{}1i i a ∞=的平方和收敛,21i i a ∞=<∞∑,是很自然而然出现的空间,在实变函数论或泛函分析中我们称之为2l 空间. 这是n 维实数空间n R 最自然的推广,它是一个Hilbert 空间,最重要的应用就是量子力学.在数学中尤其是分析学的思考过程通常是有限和⇔无穷级数⇔积分 (4)因此想当然Cauchy 不等式是可以推广至积分.2. Cauchy-Schwarz 积分不等式及其推广2.1 Cauchy-Schwarz 积分不等式定理2.1.1 (Cauchy-Schwarz 积分不等式)[1]已知()f x ,()g x 均在[],a b 上连续,则()222()()()()bb baaaf xg x dxf x dxg x dx ≤⎰⎰⎰. (5)证明 (法一:定义法)在积分学中,积分几乎都是从无穷级数推得的,下面我们也从级数开始,设[],a b 上有1n -个点,依次为0121n n a x x x x x b -=<<<<<=,它们把[],a b 分成n 个小区间[]1,i i i x x -∆=,i =1,2,…,n. i b an-∆=,记{}12,,,n T =∆∆∆. 这些分点构成对[],a b 的一个分割.在每个小区间i ∆上任取一点i ξ,作以()()i i f g ξξ为高,i ∆为底的小矩形.因为()f x ,()g x 均在[],a b 上连续,则()f x ,()g x 均在[],a b 上可积,有222111()()()()nn n i i i i i i i b a b a b a f g f g n n n ξξξξ===---⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑, 两边求极限,()2201lim ()()()()nbi i aT i b a f g f x g x dx n ξξ→=-⎛⎫= ⎪⎝⎭∑⎰,2222011lim ()()()()n n b i i a T i i b a b a f g f x g x dx n n ξξ→==--⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭∑∑⎰, 则()222()()()()bbbaaaf xg x dxf x dxg x dx ≤⎰⎰⎰.(法二:判别式)开始这个不等式最常见的证明方法就是利用判别式.因为[]()2222()()()2()()()bb b ba a a a xf t g t dt f t dt x f t g t dt x g t dt ⎡⎤+=++⎢⎥⎣⎦⎰⎰⎰⎰, 可视为x 的二次方程式,由于[]2()()0b axf t g t dt +≥⎰,而且2()0b a f t dt ≥⎰,所以上式表示的是开口向上而且在轴x 上方的抛物线,由于和x 轴不相交,所以没有实数,因此判别式小于或等于0.判别式()()()2224()()4()()0bbbaaaf tg t dtf t dtg t dt ∆=-≤⎰⎰⎰,整理得()222()()()()bb baaaf xg x dxf x dxg x dx ≤⎰⎰⎰.(法三:半正定)注意到关于1t ,2t 的二次型[]22222121122()()()2()()()bbbbaaaat f x t g x dx t f x dx t t f x g x dx t g x dx +=++⎰⎰⎰⎰为非负二次型,从而系数行列式()()()()()()()()bba a bbaaf x f x dx f xg x dx f x g x dxg x g x dx⎰⎰⎰⎰=2()baf x dx⎰2()bag x dx ⎰-()2()()0baf xg x dx≥⎰,即()222()()()()bbbaaaf xg x dxf x dxg x dx ≤⎰⎰⎰,从而定理2.2.1得证.从实变函数论的角度而言,我们仅需要求()f x 、()g x 是平方可积分函数([]2,L a b )则Cauchy-Schwarz 积分不等式仍然成立. 其空间关系可对照前一式(4):222R l L ⇔⇔. (6)2.2 Cauchy-Schwarz 积分不等式形式上的推广根据上面的Cauchy-Schwarz 积分不等式()222()()()()bb baaaf xg x dxf x dxg x dx ≤⎰⎰⎰的证明方法三中我们可以看出这个不等式可以改写为以下行列式形式:()()()()()()()()bba a bbaaf x f x dx f xg x dx f x g x dxg x g x dx⎰⎰⎰⎰0≥ .以这种形式给出的好处在于形式便于推广.定理2.2.1 (Schwarz 积分不等式形式推广)[2]设()f x ,()g x ,()h x 均在[],a b 上可积,则有()()()()()()()()()()()()0()()()()()()bbba a a bbba a a bbbaaaf x f x dx f xg x dx f xh x dxf xg x dx g x g x dxh x g x dx f x h x dxh x g x dxh x h x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰. (7) 证明 注意到关于1t ,2t ,3t 的二次型[]2123()()()bat f x t g x t h x dx ++⎰222222123()()()b b baaat t f x dx t t g x dx t t h x dx=++⎰⎰⎰1213232()()2()()2()()b b baaat t f x g x dx t t f x h x dx t t g x h x dx +++⎰⎰⎰为非负二次型,从而其系数行列式()()()()()()()()()()()()0()()()()()()bbba a a bbba a a bbbaaaf x f x dx f xg x dx f xh x dx f x g x dx g x g x dx h x g x dx f x h x dxh x g x dxh x h x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰, 从而定理2.2.1得证. 2.3 Holder 积分不等式定理2.3.1 (Holder 不等式)[3]已知12,,...,,n a a a 12,,...,n b b b 为任意复数,且p ,q 1≥,111p q+=,则 11111n nnpqp q i i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑. (8) 证明 令11ii n pp i i a a a ==⎛⎫⎪⎝⎭∑ , 11ii n qq i i b b b ==⎛⎫⎪⎝⎭∑,利用几何平均不等式①,得到11p qi i i i a b a b p q≤+, 或1111111111p q i ii i n nn n pqpqp q p q i i i i i i i i a b a b pqa b a b ====≤+⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑,取有限和,得11111111111111nnnpq i iii i i i n n n n pqpqp q p q i i i i i i i i a b a b pqa b a b =======≤+=⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑,因此可得11111n nnpqp q i i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑. 注 ①几何平均不等式2211()22a b ab a b ≤+⇔≤+.当2p q ==时就是Cauchy-Schwarz 不等式.Holder 不等式对n =∞也成立.另外最著名的就是积分不等式.定理2.3.2 ([],C a b 上的Holder 积分不等式)[3]已知()f x ,()g x [],C a b ∈,111p q+=,且p ,q 1≥则()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx≤⎰⎰⎰. (9)或更一般的形式定理2.3.3 ([],C a b 上的Holder 积分不等式)[3]已知1()f x ,2()f x ,…,()n f x [],C a b ∈,且1211p p ++ (1)p =1,1i p ≥ 则 ()()()12121111212()()()()()()nnbbbbpp p p p p n n aaaaf x f x f x dx f x dxf x dxf x dx≤⎰⎰⎰⎰. (10)证明 (定理2.3.2) 设()f x ,()g x [],C a b ∈,则当()0f x ≡或()0g x ≡时,上式(10)显然成立.令 i b ax a ia i x n-=+=+∆, (0,1,,i n =)则由Holder 不等式(9)可知11111()()()()n n npqp q i i i i i i i f x g x f x g x ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑, 上式两边同时乘以1n ,有1111111()()()()n nnpqp q i i i i i i i f x g x f x g x nn ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,上式右端=11111()()nnpqp q i i i i n f x g x -==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭∑∑=111111()()nnpqp q p q i i i i nf xg x ⎛⎫-+ ⎪⎝⎭==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭∑∑ =1111()()nnpqp q i i i i f x g x n n ==⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑,于是11111()()()()nnnpqp q i i i i i i i f x g x f x g x ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑可转化为 11111()()()()nnnpqp q iii i i i i f x g x f x g x nn n ===⎛⎫⎛⎫⎪ ⎪⎪ ⎪≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑ ,而b a x n -∆=,故b an x-=∆,将n 代入11111()()()()nnnpqp q i i i i i i i f x g x f x g x nn n ===⎛⎫⎛⎫⎪ ⎪⎪ ⎪≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑,得 11111()()()()n nnpqp q i i i i i i i x x x f x g x f x g x b a b a b a ===∆∆∆⎛⎫⎛⎫≤ ⎪ ⎪---⎝⎭⎝⎭∑∑∑, 即11111111()()()()n n npqp qi i i i i i i f x g x x f x x g x x b a b a b a ===⎛⎫⎛⎫∆≤∆∆ ⎪ ⎪---⎝⎭⎝⎭∑∑∑ , 对上式两端取极限,当n →∞时,0x ∆→,得()()1111()()()()bbbpqpqa aaf xg x dx f x dxg x dx b a b a≤--⎰⎰⎰,化简上式,即得()()11()()()()bbbpqpqa aaf xg x dx f x dxg x dx ≤⎰⎰⎰,又由 ()()()()bb aaf xg x dx f x g x dx ≤⎰⎰,故()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx≤⎰⎰⎰,从而定理2.3.2得证.定理2.3.4 (pL 上的Holder 积分不等式)[5]设1p >,111p q+=,()[,]p f x L a b ∈,()[,]p g x L a b ∈,那么()()f x g x 在[,]a b 上L 可积,并且成立()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx ≤⎰⎰⎰. (11)证明 首先证明当1p >,111p q +=时,对任何正数A 及B ,有11p q A BA B p q≤+.(12)事实上,作辅助函数 ()x x x αϕα=-(0)x <<∞,01α<<,则 '1()(1)x x αϕα-=-,所以在(0,1)上'()0x ϕ>,在(1,)∞上'()0x ϕ<,因而(1)ϕ是函数()x ϕ在(0,)∞上的最大值,即 ()(1)1x ϕϕα≤=-,(0,)x ∈∞. 由此可得(1)x x ααα≤+-,(0,)x ∈∞.令 Ax B =,代入上面不等式,那么 (1)A A B B αααα≤+-.两边乘以B ,得到 1(1)A A B Bαααα-≤+- .令1p α=,则 11q α-=,于是上式成为 11p q A B A B p q≤+.如果()1()0bppaf x dx=⎰或()1()0bqqag x dx=⎰,则()0f x =..a e 于[,]a b 或 ()0g x =..a e 于[,]ab ,这时不等式(11)自然成立,所以不妨设()1()0bppaf x dx>⎰,()1()0bqqag x dx>⎰.作函数 ()1()()()bppaf x x f x dxϕ=⎰, ()1()()()bqqag x x g x dxψ=⎰.令()pA x ϕ= , ()qB x ψ=,代入不等式(12),得到()()()()pqx x x x pqϕψϕψ≤+. (13)由(13)立即可知()()x x ϕψ在[,]a b 上L 可积,由此可知)(()f x g x 也L 可积,对(13)的两边积分,得到 ()()()()1pqbbba aax x x x dx dx dx pqϕψϕψ≤+=⎰⎰⎰.因此()()11()()()()bbbpqpqaaaf xg x dx f x dxg x dx ≤⎰⎰⎰,证毕.2.4 Minkowski 积分不等式定理2.4.1 ([,]pL a b 上的Minkowski 积分不等式)[5]设1p ≥,()f x , ()g x ∈[,]p L a b ,那么()()[,]p f x g x L a b +∈,并且成立不等式111()()()()ppppppb b b a a a f x g x dx f x dx g x dx ⎛⎫⎛⎫⎛⎫≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰⎰. (14) 证明 当1p =时,因()()()()f x g x f x g x ≤+,由积分性质可知不等式(14)自然成立.如果1p >,因为(),()[,]pf xg x L a b ∈,所以()()[,]p q qf xg x L a b ∈,由Holder 积分不等式,有()11()()()()()()pppbbbpqqaa af x f xg x dx f x dx f x g x dx ⎛⎫≤ ⎪⎝⎭⎰⎰⎰,类似对()g x 也有()11()()()()()()pqqbbbpqqaa ag x f x g x dx g x dx f x g x dx⎛⎫≤ ⎪⎝⎭⎰⎰⎰,因而 1()()()()()()pbbp aaf xg x dx f x g x f x g x dx -=⎰⎰()()()()()()p pbbqqaaf x f xg x dx g x f x g x dx ≤+⎰⎰()111()()()()p q p q b b bpqa a af x dxg x dx f x g x dx ⎡⎤⎛⎫⎛⎫⎢⎥≤+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰(15)若()()0bpa f x g x dx =⎰,则()1()()bppaf xg x dx⎰,(14)式显然成立, 若()()0bpaf xg x dx ≠⎰,则在(15)式两边除以()1()()b pqaf xg x dx ⎰,得到()1111()()()()ppppbb b pqaa a f x g x f x dx g x dx -⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰. 由111p q+=,得到 111()()()()ppppppb b b a a a f x g x dx f x dx g x dx ⎛⎫⎛⎫⎛⎫≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰⎰, 证毕.无论是Holder 积分不等式,还是Minkowski 积分不等式,当2p q ==时,就是Cauc- hy- Schwarz 积分不等式.上面我们从空间R 和p L 空间上说明Holder 积分不等式和Min- kowski 积分不等式,对于p l 空间也有类似的Holder 积分不等式和Minkowski 积分不等式,11111pqpqi i i i i i i ξηξη∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑, (Holder 积分不等式)其中1p >,111p q+=,()123,,,p l ξξξ∈,()123,,,q l ηηη∈.pp p x yx y +≤+, (Minkowski 积分不等式)其中1p ≥,()123,,,x ξξξ=,()123,,,p y l ηηη=∈,11ppip i x ξ∞=⎛⎫= ⎪⎝⎭∑,11qq i pi y η∞=⎛⎫= ⎪⎝⎭∑.由此可知p l 按范数p x 成赋范线性空间.3. 实例应用3.1 Cauchy-Schwarz 积分不等式的实例例1. 设()f x 在[],a b 上连续,且()0f x ≥,()1b a f x dx =⎰. 证明:k R ∀>,有()()22()cos ()sin 1bbaaf x kxdx f x kxdx+≤⎰⎰.证明 因为()f x 在[],a b 上连续,则()f x 在[],a b 上可积,有()()22()cos baaf x kxdxkxdx =⎰⎰,()()22()()cos ()cos bb b aa af x dxf x kxdx f x kxdx =⎰⎰⎰,因为Cauchy-Schwarz 积分不等式,有()()()22()()cos bbaaakxdxf x dxf x kxdx ≤⎰⎰⎰,从而()22()cos ()cos bbaa f x kxdxf x kxdx ≤⎰⎰,同理()22()sin ()sin bbaaf x kxdxf x kxdx ≤⎰⎰,()()2222()cos ()sin ()(cos sin )1bb baaaf x kxdx f x kxdxf x kx kx dx +≤+=⎰⎰⎰.例2. 设()f x 在[]0,a 上连续可导,(0)0g =,证明:20()()()2a a a g x g x dx g x dx ≤⎰⎰′′. 等号成立()g x cx ⇔=(c 为常数).证明 设0()()xf xg t dt =⎰′,()()f x g t =′′,(0)0f =,因为()()(0)()()()xxg x g x g g t dt g t dt f x =-=≤=⎰⎰′′,()2222()()1()()()()1()()2222aaaa af x f a ag x g x dx f x f x dx g x dxg x dx ≤===⋅≤⎰⎰⎰⎰′′′′, 当()g x cx =时,左边=2222aa c c xdx =⎰,右边=222022a a a c c dx =⎰,则左边=右边.由Schwarz 积分不等式,()g x c =′,[]0,x a ∈()g x c =′或()g x c =-′,0()()x xg t dt cdt g x cx =⇒=⎰⎰′. 3.2 Cauchy-Schwarz 积分不等式形式推广的运用例3.[4]设()f x ,()g x 均在[],a b 上可积且满足: 1) ()0f x m ≥>, 2) ()0ba g x dx =⎰,则有:22222()()()()()()b b b b a aa a f x g x dx f x dx g x dx mb a g x dx ⎡⎤≤--⎢⎥⎣⎦⎰⎰⎰⎰.证明 利用(7),取()1h x =,并注意到()0bag x dx =⎰,则()()()()()()()()()()0bbba a abbaabaf x f x dx f xg x dx f x dx f x g x dxg x g x dxo f x dxb a-⎰⎰⎰⎰⎰⎰22222()()()()()()()()bbbbbaaa aa b a f x dx g x dx f x dx g x dx b a f x g x dx ⎡⎤⎡⎤=----⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰0≥, 由此得到:222221()()()()()()b b b b b a a a a a f x g x dx f x dx g x dx f x dx g x dx b a ⎡⎤⎡⎤≤-⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰⎰,注意到定理中的条件1): ()0f x m ≥>,于是22()()baf x dx m b a ≥-⎰,从而22222()()()()()()b b b b a aa a f x g x dx f x dx g x dx mb a g x dx ⎡⎤≤--⎢⎥⎣⎦⎰⎰⎰⎰. 3.3 Holder 积分不等式的应用例4. 设()f x ,()g x 为区间[],a b 上的可积函数,m N ∈,则:()()11()()()()m b m ba mm ab af x dx f x dxg x g x dx ++≥⎰⎰⎰.证明 把区间[],a b 分成n 等分,每个小区间长为x ∆,在每个小区间上取一点i ξ,则有11111()()()()nm m i ni i n m mi i ii f xf xg g xξξξξ++===∆∆≥∆∑∑∑因为()f x ,()g x 可积所以上式0x ∆→两端取极限,由极限保号性和黎曼积分定义有()()11()()()()m b m ba mmab af x dx f x dxg x g x dx ++≥⎰⎰⎰结论得证.3.4 运用Minkowski 积分不等式证明范数例5.[5]当1p ≥时,证明[,]p L a b 按1()()ppbpa f x f x dx ⎛⎫= ⎪⎝⎭⎰定义中的范数()p f x 成为赋范线性空间.证明 由 1()()0ppb pa f x f x dx ⎛⎫=≥ ⎪⎝⎭⎰,且()0f x =等价于()0f x =, ()()pp f x f x αα=,其中α为任意实(复)数.又由 Minkowski 积分不等式,当1p ≥时,对任何(),()[,]p f x g x L a b ∈,有 1()()()()ppb pa f x g x f x g x dx ⎛⎫+=+ ⎪⎝⎭⎰11()()ppppb b a a f x dx g x dx ⎛⎫⎛⎫≤+ ⎪ ⎪⎝⎭⎝⎭⎰⎰()()p p f x g x =+,所以[,]p L a b 按()p f x 成为赋范线性空间.4. 结束语本文主要给出了各种类型的Schwarz积分不等式,首先我们给出了的最基本Schwarz积分不等式,也就是最常见的Schwarz积分不等式;其次将Schwarz积分不等式进行一般形式推广;然后给出Schwarz积分不等式最出名的推广Holder积分不等式;最后给出Minkowski积分不等式.每一种Schwarz积分不等式都给出了相应的新的证明方法并给出一些实例加以说明.参考文献:【1】华东师范大学数学系编,数学分析上册(第三版)[M].高等教育出版社,2001.6.【2】匡继昌,常用不等式[M].长沙:湖南教育出版社,1989.【3】林琦焜,Cauchy-Schwarz不等式之本质和意义[J].数学传播,1995,24(1):p26-42.【4】张小平, 解析不等式[M].北京:科学出版社,1987.【5】程其襄魏国强等编,实变函数与泛函分析基础(第二版)[M].高等教育出版社,2003.7.。
含参数的Hardy—Hilbert型积分不等式的加强

l 6
湖
南
工
业
大
学
学
报
21 0 0年
o J ( ( 出<o < 卜 ) o f 、 0 ,
式 ( 取等号当且仅 当/ 和g 线性相关 , 5) 事实上式 ( 5)
0J < f 0
) 、 <o o g( ) ,
中 成 且 存cff ̄ 等 立 仅 在使' :g , 号 当 当 。 g C- qI ] ;
A b t a t: S m ea a c m e t a d — l e t n e r l n q aiya eo ti e y m e nso r v d o l e ’s sr c o dv n e n H r y Hib r ’Si tg a e u lt r b an d b a fi of i mp o e fHOd r i e uai n e i e u lte r sa ls e n q lt a d n w n q aiisaee tb ih d. y
K e wor s : H ad — l r’ p n e a q aiy; HO d r Si e u l y;W eg t un to y d r y Hi bet St ei tgrli u l y ne t l e ’ n q a i t i h ci n; f f n to u c n i
r
<
(Jl )J1 ) ( 。 ) ,。 ) { 一 , )x ( {一
・ )
( 2 )
T L "
这里常数 因子
( {g ) x Sq ) 0( -
这常因 ( 里数
式 :设 p>1 + 1 , 1 =l
, ,
, 最 半 佳
容易算 出厂 =qg 。
欧拉不等式一个加强的再改进

0,
则
式
③成
立 ,从
而得
证R 2r
≥1+653(∑tan
A 2
-
3).
文[3]末
提
问
:使
得
R 2r
≥
1+λ(∑tanA2
-
3)成立的λ 的 最 大 值 是 多 少? 借 助 数 学 软 件,
3
3
得到λmax =
15
4 +18 4
2 +24
(≈2.10),该
系 数 的 人 工 验 证 ,留 给 有 兴 趣 的 读 者 进 行 .
数 学 通 报 ,2018,57(2):50,59 (收 稿 日 期 :2019-03-23)
文[3]将
式②
中
的
系
数
93 8
改
进
为
7 3,该 6
系
数还
可
改进
为
63 5
(≈
2.08),证
明如
下
:
证明 设s 为 △ABC 的 半 周 长,由 恒 等 式
∑tanA2 =4Rs+r,待证不等式等价于2Rr≥1+
653(4Rs+r- 3),再等价于s-1253R(4+R26+rr)r
≥0,注意到 Gerrestsen不等式:
参考文 [J].数
学 通 报 ,2012,51(1):63 2 王圣.欧拉不等式的一个 加 强 的 改 进 及 其 类 似 [J].数
学 通 报 ,2017,56(2):62-63 3 刘其右,郭 要 红.欧 拉 不 等 式 的 一 个 加 强 的 改 进 [J].
不等
式 .文 [2]将
不
等
式
R 2r
H.Demir-D.C.B.Marsh不等式的加强
( R—r ( 2 ) R一2)≥0 r . () 3
由著名 的 E l 不等式 RI2 。 ur e > r知不等式 ( ) 3 显然 成立 . 从而不等式( ) 1 成立 . 证毕. 参 考 文 献
[ ] Btm . 1 oe a 几何 不等式[ . t 0 M]单蹲 , 北京 : 译. 北京大学出版社 , 9 1 1 9
r a 2
r b
2
r e
+
+
。s
2
() 1
证明
r a 2
设 p △分别为 △A c的半周长和面积 , , 由正弦定理及 =
r b
,=
,=
,。 , = , = , ^ = 知
+
c + o s
+ cs 丁 o‘ 螂
20 0 8年第 1 2期
中学教研 ( 学) 数
・ 5・ 2
H. e r D. B. r 不 等 式 的 加 强 D mi- C. Mas h
●董 林 ( 高青县教研室 山东高青 260 ) 530
16 9 5年 , D mr D C B Mas 立 了 角形 中 的如 F 等 式 … : H. e i与 . . . r h建 三 不
i。 ’ i‘。 si— 。A +。。‘。 。 n 。。‘。 ‘ ’。B 。 sn ‘— n C
-
。
。
。
。
。
2 嘲丁C s 傩 伽B i 等 - “ 等 下
2 时T s瞄 咖 i 粤2 “ 导
如 - : 2 c ∞丁 。 ‘ m i
.
.B+ C B +C 。 一. C+ G— A A .. C+ A C+ 。 . + 一 A —B 一 A +B 姗 B +C B —C A +B , . ’ 一咖 下 一 枷 — o 8 — 2 i 一嘲 下 o s n 一s Zi n 瞄 下 2i sn下 s 0 一2 i sn ∞ 下
Demir-Marsh不等式的推广及其稳定性
Vo 1 . 3 1 。 No . 3
Se p ., 2 01 3
De mi r - Ma r s h不 等 式 的推 广 及 其 稳 定 性
张晗方
( 江苏师范大学 教师教育学院, 江苏 徐州 2 2 1 1 1 6 )
摘要: 利用代数不等式将 D e mi r — Ma r s h不 等 式 推 广 到高 维 空 间 , 并给出它的稳定性.
0 引 言
设 AAB C的三 边 B C一口 , C A=b , AB=c上 的 高 分 别 为 h 。 , h , h , 又三边 a , b , C的旁 切 圆半 径 分 别 为 r , r 6 , r f . 文 献[ 1 ] 中给 出了如下 的 D e mi r — Ma r s h不 等式 :
作 者 简 介 :张 晗方 , 男, 教授 , E — ma i l :z h h f z h h f @1 6 3 . c o m.
引 文 格 式 :张 晗方 . De mi r - Ma r s h不 等 式 的 推 广 及 其 稳 定性 . 江 苏 师范 大学 学 报 : 自然 科 学 版 , 2 0 1 3 , 3 1 ( 3 ) : 1 3 —2 O .
1 引理 及 其证 明
为 给 出 De mi r — Ma r s h不等式 的推广及 其 稳定性 , 首 先给 出几 个引理 .
引理 1 设 ∈R, k , m∈N+, 且 ≠ 1 , ≠ 一( 仇一1 ) , 则 有
收 稿 日期 :2 0 1 3 — 0 8 — 3 0
基 金 项 目 :国 家 自然 科 学 基 金 资 助 项 目 ( 1 0 1 7 1 0 7 4 ) , 江 苏 省 自然 科 学 基 金 资 助项 目( 0 4 J J 4 0 0 1 )
一个半离散非齐次核Hardy-Hilbert型不等式的加强
一个半离散非齐次核Hardy-Hilbert型不等式的加强黄启亮;杨必成【摘要】引入独立参数,应用权函数的方法及Hermite-Hadamard不等式,建立一个具有最佳常数因子的加强的半离散非齐次核 Hardy-Hilbert型不等式,还考虑了其等价式。
%By applying the way of weight functions and Hermite-Hadamard ’s inequality, a strengthened version of a half-discrete Hardy-Hilbert-type inequality with a non-homogeneous kernel and a best possible constant factor is provided.Furthermore,the strengthened equivalent forms are considered.【期刊名称】《广东第二师范学院学报》【年(卷),期】2016(036)003【总页数】5页(P8-12)【关键词】Hardy-Hilbert型不等式;参数;权函数;等价式;加强【作者】黄启亮;杨必成【作者单位】广东第二师范学院数学系,广东广州 510303;广东第二师范学院数学系,广东广州 510303【正文语种】中文【中图分类】O178若<,<, 则有如下具有最佳常数因子的Hardy-Hilbert不等式[1]:2005年,文[3]引入参数α,λ>0,推广式(1)为:若<,<,则有2009—2011年,杨必成在文[5-6]中论述了引入参量的、离散的Hilbert型不等式理论. 2015年,在类似条件下,文[7]给出如下一个式(2)及式(3)的具有最佳常数因子的推广式:本文引入独立参数,应用权函数的方法及Hermite-Hadamard不等式,建立一个类似于式(5)的具有最佳常数因子的加强的半离散非齐次核Hardy-Hilbert型式,还考虑了其等价式.本文下设:在R+连续,(t)dt< (x>为递减正数列,.不赘述.引理1 设.定义如下权函数:ωα(σ,x)<kα(σ)(1-ρ(x))(x∈R+),ϖα(σ,n)≤kα(σ)(n∈N;0<σ<α).证明设(y≥0).则V(0)=0, V(n)=Vn.当x>0时,U′(x)=μ(x);当时,νn+1≤ν(y)=V′(y).固定x>0,设(t>0).则可算得h′(t)<0,h″(t)>0.当时,当时,.易见由Hermite-Hadamard不等式[12],有,及作变换t=(U(x)Vn)α,由式(10),有(σ).故式(9)成立.证毕. (注:式(9)成立无需条件σ≤1;若U()=,则式(9)取等号).引理2 若V()=,则任ε>0,有证明因具有递减性, νn≥νn+1, 且V()=,因而有定理1 设则有如下等价不等式:证明配方,并由带权的Hölder不等式[12],有同理可证式(14)成立且与式(12)等价.故式(12),式(13)与式(14)齐等价.证毕.定理2 设p>1,V()=U()=,则式(12)~式(14)的常数因子kα(σ)都为最佳值.证明任0<ε<p(α-σ),设(1),),.则由式(11)及引理1、引理2的注,有评注显然, 式(11)是下列半离散Hardy-Hilbert型不等式的加强:。
一个三角形不等式的加强
3 ■/ - (2 R + ry
4R 2
厂2
2 1+4
(2R + rY 2 ^ 4R2
3[« (2R + r ) 2] - « 4 r2[/?2 [R2 + 52 - (2R + r ) ;
- (2R + r);
^ 2R2[s2 - (2/? + r ) 2] 〇/ ( / ) = - (3R2 - 4 r 2)s2 +
2019年第3 期
中学数学研究
15
一个三角形不等式的加强
广 东 广 雅 中 学 (5 1 0 1 6 0 ) 杨志明
最近,刘保乾老师提出了如下不等式:
在
中
,求证:
1 cosA + cos-B
1 2
1 cosB + cosC
)( 1
1
2 / \ cosC + coaA
2
3 16(cosA + cosB + cosC)
r3 ,(2)
cosA + cosB + cosC = 1 + R ,⑶
2Rs2 + 8«r2 - 16R2 B r ( / + 2Rr + r2)
厂3
3R -(4)
^ 16(7? + r ) '
<^{AR2 - R r - 2r2)s2 - 32R3r - 22R2/ + URr3
- 2r4 3:0
(1)
在文一中,一外国朋友采用”索 - 米 法 ”给出了
如下分拆证法.
(— 1— _ 丄 、(— 1— _ | ) VcosA + cos5 2 / vcosB + cosC