概率统计第六章
概率论与数理统计 第六章 样本及抽样分布

x0 o.w.
n 1
n5
n 15
15
(2)t-分布(学生分布)
设 X ~ N ( 0 ,1), Y ~ 2 ( n ) 且X、Y为独立随 机变量,则称随机变量
t
X Y /n
X
1 n 2 ( X 12 ...... X n )
为自由度为n的t-分布。记为: t ~ t ( n ) 。
3
§1 随机样本
总体: 研究对象在某项数量指标的全体. 记为X。通常称总体X。 个体: 总体X中的每一个元素(实数)xi。 根据总体所含的个体数分为: 有限总体和无限总体。
4
总体与取样
X1
X
X2 X3 Xn
取样模型
X
X2 X1
X3
X4
X5
河流污染取样
5
总体、样本、统计量
总体 样本 统计量
X1 X2
2 ( n ) 分布:
具有可加性
2 X X 12 ...... X n , X i ~ N (0,1)
3. 4.
t ( n ) 分布:
X ~ N (0,1), Y ~ 2 ( n )
t(n) X Y /n
F ( n1 , n 2 ) 分布: U ~ 2 ( n1 ), V ~ 2 ( n 2 )
F (n1 , n2 )
19
分位点及性质:
定义: Pr[ X z ]
z
(1)标准正态分布分位点
(x)
( x)dx 1 ( x)dx
z
z1
( x)
Pr[ X z ]
概率与统计学课件-第六章-数理统计的基本概念2-1

�总体与样本
基本概念: 总体:研究的问题所涉及的对象的全体 个体:总体中的每个成员 样本:从总体中抽取部分个体 样本容量:样本所包含的个体数量 样本观测值:
数的属性 样本的二重性 随机变量的属性
设X1,X2, …,Xn为总体X的一个容量为 n的 样本。若它满足 独立性,即X1,X2, …,Xn 相互独立; 同分布性,即每个 Xi都与总体X服从相 同的分布. 则称这样的样本为简单随机样本,简称为 样本。
�统计量
设是总体X的样本,g(X1,X2, …,Xn)是样本 的实值函数,且不包含任何未知参数,则 称g(X1,X2, …,Xn)为统计量。
例2.若X1,X2, X3是来自总体X~N(μ, σ 2)的 其中参数μ未知, σ2已知,则
X 1 X 3 − 3µ , X12 + 4 X 22 + 5µ 都不是统计量
�定理
若X1,X2, …,Xn是来自总体X的样本,设X 的分布函数为 F(x),则样本X1,X2, …,Xn的 联合分布函数为
n
∏ F (x )
i i =1
例1.若X1,X2, …,Xn是来自总体X的样本,设 X的分布函数为 F(x),则样本 X1,X2, …,Xn的联合分布函数为
⎧ n − λ xi (1 − e ), xi > 0(i = 1, 2,⋯ , n) ⎪∏ F ( x1 , x2 ,⋯ , xn ) = ⎨ i =1 ⎪ 0 , 其他 ⎩
1/8, 25 ≤ x<27 2/8, 27 ≤ x<30 3/8, 30 ≤ x<33 Fn(x)= 5/8, 33 ≤ x<35 6/8, 35 ≤ x<45 7/8, 45 ≤ x<65 1, 65 ≤ x
概率论与数理统计(06)第6章 统计量及其抽样分布

σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率与数理统计第六章

t
x
y
W {T t (n 1)}
2021/3/11
t
x 16
6.2.1 单个正态总体均值的假设检验
例6.2 正常人的脉搏平均每分钟72次,某医生测得10例四乙基铅 中毒患者的脉搏数(次/分)如下:54,67,68,78,70,66, 67,70,65,69.已知人的脉搏次数服从正态分布.试问四乙基铅
在取6份水样,测定该有害物质含量,得如下数据: 0.530‰,0.542‰,0.510‰,0.495‰,0.515‰,0.530‰
能否据此抽样结果说明有害物质含量超过了规定? 0.05
练习2 一公司声称某种类型的电池的平均使用寿命至少为21.5小 时,有一实验室检验了该公司制造的6套电池,得到如下的寿命数 据(单位:小时):19 18 22 20 16 25 设电池寿命服202从1/3/正11 态分布,试问这种类型的电池寿命是否低于该18 公
即提出假设: H0 : p 0.02 若 H0 正确,则取到次品为小概率事件.
2021/3/11
在一次试验中, 小概率事件是 几乎不可能发 生的.
小概率原理
2
6.1 假设检验的基本概念
2. 两类错误
犯了“弃真”错误 第一类错误
犯了“纳伪”错误 第二类错误
P(拒绝H0 | H0为真)
P(接受H0 | H0为假)
注意:我们总把含 有“等号”的情形 放在原假设.
在原假设 H0 为真的前提下,确定统计量
U
X 0
~
N (0,1)
n
2021/3/11
因为X
~
N
,
2
n
,
所以
X
~
N (0,1)
概率论与数理统计教材第六章习题

X σ0 n
~ N(0,1)
对于置信水平1- ,总体均值的置信区间为 对于置信水平 -α,总体均值 的置信区间为
X
σ0
n
uα < < X +
2
σ0
n
uα
2
(2)设总体 ~ N(,σ 2 ), 未知 ,求的置信区间。 设总体X~ 未知σ, 的置信区间。 设总体 的置信区间
σ 0 ,则样本函数 t = X ~ t(n 1) 用 S 代替 S n
i =1
n1
n1
F
1
α ∑ Yj 2
2 j =1
n2
(
)
2
n2
10
2 2 及 (1)设两个总体 ~ N(1,σ1 ) 及Y~ N(2 ,σ 2 ), 未知 1 2, )设两个总体X~ ~
2 σ1 的置信区间。 求 2 的置信区间。 σ2
选取样本函数 选取样本函数
2 2 S1 σ1 F = 2 2 ~ F(n1 1, n2 1) S2 σ2
∑x
i =1
n
i =1
i
n = 0.
1 p
得 p 的极大似然估计值为 p =
n
∑x
i =1
n
1 = x
i
12
1 θ 2. 设总体 服从拉普拉斯分布:f ( x;θ ) = e ,∞< x < +∞, 设总体X 服从拉普拉斯分布: 2θ 求参数 θ 其中 > 0. 如果取得样本观测值为 x1 , x2 ,L, xn , 求参数θ
第六章 参数估计
(一)基本内容
一、参数估计的概念 1 定义:取样本的一个函数θ ( X 1 , X 2 ,L , X n ), 如果以它的观测 定义:
《概率与数理统计》第06章 - 样本及抽样分布

(3)g( x1, x2 ,L xn )是统计量g(X1, X2 ,L Xn )的观察值
几个常见统计量
样本平均值
X
1 n
n i 1
Xi
它反映了 总体均值 的信息
样本方差
S 2
1 n1
n i 1
(Xi
X )2
它反映了总体 方差的信息
n
1
1
n
X
2 i
i 1
nX
2
样本标准差
S
1 n
n
1
(
i 1
X
i
是来自总体的一个样本,则
(1) E( X ) E( X ) ,
(2) D( X ) D( X ) 2 n ,
n
(3) E(S 2 ) D( X ) 2
矩估计法的 理论根据
若总体X的k阶矩E( X k ) k存在,则
(4) Ak
1 n
n i 1
Xik
p k
k 1, 2,L .
(3)证明:E(S2 )
定义 设X1 , X2 ,L , Xn是来自总体X的一个样本, g( X1 , X 2 ,L , X n )是X1 , X 2 ,L , X n的函数,若g 中不含未知参数,则g( X1 , X 2 ,L , X n )称是一 个统计量.
请注意 :
(1)X1, X2 ,L
X
是样本,也是随机变量
n
(2)统计量是随机变量的函数,故也是随机变量
1
e
(
xi 2
2
)2
2
n
( xi )2
1
e i1 2 2
n
2
第二节
抽样分布
概率论与数理统计第6章
第六章6.4 在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过0.3毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.6.5 假设某种类型的电阻器的阻值服从均值 μ=200 欧姆, 标准差σ=10 欧姆的分布, 在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率. 解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P 9772.0)2()25/10200204(=Φ=-Φ≈6。
8 设总体X ~N (150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤。
解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ= 2857.09615.09772.0=-=第六章《样本与统计量》定理、公式、公理小结及补充:。
概率论与数理统计第六章样本及抽样分析
期望与方差:E(Y) = n, D(Y) = 2n
X1, X2,……, Xn 来自标准正态总体 X 的样本,那么
Y (X1 X2 )2 (X3 X4 )2 (X5 X6 )2
是否服从卡方分布?若 kY ~ χ2( n ),求 k,n
第六章 样本及抽样分析
… 19.675 2… 21.026 23.337 26.217 28.299
… 22.362 24.736 27.688 29.819
… 23.685 26.119 29.141 30.319
…
…
…
…
…
…
…
…
…
…
查表练习: 求下列各式中的 C 值
1. Y ~ 2(24), P(Y C ) 0.1 2. Y ~ 2(40), P(Y C ) 0.95
样本可看成 n 维随机变量(X1, X 2 ,, X n), 则有 P( x1, x2 ,, xn ) = P( x1)P( x2 ) P( xn )
或 f ( x1, x2 ,, xn ) = f ( x1) f ( x2 ) f ( xn )
身高总体
178.4 161.5 174.9 182.7 171.0 165.3 172.8 182.1 180.2 176.8 181.7 175.7 177.3 180.0 179.4 177.0 181.3 176.5 176.0 175.7 168.1 184.6 169.1 177.8 175.1 161.8 174.3 176.0 163.7 176.8 177.3 175.3 180.2 176.8 181.9 178.4 181.5 177.6 179.9 178.2 174.7 176.0 175.7 180.3 166.2 177.2 171.9 182.9 176.8 179.5 167.0 174.8 182.7 174.9 178.1 179.9 175.4 184.4 175.1 179.4 173.2 176.1 177.6 180.5 164.3 170.5 177.5 168.3 173.0 176.8 173.9 180.7 166.5 180.0 165.6 179.4 182.2 176.3 177.4 183.4 167.9 176.1 177.4 183.4 176.9 168.0 179.0 178.8 173.1 173.2 162.2 179.9 178.2 183.0 174.0 180.8 173.1 173.2 176.8 171.1 169.0 178.3 171.6 181.2 167.6 161.1 166.0 190.2 180.3 166.2 174.9 175.8 176.5 164.2 173.0 176.8 170.5 180.5 177.3 175.3 163.7 176.8 171.1 168.5 171.2 170.2 177.1 169.4 175.7 177.3 183.2 168.6 175.1 179.4 169.1 169.9 168.5 180.2 174.9 171.0 171.0 168.8 177.7 168.6 176.6 175.9 176.8 179.5 174.3 176.0
概率论与数理统计第六章总结
概率论与数理统计第六章总结概率论与数理统计是数理学科中的重要分支,其应用广泛,涉及到许多领域,如工程、物理、自然科学、医学、经济学等等。
第六章主要讲述了离散型随机变量的概率分布、期望值、方差及其应用。
首先我们了解到离散型随机变量是指取值有限或者可以无限但是可以和自然数一一对应的随机变量,即不连续的随机变量。
其中概率分布的概念是很重要的,它告诉我们每种随机变量取值的可能性大小,从而可以计算一些重要的数值。
比如期望值,期望值是随机变量取值的平均值,它可以用概率分布函数计算得到。
期望值可以给我们一个随机变量所处于某个状态的平均位置,或者它对某个事件发生的平均贡献。
方差也是一个非常重要的概念,它是随机变量值与其期望值之差的平方的期望值。
方差表示了随机变量的分布范围,也就是它们取值的变化程度。
方差越大,代表随机变量距离其期望值越远,该随机变量取值的范围也相应较大。
求期望值和方差的过程中有一些公式会显著提高计算效率,比如线性变换的公式、缩放变换的公式、Chebyshev不等式等等。
这些公式的应用有助于简化计算,并且能帮助我们更容易地理解问题。
我们还讨论了一些常见离散型随机变量的概率分布,比如伯努利分布、二项分布、泊松分布等等。
这些分布的出现在实际问题中都有着很重要的意义,比如伯努利分布描述了实验只有两种可能结果的概率分布,比如是/否、头/尾等等。
而二项分布则描述了实验中成功的概率和试验次数的关系,给我们解决实际问题提供了基础。
除了离散型随机变量,我们还可以研究连续型随机变量的概率分布以及相应的数学理论。
这些知识在实际应用中也具有重要意义。
比如在统计财务账目时,需要研究一些连续型随机变量的概率分布,以便预测下一期客户付款时间的分布情况。
又比如在流量预测中,需要研究一些连续型随机变量的概率分布,以便预测某个时间段内的网络流量。
总之,离散型随机变量理论是概率论的核心内容,对于理解整个概率论课程和进行实际应用都有着重要的意义。
概率论与数理统计第六章总结
概率论与数理统计第六章总结一、概述在概率论与数理统计的第六章中,主要介绍了随机变量的概率分布以及常见的概率分布模型。
本章内容是概率论与数理统计的重点和难点之一,对于理解和应用概率统计的基本理论和方法具有重要意义。
二、随机变量的概率分布1. 随机变量及其概率分布的概念•随机变量是对随机试验结果的数值化描述,它的取值不仅依赖于随机试验的结果,还受到机会因素的影响。
•概率分布描述了随机变量可能取值的概率大小。
常用的概率分布有离散型和连续型两种。
2. 离散型随机变量及其概率分布•离散型随机变量的取值是有限或可列的,它的概率分布可以用概率质量函数来描述。
•常见的离散型随机变量包括伯努利随机变量、二项分布、泊松分布等。
3. 连续型随机变量及其概率分布•连续型随机变量的取值是无限的,它的概率分布可以用概率密度函数来描述。
•常见的连续型随机变量包括均匀分布、正态分布等。
三、常见概率分布模型1. 二项分布•二项分布是指在 n 重伯努利试验中,成功的次数服从的概率分布。
其概率质量函数为二项式系数与成功概率的乘积。
•二项分布在实际应用中常用于描述成功次数的分布情况,如抽样调查中的样本中某一特征出现的次数。
2. 泊松分布•泊松分布是定义在非负整数集上的概率分布,它描述了在一段时间或空间内事件发生的次数。
其概率质量函数为事件发生率与时间(或空间)长度的乘积。
•泊松分布常用于描述罕见事件发生的次数,如单位时间内电话呼叫次数、一段时间内事故发生次数等。
3. 正态分布•正态分布是最重要的连续型概率分布模型之一,也称为高斯分布。
它的概率密度函数呈钟形曲线,对称于均值。
•正态分布在实际应用中广泛存在,如身高体重、测量误差、考试成绩等符合正态分布的情况较多。
4. 指数分布•指数分布是定义在非负实数集上的连续型概率分布,它描述了连续时间间隔或空间间隔内事件发生的情况。
其概率密度函数呈指数下降曲线。
•指数分布在实际应用中常用于描述无记忆性随机事件的发生情况,如设备失效时间、极端天气事件的间隔等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F (n1 , n2 ) 分布的上 分位点.
1 F1 (n1 , n2 ) F (n2 , n1 )
(四)正态总体的样本均值与样本方差的分布
2 2 S N ( , ) X X , X , X 设 1 2 的样本, 、 分 n 是来自总体
别是样本均值和样本方差,则有 1. X ~ N ( ,
2.t 分布 (1)定义 设 X ~ N (0, 1), Y ~ 2 (n) ,且X 与 Y 相互独立, 则
t X Y n
t
称随机变量
服从自由度为 n 的
t (n) 的概率密度为
分布,记作 t ~ t (n) .
(n 1) 2 t 2 1 h(t ) n n n 2
U
X1 X 2 X 9 Y12 Y22 Y92
.
分析 由
X i ~ N (0, 32 ) , X 1 , X 2 , , X 9 ( i 1, 2,, 9 ),
相互独立,
则其和 X 1 X 2 X 9 ~ N (0, 92 ) ,从而
Yi ~ N (0,32 ), (i 1, 2,, 9 ) ,则
1 5 X X i ,因总体 X ~ N (12, 4) ,故 X ~ N (12, 4 5) 5 i 1
总体均值 E ( X ) 12,所求概率即为 P{| X 12 | 1} .
解
从而
P{| X 12 | 1} 1 P{| X 12 | 1}
X 12 1 1 1 P { } 1 P{1 X 12 1} 45 45 45 1 1 1 ( ) ( ) 2 2(1.12) 45 45
2 【例1】在总体 N (52, 6.3 ) 中随机抽一容量为 36 的样本, 求样本均值 X 落在 50.8 到 53.8 之间的概率. (教材P.142,习题1)
分析 总体为正态分布,则样本均值亦为正态分布,
利用正态分布的概率计算即可求得.
2 解 因 X i ~ N (52, 6.3 ), i 1, 2, , 36
,
2 2 2 2 n),则 X 1 X 2 X n 服从
分布.
解 2 (n) . 【例2】已知总体
X Y 服从
X ~ 2 (2)
, Y ~ 2 (3) ,且 X 与 Y 独立,则
分布.
, X 2 , , X n
解 2 (5) . 【例3】设 X 则
X n S
2
n );
2. (n 1) S 2 ~ 2 (n 1) ; 2
2 3. X 与 S 相互独立 ;
4. X ~ t (n 1) . S n
二、典型例题举例
(一)填空题 【例1】设随机变量 X 1 , X 2 , , X n 相互独立,且 X i ~ N (0, 1)
(i 1, 2,
第六章 样本及抽样分布
一、内容提要
(一)随机样本和统计量 1.总体 所研究对象的全体所组成的集合.
2.个体
组成总体的每个元素.
以某方式自总体随机抽选的个体之标志值
3.随机样本
集合,简称样本.
4.简单随机样本 随机样本. 5.统计量 随机样本的一个不含有任何未知参数的函数. 各分量相互独立且与总体同分布的
1 1
y
n1 n2 2
,
y0 y0
(2)性质 (3)分位点 的 F (n1 , 注
n2 )
若 F ~ F (n1 , n2 ) ,则 对 为
0 1
1 ~ F (n2 , n1 ) F
.
1 2
,称满足
P{F F (n1 , n2 )} F ( n , n )) ( y)dy
2 2 2
由总体
X和 Y
的独立性及 t 分布的定义,有
U
X1 X 2 X 9
2 1 2 2
~ t ( 9 ) Y Y Y
2 9
(二)选择题 【例1】设 X ,
1
X 2 , , X n
是来自正态总体
2
N (, 2 ) 的简单随
机样本,其中 未知, 已知,则下面不是统计量的是
的总
体 X,X 及 S 2 分别为样本的平均值及无偏方差,则以下 结果不成立的是
(A) X i ~ N (0, 1) , (1 i n)
(C)
nX ~ t (n 1) S
(B) X ~ N (0, 1)
2 2 X ~ ( n) (D) i i 1 n
答(
)
解 B.
(三)计算题
X1 X 2 X 9 ~ N (0,1). 9
Yi ~ N (0,1), (i 1, 2, , 9 ) 3
又由于 Y1 , Y2 , , Y9 相互独立,则
Y9 Y1 Y2 2 ~ (9) 3 3 3
(C)
N (0, 1)
N (n, n 2 )
答(
)
解 A .
【例4】设随机变量
X
和 Y 都服从标准正态分布,则
2 (B) 服从 分布.
(A) X Y 服从正态分布.
(C) X 2和 Y 2 都服从 2 分布
(D) X 2 Y 2 服从 F 分布. 答(
)
解 C
.
【例5】设 ( X1 ,
X 2 , , X n ) 及 (Y1 , Y2 , , Ym )
分别来自两个独立的
正态总体
N (1 , 2 )及 N ( 2 , 2 )
2 1
的两个样本,其样本(无偏)方
S 12 差分别为 S 及 S ,则统计量 F S 2 服从 F 分布的自由度为 2 (A) (n 1, m 1) . (B) (n, m) .
(A)
1 n X Xi n i 1
1 n ( X i X )2 (B) S n 1 i 1
2
(C)
1 2
(X
i 1
n
i
X )2
(D)
1 n ( X i ) 2 n i 1
答(
)
解 D.
【例2】设
X 1 , X 2 , , X n是总体的样本,则
1 n ( X i X )2 n 1 i 1
.
4.样本k 阶(原点)矩 5.样本k 阶中心矩 注 设 X1 ,
1 n k Ak X i ,k 1, 2, . n i 1
1 n Bk ( X i X ) k, n i 1
k 1, 2, .
X 2 , , X n 为来自总体
X(不论X服从什么分布,只
要它的均值和方差存在)的样本,且 E ( X ) ,则有
53.8 52 50.8 52 ) ( ) P{50.8 X 53.8} ( 6.3 6 6.3 6
6 .3 所以 X ~ N (52, ) ,从而 6
2
(1.714) (1.142)
(1.714) (1.142) 1
2 2 2 D( X ) (1) E ( X ) , ;(2) E(S ) . n
(三)正态总体的常用统计量
2 1. 分布 (1)定义 设 X 1 , X 2 , X n 是来自总体 N (0, 1) 的样本,则
称统计量 2 X 12 X 22 X n2 服从自由度为n 的 2 分布,
(二)随机样本的常用统计量
1 n 1.样本均值 X X.i n i 1 n 1 n 2 1 2 2 2 2.样本方差 S X n X . ( X X ) i i n 1
n 1 i 1
2
i 1
3.样本标准差
1 n S S ( X i X )2 n 1 i 1
U n1 F V n2
称随机变量
服从自由度为 (n1 , n2 ) 的 F 分布,记作 F ~ F (n1 , n2 ) .
F (n1 , n2 ) 分布的概率密度为
n n 2 1 ( n n ) 2 n n1 1 2 1 2 y 1 n ( y ) n 2 n 2 n 1 2 2 2 0,
2 2 ~ (n) . 记作
2 (n) 的概率密度为:
n x 1 1 y2 e 2 , n2 f ( y ) 2 n 2 0,
y0 y0
分布的可加性 (2)
2
2 设 12 ~ 2 (n1 ) ,2 ~ (n2 ) ,并且 2
2 2 2 2 1 2 ~ (n1 n2 ) . 、 2 独立,则 1 2
是
(A) 样本矩.
(B) 二阶原点矩.
(D) 统计量.
(C) 二阶中心矩.
答(
)
解 D 【例3】设
.
X 1 , X 2 , , X n
. 是取自总体 .
X ~ N (, 2 ) 的样本,则
1 n X Xi n i 1
服从分布
(B)
(D)
(A)
2 N (, ) n
N (, 2 )
2(1 0.8686) 0.2628.
【例3】从正态总体 N (3.4, 62 ) 中抽取容量为n 的样本,如果要 求其样本均值位于区间 (1.4, 5.4) 内的概率不小于 0.95 ,问样本
容量n 至少应取多大?
附表 标准正态分布表 ( x)
x
1 e 2