新北师大版九年级数学下册第一章直角三角形的边角关系知识点整理复习

合集下载

九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

第一章直角三角形的边角关系一、本章知识要点:1、锐角三角函数的概念;2、解直角三角形。

二、本章教材分析:(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。

如何解决这一关键问题,教材采取了以下的教学步骤:1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。

显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。

2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边的比值也随之变化了,由到。

这样就突出了直角三角形中边与角之间的相互关系。

3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。

4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。

同时要强调三角函数的实质是比值。

防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。

如果学生产生类似的错误,应引导学生重新复习三角函数定义。

5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。

初中数学教材知识梳理-九年级下册

初中数学教材知识梳理-九年级下册

初中数学教材知识梳理·系统复习北师大版本初中数学九年级下册第一章直角三角形的边角关系知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA3313知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;第二章二次函数实际问题中求最值①分析问题中的数量关系,列出函数关系式;②研究自变量的取值范围;③确定所得的函数;④检验x的值是否在自变量的取值范围内,并求相关的值;⑤解决提出的实际问题.解决最值应用题要注意两点:①设未知数,在“当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要设为函数;②求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.结合几何图形①根据几何图形的性质,探求图形中的关系式;②根据几何图形的关系式确定二次函数解析式;③利用配方法等确定二次函数的最值,解决问题由于面积等于两条边的乘积,所以几何问题的面积的最值问题通常会通过二次函数来解决.同样需注意自变量的取值范围.第三章圆第1讲圆的基本性质知识点一:圆的有关概念关键点拨与对应举例1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.知识点二:垂径定理及其推论2.垂径定理及其推论定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.延伸根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧BC;②弧AD=弧BD;③AE=BE;④AB⊥CD;⑤CD是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.知识点三:圆心角、弧、弦的关系3.圆心角、弧、弦的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点四:圆周角定理及其推论O4.圆周角定理及其推论(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a,∠A=1/2∠O.图a 图b 图c( 2 )推论:①在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b,∠A=∠C.②直径所对的圆周角是直角.如图c,∠C=90°.③圆内接四边形的对角互补.如图a,∠A+∠C=180°,∠ABC+∠ADC=180°.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.例:如图,AB是⊙O的直径,C,D是⊙O上两点,∠BAC=40°,则∠D的度数为130°.第2讲与圆有关的位置关系知识点一:与圆有关的位置关系关键点拨及对应举例1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.例:已知:⊙O的半径为2,圆心到直线l的距离为1,将直线l沿垂直于l的方向平移,使l与⊙O相切,则平移的距离是1或3.图形公共点个数0个1个2个数量关系d>r d=r d<r知识点二:切线的性质与判定3.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.4.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.*5.切线长(1)定义:从圆外一点作圆的切线,这点与切点之间的线段长叫做这点到圆的切线长.(2)切线长定理:从圆外一点可以引圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.例:如图,AB、AC、DB是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为2.知识点四:三角形与圆5.三角形的外接圆图形相关概念圆心的确定内、外心的性质内切圆半径与三角形边的关系:(1)任意三角形的内切圆(如图a),设三角形的周长为C,则S△ABC=1/2Cr.(2)直角三角形的内切圆(如图b)①若从切线长定理推导,可得r=1/2(a+b+c);若从面积推导,则可得r=.这两种结论可在做选择题和填空题时直接应用.例:已知△ABC的三边长a=3,b=4,c=5,则它的外切圆半径是2.5.经过三角形各定点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形三角形三条垂直平分线的交点到三角形的三个顶点的距离相等6.三角形的内切圆与三角形各边都相切的圆叫三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫圆的外切三角形到三角形三条角平分线的交点到三角形的三条边的距离相等第3讲与圆有关的计算知识点一:正多边形与圆关键点拨与对应举例1.正多边形与圆(1)正多边形的有关概念:边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOC为等边△a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2例:(1) 如果一个正多边形的中心角为72°,那么这个正多边形的边数是5.(2)半径为6的正四边形的边心距为32,中心角等于90°,面积为72.知识点二:与圆有关的计算公式2.弧长和扇形面积的计算扇形的弧长l=180n rπ;扇形的面积S=2360n rπ=12lr例:已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.3.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:lrrlππ=•=221S圆锥侧2S rlrππ+=全在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.例:如图,已知一扇形的半径为3,圆心角为60°,则图中阴影部分的面积为。

北师大版九年级下册数学《利用三角函数测高》直角三角形的边角关系教学说课复习课件

北师大版九年级下册数学《利用三角函数测高》直角三角形的边角关系教学说课复习课件
解:过点 A 作 AM⊥EF 于 M,过点 C 作 CN⊥EF 于 N,∴MN=0.25 m,∵∠EAM=45°, ∴AM=ME,设 AM=ME=x m,则 CN=(x+6)m,EN=(x-0.25)m,∵∠ECN=30°,∴tan ∠ECN=CENN=x-x+0.625= 33,解得:x≈8.8,则 EF=EM+MF≈8.8+1.5=10.3(m).答:旗杆 的高 EF 为 10.3 m
• 如图,要测量物体MN的高度,可按下列步骤进行:
M
1、在测点A处安置测倾器,测 得此时M的仰角∠MCE=α;
C αD β
E
AB
N
ME ME b, MN ME a
tan tan
2、在测点A与物体之间B处安置 测倾器,测得此时M的仰角 ∠MDE=β;
3、量出测倾器的高度 AC=BD=a,以及测点A,B之间 的距离AB=b.根据测量数据,可 求出物体MN的高度。
2 米
第一章 直角三角形的边角关系
利用三角函数测高
课件
学习目标
1.能够设计活动方案、自制测倾器和运用测倾器进行 实地测量以及撰写活动报告的过程; 2.能够对所得的数据进行整理、分析和矫正;(重点) 3.能够综合运用直角三角形边角关系的知识解决实际 问题.(难点)
导入新课
情境引 入
如果不告诉你这些高楼大厦的高度,你能想到办法 测出它们的高度吗?通过这节课的学习,相信你就行.
讲授新课
解:如图,作EM垂直CD于M点,
根据题意,可知
∠DEM=30°,BC=EM=30m,
M
CM=BE=1.4m 在Rt△DEM中,
DM=EMtan30°≈30×0.577 =17.32(m),
CD=DM+CM=17.32+1.4≈18.72(m).

北师大版九年级下册数学:直角三角形边角关系复习课

北师大版九年级下册数学:直角三角形边角关系复习课

--------------------------------------------
--------------------------------------------
A
cb Ba
第五环节:尝试探究锐角三角形中的边角关系
A
阅读材料2,如图,对于锐角三角形ABC, ABC的外接圆
A'
圆心O,直径为2R,则边与其对角的正弦有以下关系:
cO
b
证明: 连接BO并延长交圆O于A',
则A A'
A'B是直径A'CB 90
sin
A
BC A'B
a 而c c
2R
sin A a a 2R 2R sin A
动画演示
问题2 : 仿照上述证明过程 , 试证明 : b 2R
sin B
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
谢谢各位!
6
第四环节:解直角三角形的实际应用
问题2.(2015宁夏第16题3分)如图,港口A在观测站O的正东方向,OA=4,
某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,
此时从观测站O处测得该船位于北偏东60°的方向,则该船航行
的距离(即AB的长)为

4
第四环节:解直角三角形的实际应用
问题3:如图,平地上一个建筑物AB与铁塔

北师大版数学九年级下册:第一章《直角三角形的边角关系》知识点整理复习

北师大版数学九年级下册:第一章《直角三角形的边角关系》知识点整理复习

直角三角形的边角关系知识点复习考点一、锐角三角函数的概念如图,在△ABC 中,∠C=90°正弦:_____sin =∠=斜边的对边A A 余弦:____cos =∠=斜边的邻边A A 正切:_____tan =∠∠=的邻边的对边A A A三角函数 30°45°60°sin α cos α tan α考点三、各锐角三角函数之间的关系(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A) ; (2)平方关系:1cos sin 22=+A A (3)倒数关系:tanA •tan(90°—A)=1 (4)商的关系:tanA=AAcos sin 考点四、锐角三角函数的增减性当角度在0°~90°之间变化时,(1) 正弦值随着角度的增大而_______;(2) 余弦值随着角度的增大而_______;(3) 正切值随着角度的增大而___________; 考点五、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:______________________(勾股定理) (2)锐角之间的关系:______________________(3)边角之间的关系:正弦sinA=___________,余弦cosA=____________,正切tanA=______________ (4) 面积公式:c ch ab s 2121==(h c 为c 边上的高) 考点六、解直角三角形应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

2023年北师大版九年级数学下册第一章《直角三角形的边角关系》复习题附答案解析

2023年北师大版九年级数学下册第一章《直角三角形的边角关系》复习题附答案解析

2023年九年级数学下册第一章《直角三角形的边角关系》复习题一、单选题1.如图,在ABC ∆中,AC =3,BC =4,AB =5,则tan B 的值是()A .34B .43C .35D .452.定义:圆心在原点,半径为1的圆称为单位圆.如图,已知点()(),0,0P x y x y >>在单位圆上,则sin POA ∠等于()A .x B .yC .x y D .y x 3()A .3B .1C .2D .124.在Rt △ABC 中,∠C =90°,如果∠A =α,AB =3,那么AC 等于()A .3sinαB .3cosαC .3sin αD .3cos α5.tan60°的值等于()A .1BC .D .26.在Rt △ABC 中,∠C=90°,∠A=α,BC=m ,则AB 的长为()A .m sinαB .C .m cosαD .7.如图,网格中的每个小正方形的顶点称为格点,边长均为1,ABC 的顶点均在格点上,则∠ABC 的正弦值为()A .12B .5C .35D .108.在Rt △ABC 中,∠C=90°,BC=6,sinA=35,则AB=()A .8B .9C .10D .129.如图,冬奥会滑雪场有一坡角为20°的滑雪道,滑雪道的长AC 为100米,则BC 的长为()米.A .100cos 20︒B .100cos 20︒C .100sin 20︒D .100sin 20︒10.在平面直角坐标系xOy 中,已知点P (1,2),点P 与原点O 的连线与x 轴的正半轴的夹角为α(0°<α<90°),那么tanα的值是()A .2B .12C .2D 二、填空题11.计算:012⎛⎫ ⎪⎝⎭–2cos60°=.12.cos30°+sin45°=13.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,AD=95,BD=165,则sinB=.14.如图,已知斜坡AC 的坡度i =1:2,小明沿斜坡AC 从点A 行进10m 至点B ,在这个过程中小明升高m.三、计算题15.计算:0(3)4sin601π-+--16.计算:0(3)22cos30π---︒.四、解答题17.今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B 处接到报告:有受灾群众被困于一座遭水淹的楼顶A 处,情况危急!救援队伍在B 处测得A 在B 的北偏东60 的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处救人,同时第二组从陆地往正东方向奔跑120米到达C 处,再从C 处下水游向A 处救人,已知A 在C 的北偏东30 的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A 处?请说明理由.(参1.732=)18.如图,升国旗时,某同学站在离国旗20m 的E 处行注目礼(即BE=20m ),当国旗升至旗杆顶端A 时,该同学视线的仰角∠ADC=42°,已知他的双眼离地面的高度DE=1.60m .求旗杆AB 的高度(结果精确到0.01m ).参考数据:sin42°≈0.6691,cos42°≈0.7431,tan42°≈0.9004.19.如图,小明站在A 处,准备测量教学楼CD 的高度.此时他看向教学楼CD 顶部的点D ,发现仰角为45°.他向前走30m 到达A '处,测得点D 的仰角为67.5°.若小明的身高AB 为1.8m (眼睛与头顶的距离忽略不计),则教学楼CD 的高度为多少?(计算结果精确到0.1m ,参考数据:67.50.924sin ︒≈,67.50.383cos ︒≈,67.5 2.414tan ︒≈,1.414≈)20.先化简,再求代数式262393a a a a -÷+--的值,其中a =tan60°﹣6sin30°.21.先化简,再求代数式23211m m m m m m-+-÷-的值,其中60230m tan sin =︒-︒五、综合题22.五一期间,数学兴趣小组的几位同学到公园游玩,看到公园内宝塔耸立,几人想用所学知识测量宝塔的高度.为此,他们在距离宝塔中心18m 处(AC =18m )的一个斜坡CD 上进行测量.如图,已知斜坡CD 的坡度为i =1斜坡CD 长12m ,在点D 处竖直放置测角仪DE ,测得宝塔顶部B 的仰角为37°,量得测角仪DE 的高为1.5m ,点A 、B 、C 、D 、E 在同一平面内.(1)求点D 距地面的高度;(2)求宝塔AB 的高度.(结果精确到0.1,参考数据;sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73)23.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(参考数据:40400.766sin ︒︒≈≈,,400.839tan ︒≈,26.60.448sin ≈ ,26.60.89426.60.500cos tan ︒︒≈≈,3 1.732≈)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10 后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.答案解析部分1.【答案】A【解析】【解答】解:在△ABC 中,∵AC=3,BC=4,AB=5,又因32+42=52,即AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠C=90°,∴tanB=34AC BC =.故答案为:A.【分析】首先根据勾股定理的逆定理判断出△ABC 是直角三角形,再根据正切函数的定义即可得出答案.2.【答案】B【解析】【解答】解:过P 作PE OA ⊥于E ,则PO=1,PE=y,OE=x,∴sin 1PE yPOA y PO ∠===,故答案为:B.【分析】过P 作OA 的垂线构造直角三角形,利用正弦的定义可得答案.3.【答案】C 【解析】【解答】解:∵sin45°=2.故答案为:C.【分析】根据特殊角的三角函数值即可求得答案.4.【答案】B 【解析】【解答】解:如图,∵ACcosαAB=,∴AC=3cosα.故答案为:B.【分析】根据余弦等于邻边比斜边即可求解.5.【答案】C 【解析】【解答】C 。

解直角三角形 北师大版数学九年级下册

解直角三角形    北师大版数学九年级下册

九下第一章 直角三角形的边角关 系
1.4 解直角三角形
问题引入
问题1.在直角三角形中,除直角外还有几个元素?
问题2:如图,在Rt△ABC 中∠C=90°, a、b、c、
∠A、∠B 这五个元素间有哪些等量关系呢?
B
c a
AbC
总结梳理
在Rt △ ABC中,共有六个元素,分别是__三__ 条边, 三个角,其中∠C=90°,
(1) 三边之间的关系: a2+b2=__c_2 __;
B
c
(2) 锐角之间的关系: ∠A+∠B=_9_0_°;
a
(3) 边角之间的关系:锐角三角函数 A b C
sinA=__ac__,cosA=__b_c _,tanA=__ba__.
由直角三角形中 的元素, 出所有
元素的过程,叫做解直角三角形.
思考探究
斜边和一锐角
数学思想: 分类讨论
知识点一:已知两边解直角三角形
情况一:已知两直角边,求其他未知的元素
A

b?
AB a2 b2
tan A a b
A可求
情况C二:已a 知?一B 直角B边和90斜边,A求其他未知的元素
A

?c
AC c2 a2
sin A a c
A可求
C
a ? B B 90 A
A
b
20
C
a
B
随堂练习
1. 如图,在Rt△ABC中,∠C=90°,
AC=6, ∠BAC 的平分4线3AD=
,解这个直角
三角形.
A
解:
∵AD 平分∠BAC,
6 43
C
D
B

北师大版九年级下册数学《解直角三角形》直角三角形的边角关系研讨说课复习课件

北师大版九年级下册数学《解直角三角形》直角三角形的边角关系研讨说课复习课件
能求出其他的元素?
知道一个元素行不行?
知道两个角行不行?
A
c
b
C
a
B
合作探究
1.在图中的Rt△ABC中,根据∠A=75°,斜边AB=6,你能求出这个直角三角形
的其他元素吗?

B
6
BC
sin A
BC AB sin A 6 sin 75
AB
cos A
AC
AC AB cos A 6 cos 75

(2)R t△A B C 中,
因为 A B =
6米
AC
= 4 3 米,
sin 60
所以 A D - A B = 12- 4 3 ≈5.1 米.
所以改善后的滑梯会加长 5.1 m .
D
300
600
B
C
拓展探究
如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形
为“好玩三角形”,在Rt△ABC中,∠C=90°,若Rt△ABC是“好玩三角
解直角三角形
九年级下册
课件
学习目标
1
理解解直角三角形的含义。
掌握运用直角三角形的两锐角互余、勾股定
2
3
理及锐角三角函数求直角三角形的未知元素.
通过利用三角函数解决实际问题的过程,进一步提高学
生的逻辑思维能力和分析问题解决问题的能力.
自主学习
直角三角形共6个元素:三条边三个角,那么之间有哪些关系:
25°
∵∠B=25°,∴∠A=65°
b
b
30

71
又∵sinB=
,∴c=
0
sin B sin 25
c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 5新北师大版九年级数学下册第一章直角三角形的边角关系知识点整理复习考点一、锐角三角函数的概念如图,在△ABC 中,∠C=90°正弦:_____sin =∠=斜边的对边A A 余弦:____cos =∠=斜边的邻边A A 正切:_____tan =∠∠=的邻边的对边A A A考点二、一些特殊角的三角函数值三角函数 30°45°60°sin α cos α tan α考点三、各锐角三角函数之间的关系(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A) ; (2)平方关系:1cos sin 22=+A A (3)倒数关系:tanA ∙tan(90°—A)=1 (4)商的关系:tanA=AAcos sin 考点四、锐角三角函数的增减性当角度在0°~90°之间变化时,(1) 正弦值随着角度的增大而_______;(2) 余弦值随着角度的增大而_______;(3) 正切值随着角度的增大而___________; 考点五、解直角三角形1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为a,b,c (1)三边之间的关系:______________________(勾股定理) (2)锐角之间的关系:______________________(3)边角之间的关系:正弦sinA=___________,余弦cosA=____________,正切tanA=______________(4) 面积公式:c ch ab s 2121==(h c 为c 边上的高)考点六、解直角三角形应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

2 / 5(2)坡面的铅直高度h 和水平宽度l 的比叫做_______(或________)。

用字母i 表示,即h i l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做________),那么tan hi lα==。

解直角三角形的类型与解法 已知、解法 三角 类型已 知 条 件解 法 步 骤Rt △ABC B c a A b C两 边 两直角边(如a,b ) 由tan A =ab ,求∠A ;∠B =90°-A,c =22b a +斜边,一直角边(如c,a ) 由Sin A =ac,求∠A ;∠B =90°-A ,b =22a -c一 边 一 角 一角边和 一锐角锐角,邻边 (如∠A,b ) ∠B =90°-A ,a =b ·Sin A,c =bcosAcosA锐角,对边 (如∠A,a )∠B =90°-A ,b =a tanA ,c =asinA斜边,锐角(如c,∠A )∠B =90°-A ,a =c ·Sin A, b =c ·cos A计算边的口诀:有斜求对乘正弦;有斜求邻乘余弦;无斜求对乘正切选用关系式口诀:已知斜边求直边,正弦余弦很方便;已知直边求直边,正切函数理当然; 已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要选好; 已知锐角求锐角,互余关系要记好;已知直边求斜边,用除还需正余弦; 计算方法要选择,能用乘法不用除。

典型例题:1:在Rt △ABC 中,∠C=900。

① 已知sinA=23,则∠A=_______0,sinB=_______,COSB=_______,tanB=________.② 已知sinA=54, 则sinB=_______,COSB=_______,tanB=________.③ 已知sinA=0.6,AB=8,则BC=________. 已知cosA=0.6,AB=10,则AC=_________. 已知tanA=0.6,BC=6,则AC=__________.2:如图,根据图中已知数据,求△ABC 的BC 边上的高和△ABC 的面积.( 3近似取1.7)变式1:如图,根据图中已知数据,求AD.(sin25º= 0.4 ,tan25º= 0.5 ,sin55º=0.8 ,tan55º=1.4) 仰角铅垂线水平线视线视线俯角:i h l=hl αAB C 45º 30º4cm D AB C 55° 25º20 D┌ 变式2:如图,小明想测量塔CD 的高度.他在A 处仰望塔顶,测得仰角为300,再往塔的方向前进100m 至B 处,测得仰角为600,那么该塔有多高?(小明的身高忽略不计,结果保留根号)3 / 5精选习题:1.在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦 ( )(A ) 都扩大2倍 (B ) 都扩大4倍 (C ) 没有变化 (D ) 都缩小一半2.在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( )A .53 B. 54 C. 43 D. 553.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12 B .22 C .32 D .334.在Rt ∆ABC 中,∠C=90º,∠A=15º,AB 的垂直平分线与AC 相交于M 点,则CM :MB 等于( )(A )2:3 (B )3:2 (C )3:1 (D )1:3 5.等腰三角形底边与底边上的高的比是3:2,则顶角为 ( ) (A ) 600(B ) 900(C ) 1200(D ) 1500\6.如图,一渔船上的渔民在A 处看见灯塔M 在北偏东60O方向,这艘渔船 以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M 在北偏东15O方向,此时,灯塔M 与渔船的距离是( ) A.27km B.214km C.7km D.14km7、河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3 (坡比 是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ) A .53米B .10米C .15米D .103米8.在△ABC 中,∠A=30º,tan B=13,BC=10,则AB 的长为 . 9、084sin 45(3)4-︒+-π+-=10、如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶 时,A 处受噪音影响的时间为( )A .12秒.B .16秒.C .20秒.D .24秒.11、11、锐角A 满足2 sin(A-150)=3,则∠A= .已知tan B=3,则sin2B= . 12、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡 度为 .6ABM东4 / 513、如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋 楼之间的距离为30m,则电梯楼的高BC 为_________________米(保留根号).14.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分 别在四条直线上,则sin α= .15.△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,若AC=3.则线段AD 的长为_____________. 16、一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF,∠F=∠ACB=90°, ∠E=45°,∠A=60°, AC=10,试求CD 的长.17.腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173.=).18、如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N,使到该小区铺设的管道最短,并求AN 的长.19、某兴趣小组用高为1.2米的仪器测量建筑物CD 的高度.如示意图,由距CD 一定距离的A 处用仪器观察建筑物顶部D 的仰角为β,在A 和C 之间选一点B,由B 处用仪器观察建筑物顶部D 的仰角为α.测得A,B 之间的距离为4米,tan α=1.6,tan β=1.2,试求建筑物CD 的高度.20.一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B 处,ABCD αA 1l 3l 2l4lCDFαG A BC北东DCB A② ① 第17题图5 / 5测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910, tan63.5°≈2)21 如图,在四边形ABCD 中, AB=2,CD=1, ∠A= 60°,∠D= ∠B= 90°,求此四边形ABCD 的面积。

C DB2 60°1。

相关文档
最新文档