数学方法与思想方法

合集下载

小学数学中体现的数学思想与方法有哪些

小学数学中体现的数学思想与方法有哪些

小学数学中体现的数学思想与方法有哪些在小学数学中,体现了许多数学思想与方法,以下是其中一些例子:1.抽象思维:小学数学强调从具体的事物中提取共性、去除特殊性,实现抽象思维。

例如,学习数的运算时,通过将具体的事物抽象成数字,进行运算操作;学习几何时,通过将具体的图形抽象成几何形状,并进行相应的运算和推理。

2.归纳与演绎:小学数学通过归纳与演绎的方法培养学生的逻辑思维能力。

通过观察和总结,归纳出事物之间的规律,并进一步演绎出更一般的结论。

例如,学习数列时,通过观察数列中的规律,归纳出通项公式,从而推算出数列的任意项。

3.探究性学习:小学数学注重培养学生的探究精神和问题解决能力。

通过设计问题和情境,引导学生主动思考和探索。

例如,教学中可以使用教具和故事情境,让学生通过操作、实践和讨论解决问题。

这种学习方式能够激发学生的学习兴趣,增强他们的思考能力和创新能力。

4.决策与推理:小学数学通过决策问题和推理问题的解决过程,培养学生的逻辑思维和批判思维能力。

通过分析问题,寻找解决方案,并进行论证和验证。

例如,在解决实际问题时,学生需要选择合适的数学方法,进行计算和推理,从而得到正确的答案。

5.审美与美感:小学数学通过培养学生的审美意识,提高他们对数学美感的感知和理解能力。

例如,在几何学习中,学生通过观察和欣赏各种几何形状、图案和艺术作品,体验到数学的美妙和魅力。

6.适度抽象与形象思维:小学数学在引导学生进行适度抽象时,也注重发展形象思维。

通过使用具体的物体和图形,辅助学生理解数学概念、规则和运算。

例如,在学习分数时,可以使用物体的切割和图形的绘制,帮助学生形象地理解分数的概念和运算。

7.整体与部分:小学数学注重培养学生分析整体与部分之间的关系与变化的能力。

例如,在学习分数时,学生需要理解分数是整体与部分的关系,能够将一个整体分成几个相等的部分,并掌握分数的基本概念和运算规则。

以上只是一些例子,小学数学中还有许多其他数学思想与方法的体现。

高中数学思想和数学方法

高中数学思想和数学方法

高中数学思想和数学方法数学思想方法是科学性非常强的思考方式,它对高中数学教学起到了不可替代的教育意义和推动作用,下面是小编为大家整理的关于高中数学思想和数学方法,希望对您有所帮助。

欢迎大家阅读参考学习!1高中数学思想和数学方法高中数学思想与高中数学教学的关系高中数学思想是高中数学教学的灵魂,是获取和吸收知识最有效的方法,具有极高的实用性和适用性,高中生在充分了解和掌握数学思想方法就能够提高处理数学问题的能力了,进而在面对数学考试的时候能够从容不迫,同时也有助于高中生综合素质的完善和提高。

因此,培养学生数学思想方法对学生数学学习具有非常重要的意义,但是将数学思想方法融入到整个高中阶段的教学中是非常不容易的,不同的数学概念不一定会蕴含着一样的数学思想方法,举例来说,牛顿从物理角度对微积分定义进行了解释,而莱布尼茨从几何角度对微积分的定义进行了另一种解释,所以为了更好的掌握微积分的内容,就一定要明确它的定义极限,而这里所蕴含的数学思想就是对数学对象进行分割定义等一系列处理。

只有具备数学思想,并以此为基础,才能通过这种数学学习方法高效的解决各种类型的数学难题和数学概念和理论,进而更好的完成数学教学任务,帮助高中生尽快的提高数学成绩。

高中数学教学中强化数学思想方法渗透的实践途径虽然数学思想方法在高中数学教学中会起到很重要的作用,但假如我们将这种思想直接的灌输和传授高中生,他们可能并不能很好的接受这种思想,脱离了实际的数学活动,数学思想方法的适用性就会大打折扣,在授课时刻意的对学生强制性的进行数学思想方法渗透,就会让学生逐渐沉溺在形式主义的环境里所以数学思想方法的渗透一定要与具体的教学活动相结合,并通过学习和反思不断加强数学思想方法的掌握程度,进而习惯用数学思想方法解题。

数学思想方法的渗透应当与具体的数学知识和数学活动结合在一起。

高中数学教师要首先学习和掌握数学思想方法,在实践教学过程中要率先对数学思想方法进行实际应用,这也会帮助学生认识到数学思想的重要性;其次,数学思想方法通常要从具体到抽象,以数学教学活动为依托,并经过一系列的渗透、理解、应用和反思阶段,并针对不同的课程安排有选择性的采取对应的教学策略。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又显示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、分类讨论的思想:在数学中,我们经常必须要依据研究对象性质的差异,分各种不同状况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

3、联系与转化的思想:事物之间是互相联系、互相制约的,是可以互相转化的。

数学学科的各部分之间也是互相联系,可以互相转化的。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

2方法一1.对应的思想和方法在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。

这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系在进行此类教学〔制定〕时,应注意渗透对应的思想,这样既有助于培养同学用变化的观点看问题,又助于培养同学的函数观念。

2.整体的思想和方法整体思想就是合计数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深入的观察,从宏观整体上熟悉问题的实质,把一些彼此独立但实质上又互相紧密联系着的量作为整体来处理的思想方法。

整体思想在处理数学问题时,有广泛的应用。

3.数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。

著名数学家华罗庚先生说:"数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。

'这充分说明了数形结合思想在数学研究和数学应用中的重要性。

4.分类的思想和方法教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使同学明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深入、更具体,并且还能使同学掌握分数的要点方法:3方法二1、数形结合的思想和方法在同学刚接触初中数学不久,教材中设置利用"数轴'这一图形,巩固"具有相反意义的量'的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。

常用的数学思想和方法

常用的数学思想和方法

不怕难题不得分,就怕每题扣点分!常用的数学思想和方法一.数学思想:1.数形结合的思想;2.分类与整合的思想;3.函数与方程的思想;4.转化与化归的思想;5.特殊与一般的思想;6.有限与无限的思想;7.或然与必然的思想;8.正难则反的思想.二.数学基本方法:配方法、换元法、反证法、割补法、待定系数法;分析法、比较法、综合法、归纳法、观察法、定义法、等积法、向量法、解析法、构造法、类比法、放缩法、导数法、参数法、消元法、不等式法、判别式法、数形结合法、分类讨论法、数学归纳法、分离参数法、整体代换、正难则反、设而不求、设而求之.【解题时:方法多,思路广,运算准,化简快.】三.数学逻辑方法:分析与综合、归纳与演绎、比较与类比、具体与抽象等.【也称数学思维方法.】四.选择题的方法:四个选项有极大的参考价值!千万不要小题大做!①求解对照法(直接法);②逆推代入法(淘汰法);③数形结合法(不要得意忘形);④特值检验法(定值问题);⑤特征分析法(针对选项);⑥合理存在性法(针对选项);⑦逻辑分析法(充要条件);⑧近似估算法(可能性).五.填空题的方法:①直接法;②特例法(定值问题);③数形结合法;④等价转化法.六.熟练掌握数学语言的三种形式:自然语言、符号语言、图形语言的相互转化.七.计算与化简:这是一个值得十分注意的问题!平时的训练中,要多思考如何快速准确的计算和熟练的化简!八.学会自学!课堂上不可能把所有的题型都讲到!所以要多看例题,多思考!看之前一定要想自己会怎么做!怎么看:一看解题思路【看完后要归纳步骤、总结方法】,二看规范表达【尽量学会使用数学语言、符号】.学会总结归类:①从数学思想上归类;②从知识应用上归类;③从解题方法上归类;④从题型类型上归类.【特别提醒】1.一道题有没有简便解法,关键就在于你能不能发现其中的一些条件的特殊性,并能加以灵活运用!(灵机一动)【转化、联想、换元等,另外,解题时有时对一些细节的处理也很关键,会起到峰回路转、柳暗花明的作用.】2.解函数、解析几何、立体几何的客观题,应特别注意数形结合思想的运用!但在解答题中,不能纯粹只凭借图象来解答问题;图象只起到帮助找到解题思路的作用【图象尽量画准,甚至在有时给出图象时也需要自己重新准确画一遍】;解题过程还是要进行严谨的理论推导【用数学语言表达】,不能纯粹以图象代替推理、证明.3.转化数量关系时,若是写不等式,则要注意是否可以取“=”.特别是求取值范围时,端点一定要准确处理.4.平常做解答题应该做完整:解题过程的表达是否流畅、简洁.否则到考试时,还需为如何组织语言表达去思考而耽误时间.这是平时训练值得注意的【条理分明、言简意赅、字迹工整】!表达也是思维的一部分!5.在解答题中,某些局部问题解答过程的书写的详略,取决于整个解题书写过程的长短:长则略写,可用易证、易知等字眼;短则详写.如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明.6.在设置有几问的解答题中,后面问题的解决有时候依赖于如何灵活运用前面已解决的问题的结论.有些解答题某一问貌似与前面无关,实则暗【明】示你必须把它与前面联系起来,才能解决问题.7.平常要多积累解题经验和解题技巧.熟记一些数学规律和数学小结论对解题也是很有帮助的.8.数学总分上不上得去,很大程度上取决于选择题、填空题得分高不高.而选择题、填空题更注重对基础知识,基本数学思想、方法和技能的全面考察.因此,要熟练掌握解选择题、填空题的特有方法:在解选择题或填空题时,优秀的解题方法更显得重要.建议每天做一份选择、填空题,花大力气提高解选择、填空题的准确率和速度.【注意:选择题的四个选项中有且只有一个是正确的,是一个需要特别重视的已知条件.】9.可以在专门的笔记本上,收集作业、考试中的错题,学习中遇到的经典题,便于日后考前复习巩固.⒑作业本上的错题、试卷上的错题一定要及时更正!做错了不可怕,可怕的是做错了不去纠正!我的成功归功于精细的思考,只有不断地思考,才能到达发现的彼岸。

数学四大思想八大方法

数学四大思想八大方法

数学四大思想八大方法数学是一门古老而又充满魅力的学科,它的发展离不开数学家们的思想和方法。

在数学的发展过程中,形成了许多重要的思想和方法,其中最具代表性的就是数学四大思想和八大方法。

下面我们就来一一介绍一下。

首先,我们来谈谈数学四大思想。

数学四大思想是指,抽象思维、逻辑思维、直观思维和计算思维。

抽象思维是数学家在研究问题时,将具体问题抽象出来,从而得出一般性的结论。

逻辑思维是数学家在进行推理和证明时所运用的思维方式,它要求严密的逻辑推理。

直观思维是指数学家在解决问题时,常常依靠自己的直觉和想象力。

计算思维是数学家在进行计算和运算时所运用的思维方式,它要求准确和高效。

接下来,我们来介绍数学八大方法。

数学八大方法是指,归纳法、演绎法、逆证法、反证法、数学归纳法、数学演绎法、数学逆证法和数学反证法。

归纳法是从个别事实归结出一般规律的推理方法。

演绎法是从一般规律推导出个别事实的推理方法。

逆证法是通过假设与结论相反的结论来推导出矛盾,从而证明原结论的方法。

反证法是通过否定所要证明的结论的否定来得出矛盾,从而证明原结论的方法。

数学归纳法是指证明对于所有自然数n成立的方法。

数学演绎法是指从已知命题出发,推出新的命题的方法。

数学逆证法是指通过假设与结论相反的结论来推导出矛盾,从而证明原结论的方法。

数学反证法是指通过否定所要证明的结论的否定来得出矛盾,从而证明原结论的方法。

总之,数学四大思想和八大方法是数学家们在研究数学问题时所运用的重要思想和方法,它们为数学的发展做出了重要贡献。

希望我们能够在学习数学的过程中,认真学习和运用这些思想和方法,不断提高自己的数学水平。

学习数学有什么好的方法及常见的数学四大思想,高中数学解题基本方法

学习数学有什么好的方法及常见的数学四大思想,高中数学解题基本方法

学习高中数学有什么好的方法1掌握好公式定理(如果这步不做,想学好数学就是在做白日梦,想一想没有武器的士兵如何去打战。

)不管学数学的目的是为考试,还是兴趣,都要掌握公式定理这个必备的武器,这样才能在题目的战场上施展拳脚。

学习数学时,对于公式定理一般要经历三个过程:○1认识;○2理解;○3应用○1认识:能认出,识别公式定理○2理解:能明白公式定理的内容及其推导方法,适用范围○3应用:懂得在题目中如何应用公式定理来解题,应用什么公式定理来解题所谓掌握是指是指达到应用水平,2按时完成作业(要按时认真完成学校定的配套,这是基本功,想一想没有训练的士兵如何上得了战场)适当的训练是培养考试能力必不可少的的途径(考试能力是指思维能力,做题技巧,得分技巧,做题速度,答题规范等)但切忌不要搞题海战术,因为这只对简单的题有效,稍微改变一下条件就可能蒙了。

(题海战术是指不停的做题,做大量的题,而不进行必要的总结思考,对错题只做修改而不查找原因)而且人的生命是有限的,没有无限的时间做题,只有总结规律才是王道(规律即答题的固定步骤,解题的方法等,这可避免想题时没有方向)3养成独立思考的习惯不懂时一定要先自己思考一下,实在不行时再问同学或老师,不能一遇到不懂的就立即问同学老师,这样会使大脑得不到锻炼,对他人产生依赖,成绩就会不升反降。

(不懂也不能放弃,如果不懂就放弃的话就永远学不好数学)4要总结自己的强项和弱项,及时查漏补缺(即知道考试时什么题目自己能做得又快又准,什么题目自己做的出来但较慢,什么题目自己做不出来,并进行有针对性的练习,这样考试才不会太紧张)中学数学的基本知识分三类:①是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、数列等;②是关于纯粹形的知识,如平面几何、立体几何等;③是关于数形结合的知识,主要体现是解析几何,函数等根据这三类来分类自己的强弱项。

形成一套属于自己的学习流程(学习流程即知道上课前,上课时,上课后该干什么,在学校,在家里该干什么)5合理安排考试时的时间考试时合理安排好答题时间,不要因一道小题而没做大题,也不要害怕答大题,往往大题的第一问都较容易,有时根据条件推出一些简单的结论也能得分(你可能不知道这些结论有什么用)掌握几个考试时放松的技巧,防止怯场平时可自己模拟考试场景练习一下6要肯脚踏实地的去努力不要因为一些同学学数学看起来很轻松就认为他们有秘籍或他们是天才,不用努力。

数学的精神思想和方法总结

数学的精神思想和方法总结

数学的精神思想和方法总结数学的精神思想和方法是指数学学科的核心理念和解决问题的基本途径。

数学不仅是一门自然科学,更是人类思维的高度抽象和逻辑推理的最高形式之一。

数学的精神思想和方法包括系统性、抽象性、严谨性、实用性和创造性等方面。

接下来,我将从这些方面对数学的精神思想和方法进行总结。

首先,数学的精神思想和方法具有系统性。

数学是一个高度系统化的学科,它建立了严密的逻辑体系。

数学家们通过建立公理体系、定义符号和运算规则来描述和推理数学对象之间的关系。

这种系统性使得数学可以精确地描述和理解现实世界中的问题,并帮助我们从混乱的现象中找出规律和本质。

其次,数学的精神思想和方法具有抽象性。

数学从现实问题中抽象出一般性质和普适规律,通过构建模型和概念来描述和解释现象。

数学抽象的本质在于忽略掉问题中的具体细节,从更高的层次上探究问题的共性和本质。

这使得数学的成果具有普适性和可迁移性,能够为解决其他领域的问题提供有力的工具和方法。

第三,数学的精神思想和方法具有严谨性。

数学要求严格的逻辑推理和证明过程,对每一条结论都要给出明确的理由和依据。

这种严谨性保证了数学的准确性和可靠性。

数学家们常常运用数学推理法则,如演绎推理、归纳推理和逆推法等,来推导出新的数学定理和结论。

严谨性是数学的灵魂,也是数学能够在其他领域取得巨大成就的重要原因之一。

第四,数学的精神思想和方法具有实用性。

数学不仅是一门学科,更是一种实用的工具和方法论。

数学为其他学科和各行各业提供了丰富的分析和解决问题的思路。

在工程技术领域,数学有着广泛的应用,如物理建模、工程优化、通信传输和经济决策等。

数学的实用性使它成为现代社会不可或缺的一部分,推动了科技和社会的发展。

最后,数学的精神思想和方法具有创造性。

创造是数学的核心驱动力之一。

数学家们以独特的眼光和观点发现新的问题,提出新的猜想,并通过不断的实验和思考进行探索和验证。

数学创造的过程是一种思想的碰撞和启发的过程,需要不断地思考、质疑和突破。

初一数学教学中的数学思想与方法引导

初一数学教学中的数学思想与方法引导

初一数学教学中的数学思想与方法引导数学是一门理论与实践相结合的学科,是培养学生思维能力和解决问题能力的重要工具。

在初一数学教学中,如何引导学生正确理解数学思想和掌握数学方法成为关键。

本文将从数学思想的培养和数学方法的引导两个方面讨论初一数学教学的相关问题。

一、数学思想的培养数学思想的培养是初一数学教学中的核心任务之一。

数学思想的培养旨在培养学生抽象思维、逻辑思维和创造思维以及解决实际问题的能力。

以下是一些数学思想的培养方法:1. 提倡探究学习法首先,教师应该鼓励学生主动参与数学学习,并提倡探究学习法。

通过引导学生自主探索、发现问题、解决问题的过程,激发学生的求知欲和思考能力。

例如,在学习平行线性质时,可以设计一些探究性的问题,引导学生通过实际操作和观察得出结论。

2. 强调数学模型的建立与运用其次,教师应强调数学模型的建立与运用。

数学模型是数学思想的具体体现,通过建立数学模型,学生能够将虚拟的数学概念与实际生活相联系,提高数学思维的深度和广度。

例如,在学习比例问题时,可以引导学生将实际问题转化为数学模型,进而求解问题。

3. 鼓励学生运用多种解决方法最后,教师应鼓励学生运用多种解决方法。

数学思想的培养并不局限于一种解决方法,而是要培养学生运用不同方法解决问题的能力。

通过引导学生比较和评价不同解决方法的优缺点,培养学生的思维灵活性和多元思维。

二、数学方法的引导数学方法的引导是初一数学教学中的另一个重要方面。

数学方法的引导旨在帮助学生熟练掌握数学计算和解题方法,提高数学应用能力。

以下是一些数学方法的引导:1. 强调基本概念和基本方法的掌握首先,教师应强调学生对数学的基本概念和基本方法的掌握。

基本概念和基本方法是学习数学的基础,在学习进阶内容时起到桥梁作用。

例如,在学习分数运算时,学生必须熟练掌握分数的基本概念和基本运算方法,才能正确理解和应用后续的知识。

2. 提供适应性练习其次,教师应根据学生的具体情况,提供适应性的练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学方法与思想方法数学方法与思想方法数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。

以下是店铺整理的数学方法与思想方法,希望能够帮助到大家!初中数学常见的思想方法1初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等.(1)转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题.初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用的最为广泛.(2)数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数”)与直观的图象(“形“)结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”,以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形”两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用.譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度.(3)分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、解决数学问题.譬如,初中数学从整体上看分为代数、几何、概率统计等几大版块,并分别采用不同方法进行研究,就是分类思想的体现.具体而言,实数的分类,方程的分类、三角形的分类、函数的分类、统计量的分类等等,都是分类思想的具体体现.分类思想在初中数学中有大量运用,从初中数学内容的组织与展开到数学概念的界定与划分再到数学问题的分析与解决都大量运用着分类思想.(4)函数与方程思想.函数与方程思想就是用函数的观点和方法分析问题、解决问题.函数思想是客观世界中事物运动变化、相互联系、相互制约的普遍规律在数学中的具体反映.函数与方程思想的本质是变量之间的对应,即用变化的观点和函数的形式将所研究的数量关系表示出来,然后用函数的性质进行研究,从而使问题获得解决.如果函数的形式用解析式的方式表示,那么就可以将函数解析式看作方程,并通过解方程和对方程的研究使问题得到解决,这就是方程思想.譬如初中数学中大量涉及一次函数、反比例函数、二次函数等内容的数学问题都要用到函数与方程思想来解决.由于函数思想与方程思想的内容和形式相一致,因而往往将其并称为函数与方程思想,并将二者结合学习与运用.除上述几种主要的数学思想之外,初中数学中还有集合思想、对应思想、符号化思想、公理化思想等.初中数学主要包括如下基本的数学方法:(1)几种重要的科学思维方法:比较与分类、观察与尝试、分析与综合、概括与抽象、特殊与一般、归纳与类比等;(2)几种重要的推理方法:完全归纳法、综合法、分析法、反证法、演绎法等;(3)几种常用的求解方法:待定系数法、数学建模法、配方法、消元法、换元法、构造法、坐标法、参数法等.1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2—4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

初中数学常见的思想方法2特殊与一般的数学思想:对于在一般情况下难以求解的问题,可运用特殊化思想,通过取特殊值、特殊图形等,找到解题的规律和方法,进而推广到一般,从而使问题顺利求解。

常见情形为:用字母表示数;特殊值的应用;特殊图形的应用;用特殊化方法探求结论;用一般规律解题等。

整体的数学思想:所谓整体思想,就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的.思想。

用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏锐地洞察问题的本质,有时也不要放弃直觉的作用,把注意力和着眼点放在问题的整体上。

常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。

分类讨论的数学思想:也称分情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时,我们就需要对这一问题进行必要的分类。

将一个数学问题根据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下得到的答案进行归纳综合。

分类讨论是根据问题的不同情况分类求解,它体现了化整为零和积零为整的思想与归类整理的方法。

运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。

分类讨论的原则是:(1)完全性原则,就是说分类后各子类别涵盖的范围之和,应当是原被分对象所涵盖的范围,即分类不能遗漏;(2)互斥性原则,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。

分类的方法是:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,获取阶段性结果,归纳小结,综合得出结论。

常见的情形为:由字母系数引起的讨论;由绝对值引起的讨论;由点、线的运动变化引起的讨论;由图形引起的讨论;由边、点的不确定引起的讨论;存在特殊情形而引起的讨论;应用问题中的分类讨论等。

转化的数学思想:将未知解法或难以解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题。

解题的过程实际就是转化的过程。

常见的情形为:高次转化为低次、多元转化为一元、式子转化为方程、次元转化为主元、正面转化为反面、分散转化为集中、未知转化为已知、动转化为静、部分转化为整体、还有一般与特殊、数与形、相等与不等之间的相互转化。

数形结合的数学思想:数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。

数、式能反映图形的准确性,图形能增强数、式的直观性,“数形结合”可以调动和促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。

数形结合是研究数学问题的有效途径和重要策略,它体现了数学的和谐美、统一美。

华罗庚先生曾用“数缺形时少直觉,形少数时难入微”作高度的概括。

常见的情形为:利用数轴、函数的图象和性质、几何模型、方程与不等式以及数式特征可以将代数问题转化为集合问题;利用代数计算、几何图形特征可以将几何问题转化为代数问题;利用三角知识解决几何问题;利用统计图表让统计数据更形象更直观等。

函数与方程的思想:函数的思想就是利用运动与变化的观点、集合与对应的思想,去分析和研究数学中的等量关系,建立和构造函数关系,再运用函数的图象和性质去分析问题,达到转化问题的目的,从而使问题获得解决。

方程的思想就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型——方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

函数与方程的思想实际是就是一种模型化的思想。

常见的情形为:数字问题、面积问题、几何问题方程化;应用函数思想解方程问题、不等问题、几何问题、实际问题;利用方程作判断;构建方程模型探求实际问题;应用函数设计方案和探求面积等。

常用数学方法如:配方法、消元法、换元法、待定系数法、构造法、主元法、面积法、类比法、参数法、降次法、图表法、估算法、分析法、综合法、拼凑法、割补法、反证法、倒数法、同一法等。

相关文档
最新文档