中考数学专题复习课件:整式方程
合集下载
中考数学复习课件 1.2整式与因式分解

13、(09济宁市)请你阅读下面的诗句: “栖树 一群鸦, 鸦树不知数, 三只栖一树,五只没去 处, 五只栖一树, 闲了一棵树,请你仔细数, 鸦
树各几何?” 诗句中谈到的鸦为 20 只 、树为 5 棵.
解:可设鸦有x只,树y棵.
则 3y+5=x 5(y−1)=x
, 解得
x=20 y=5
∴鸦有20只,树有5棵.
合并 同类 项
系数 化1
把方程变为ax=b
合并同类项
(a≠0 ) 的最简形式
法则
1)把系数相加 2)字母和字母的指数不变
将方程两边都除以未知数系 等式性
数a,得解x=b/a
质2
解的分子,分母位置不要颠 倒
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗 歌能动人心弦,哲学使人获得智慧,科学可改善 物质生活,但数学能给予以上的一切。--克莱因 .
加减消元法:两个二元一次方程中同一 未知数的系数相等相反时,通过方程两 边分别相加或相减消去其中一个未知数 ,从而将二元一次方程化为一元一次方 程,最后求得方程组的解,这种解方程 组的方法叫做加减消元法,简称加减法.
8.列方程(组)解应用题的一般步骤: ⑴审题。理解题意。弄清问题中已知量是什 么,未知量是什么,问题给出和涉及的相等 关系是什么。
故有2种租房方案.
3、(2013• 日照)甲计划用若干个工作日完成 某项工作, 从第三个工作日起, 乙加入此项工 作, 且甲、乙两人工效相同, 结果提前3天完成
任务, 则甲计划完成此项工作的天数是( A )
A. 8 B. 7 C. 6 D. 5
解:设甲计划完成此项工作需x天, 甲前两个工作日完成了2/x,剩余的工作日完 成了(x−2−3)/x,乙完成了(x−2−3)x, 则2/x+2(x−2−3)/x=1, 解得x=8, 经检验,x=8是原方程的解.
中考数学 代数式、整式与因式分解复习课件

系数和次数,但没规定单项式中含几个字 母.A、﹣2xy2系数是﹣2,错误;B、3x2系 数是3,错误;C、2xy3次数是4,错误;D、
3
课堂精讲
Listen attentively
4.(2014•佛山)多项式
2a2b﹣ab2A﹣ab的项数及次数分别是
()
A.3,3
B.3,2
【C.分2析,】3 多项式D中.每2,个2单项式叫做多
第一章 数与式
第3节 代数式、整式 与因式分解
目 content
录s
课前预习
考点1
考点2
考点梳 理
课堂精 讲
考点3 考点4
广东中 考
目 conten 录 ts
课前预 习
课前预习
Listen attentively
1.(2016•吉林)小红要购买珠子串 成一条手链,黑色珠子每个a元,白 色珠子每个b元,要串成如图所示A的 手链,小红购买珠子应该花费( ) A.(3a+4b)元 B.(4a+3b)元
虑运用公式法;(3)分解因式必须进行到每一个多项式因式
都不能再分解为止,简记为一“提”、二“套”、三“检查”.
目 conten 录 ts
课堂精 讲
课堂精讲
Listen attentively
考点1 代
1.(2016•海数南式)某工厂去年的产值
是a万元,今年比去年增加(101%+,10今%)年
的产值是
学一共植树
棵.(用含a,
b【的分代析数】式根表据示题)意可以列出相应的代
数式,本题得以解决.
【解答】解:由题意可得, 该班同学一共植树(3a+2b)棵, 故答案为:(3a+2b)
3
课堂精讲
Listen attentively
4.(2014•佛山)多项式
2a2b﹣ab2A﹣ab的项数及次数分别是
()
A.3,3
B.3,2
【C.分2析,】3 多项式D中.每2,个2单项式叫做多
第一章 数与式
第3节 代数式、整式 与因式分解
目 content
录s
课前预习
考点1
考点2
考点梳 理
课堂精 讲
考点3 考点4
广东中 考
目 conten 录 ts
课前预 习
课前预习
Listen attentively
1.(2016•吉林)小红要购买珠子串 成一条手链,黑色珠子每个a元,白 色珠子每个b元,要串成如图所示A的 手链,小红购买珠子应该花费( ) A.(3a+4b)元 B.(4a+3b)元
虑运用公式法;(3)分解因式必须进行到每一个多项式因式
都不能再分解为止,简记为一“提”、二“套”、三“检查”.
目 conten 录 ts
课堂精 讲
课堂精讲
Listen attentively
考点1 代
1.(2016•海数南式)某工厂去年的产值
是a万元,今年比去年增加(101%+,10今%)年
的产值是
学一共植树
棵.(用含a,
b【的分代析数】式根表据示题)意可以列出相应的代
数式,本题得以解决.
【解答】解:由题意可得, 该班同学一共植树(3a+2b)棵, 故答案为:(3a+2b)
中考数学《整式》考点归纳PPT课件

10.把一个多项式化成几个因式积的形式,叫做因式分解,
因式分解与整式乘法是互逆运算.
11.因式分解的基本方法: (1)提取公因式法:
(2)公式法: 运用平方差公式:
a² b² (a b)(a b)
运用完全平方公式:
12.分解因式的一般步骤: (1)如果多项式各项有公因式,应先提取公因式; (2)如果各项没有公因式,可以尝试使用公式法: 为两项时,考虑平方差公式; 为三项时,考虑完全平方公式; 为四项时,考虑利用分组的方法进行分解; (3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止. 以上步骤可以概括为“一提二套三检查”.
6.幂的运算:am·an=am+n;(am)n=amn;(ab)n=anbn;am÷an= amn .
• 7、整式的乘法: • (1)单项式与单项式相乘,把它们的系数、相同字母 分别相乘,对于只在一个单项式里含有的字母,则连同 它的指数作为积的一个因式. • (2)单项式与多项式相乘:m(a+b+c) =ma+mb+mc. • (3)多项式与多项式相乘:(m+n)(a+b)
中考数学《整式》考点归纳PPT课件
1.单项式:由数与字母或字母与字母 相乘组成的代数式叫做单项式,所有 字母指数的和叫做单项式的次数,数 字因数叫做单项式的系数。
注:○1 单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如 4 1 a2b ,
3
这种表示就是错误的,应写成 13 a2b ;○2 一个单项式中,所有字的指数的和叫做这个
本课结束
3
单项式的次数。如 5a3b2c 是 6 次单项式。
2、多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数 叫做这个多项式的次数,其中不含字母的项叫做常数项。
中考数学(人教版)总复习 课件:第2课时 整式及因式分解

命题点1 整数指数幂的运算 【例1】 下列运算正确的是( )
A.3ab-2ab=1B.x4·x2=x6 C.(x2)3=x5 D.3x2÷x=2x 解析:A项是整式的加减运算,3ab-2ab=ab,故A项错误;B项是同底 数幂相乘,x4·x2=x4+2=x6,故B项正确;C项是幂的乘方,(x2)3=x2×3=x6, 故C项错误;D项是单项式相除,3x2÷x=(3÷1)x2-1=3x,故D项错误. 答案:B
考点梳理 自主测试
考点二 幂的运算法则
基础自主导学
考点三 同类项与合并同类项
1.所含字母相同,并且相同字母的指数也分别相同的单项 式叫做 同类项 ,常数项都是同类项 .
2.把多项式中的同类项 合并成一项叫做合并同类项 ,合并的法 则 是系数相加,所得的结果作为合并后的系数,字母和字母的指数 不变.
命题点4 整式的运算
规律方法探究
解:(a+b)(a-b)+(a+b)2-2a2=a2-b2+a2+2ab+b2-2a2=2ab,
命题点1 命题点2 命题点3 命题点4 命题点5
规律方法探究
命题点5 因式分解 【例5】 分解因式:a3+a2-a-1= .
解析:a3+a2-a-1=(a3+a2)-(a+1)=a2(a+1)-(a+1)=(a+1)(a2-1) =(a+1)2(a-1). 答案:(a+1)2(a-1)
因式,只在一个单项 式里含有的字母,则 连 同它的指数作为积 的一 个因式.
②单 项 式与多项式相乘:m(a+b+c)=ma+mb+mc. ③多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb.
中考数学复习课件:第2课时 整式与因式分解(共34张PPT)

形.根据图形,写出一个正确的等式m(:a+b+c) __________________.
思路点拨 本题可从图形的结构特征入手,找到一个面积之间 的相等关系.
第2课时 整式与因式分解
考点演练
考点八 图形中的整式
方法归“纳 “整体=各部分之和”是建立相等关系的常 见模型.本题中,最大的矩形可以看成是由三个小矩 形构成的,因此这个相等关系并不难找.
A. a4+a2
B. a2+a2+a2
C. a4÷a2
D. a2·a2·a2
第2课时 整式与因式分解
当堂反馈
4. (2016·十堰)下列运算正确的是( D )
A. a2·a3=a6
B. (-a3)2=-a6
C. (ab)2=ab2
D. 2a3÷a=2a2
第2课时 整式与因式分解
考点演练
考点六 整式的运算 例7 (1) (2016·重庆)计算: (a+b)2-b(2a+b); (2) (2016·乌鲁木齐)先化简,再求值: (x+2)(x-2)+(2x-1)2-4x(x-1),其中2x=3
第2课时 整式与因式分解
考点演练
考点六 整式的运算
(1)原式=a2+2ab+b2-2ab-b2 =a2.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/182021/9/182021/9/182021/9/189/18/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月18日星期六2021/9/182021/9/182021/9/18 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/182021/9/182021/9/189/18/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/182021/9/18September 18, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/182021/9/182021/9/182021/9/18
思路点拨 本题可从图形的结构特征入手,找到一个面积之间 的相等关系.
第2课时 整式与因式分解
考点演练
考点八 图形中的整式
方法归“纳 “整体=各部分之和”是建立相等关系的常 见模型.本题中,最大的矩形可以看成是由三个小矩 形构成的,因此这个相等关系并不难找.
A. a4+a2
B. a2+a2+a2
C. a4÷a2
D. a2·a2·a2
第2课时 整式与因式分解
当堂反馈
4. (2016·十堰)下列运算正确的是( D )
A. a2·a3=a6
B. (-a3)2=-a6
C. (ab)2=ab2
D. 2a3÷a=2a2
第2课时 整式与因式分解
考点演练
考点六 整式的运算 例7 (1) (2016·重庆)计算: (a+b)2-b(2a+b); (2) (2016·乌鲁木齐)先化简,再求值: (x+2)(x-2)+(2x-1)2-4x(x-1),其中2x=3
第2课时 整式与因式分解
考点演练
考点六 整式的运算
(1)原式=a2+2ab+b2-2ab-b2 =a2.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/182021/9/182021/9/182021/9/189/18/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月18日星期六2021/9/182021/9/182021/9/18 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/182021/9/182021/9/189/18/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/182021/9/18September 18, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/182021/9/182021/9/182021/9/18
第二单元 第五讲 整式方程(组)的概念及解法 2025年九年级中考数学总复习人教版(山东)

方程
一般形式
5
对点练习
1.(1)下列是一元一次方程的是 ( D )
A.3-2x
B.6+2=8
C.x2-49=0
D.5x-7=3(x+1)
(2)下列是二元一次方程组的是( D )
A.
C.
2
3
2 2 + = 1
B.
3 − = 4
3
+ =7
D.
3 − = 0
− =1
− =2
当p=-1时,Δ=p2-4=-3<0;
∴p=3.
30
【方法技巧】
判别式的“双向应用”
1.正向:系数已知,可以判断方程根的情况.
2.逆向:已知方程根的情况,可以求未知系数或参数的值.
提醒:要根据a≠0和Δ≥0这两个前提进行所求参数值的检验和取舍.
31
【变式训练】
1.(2024·上海中考)以下一元二次方程有两个相等实数根的是 ( D )
【解析】(1)x2-(m+2)x+m-1=0,
这里a=1,b=-(m+2),c=m-1,
Δ=b2-4ac
=[-(m+2)]2-4×1×(m-1)
=m2+4m+4-4m+4
=m2+8.
∵m2≥0,∴Δ>0.∴无论m取何值,方程都有两个不相等的实数根;
33
(2)若方程x2-(m+2)x+m-1=0的两个实数根为x1,x2,
18
− = ①
【自主解答】(1)
,
− = + ②
由①,得y=3x-5,③
把③代入②,得5(3x-5)-1=3x+5,
一般形式
5
对点练习
1.(1)下列是一元一次方程的是 ( D )
A.3-2x
B.6+2=8
C.x2-49=0
D.5x-7=3(x+1)
(2)下列是二元一次方程组的是( D )
A.
C.
2
3
2 2 + = 1
B.
3 − = 4
3
+ =7
D.
3 − = 0
− =1
− =2
当p=-1时,Δ=p2-4=-3<0;
∴p=3.
30
【方法技巧】
判别式的“双向应用”
1.正向:系数已知,可以判断方程根的情况.
2.逆向:已知方程根的情况,可以求未知系数或参数的值.
提醒:要根据a≠0和Δ≥0这两个前提进行所求参数值的检验和取舍.
31
【变式训练】
1.(2024·上海中考)以下一元二次方程有两个相等实数根的是 ( D )
【解析】(1)x2-(m+2)x+m-1=0,
这里a=1,b=-(m+2),c=m-1,
Δ=b2-4ac
=[-(m+2)]2-4×1×(m-1)
=m2+4m+4-4m+4
=m2+8.
∵m2≥0,∴Δ>0.∴无论m取何值,方程都有两个不相等的实数根;
33
(2)若方程x2-(m+2)x+m-1=0的两个实数根为x1,x2,
18
− = ①
【自主解答】(1)
,
− = + ②
由①,得y=3x-5,③
把③代入②,得5(3x-5)-1=3x+5,
最新-中考数学最新课件中考数学整式方程复习 精品

三.知识要点
2.方程的有关概念: ④方程的分类:
三.知识要点
2.方程的有关概念: ⑤整式方程:方程两边都是关于未知数的整 式,这样的方程叫整式方程. ⑥分式方程:分母里含有未知数的方程叫做 分式方程.
三.知识要点
3.一元一次方程: ①概念:只含有一个未知数,并且未知数的 次数是1,系数不为零的整式方程,叫做一元 一次方程. ②一般形式:
三.知识要点
1.等式的基本性质:
①等式概念:用“=”表示相等关系的式子叫
等式.
②等式的基本性质:
性质1:等式两边同时加上(或减去)同一个
数或同一个代数式,所得结果仍是等式.
即若 ,则
.
ab
ambm
三.知识要点
1.等式的基本性质:
性质2:等式两边同时乘以同一个数(或除以
同一个不为0的数)所得结果仍是等式;
的形式,再用直接开平方
法来m解x ,n这2 种r方r 法0叫做配方法.
三.知识要点
③一元二次方程的解法: C.公式法:通过配方法可以求得一元二次方
程 ax2 bx c 0a 0 的求根公式:
x b b2 4ac b2 4ac 0 .
用求根公2式a 解一元二次方程的方法叫做 公式法.
,
转化成关于 的一元一次方程. x 1
因此有 12 2mm 11 0 ,
所以
.
知识考查m :1一次方程及方程的解的意义,一
元一次方程的解法.
解:A.
四.典型例题
例2 解方程:
(1)(2005年·黄冈) 3x 1 x 2 1 ;
2
4
(2)(2006年·武汉) x2 x 1 0 .
四.典型例题
系数化为1
中考数学第一轮复习之整式方程课件华东师大版

(1)求证:n 0;
(2)试用k的代数式表示x1; (3)当n 3时,求k的值.
例12、下列命题:①若a+b+c=0,则b2-4ac ≥ 0;
②若b>a+c,则一元二次方程ax2+bx+c=0有两个 不相等的实数根;
③若b=2a+3c,则一元二次方程ax2+bx+c=0有两 个不相等的实数根;
例4、若a b 4 4 b 5,求以a,b为根的 一元二次方程。
以x1, x2为根的一元二次方程 (二次项的系数为1)
x2 x1 x2 x x1 x2 0
10、根的判别式
ax2 bx c 0a 0 b2 4ac
(1) 0 方程有两个不相等的实数根
值是
()
A.3 B.3或-2 C.2或-3 D. 2
9、韦达定理
若ax2 bx c 0a 0的两根为x1, x2
则
x1 x1
x2 x2
c a
b a
例3、(1)当m __时,方程x2 5x m 0 的两根之差是7?
(2)已知a, b是关于x的方程x2 (2k 1)x k(k 1) 0的两个实数根,则a2 b2的 最小值是 ___ .
(2) 0 方程有两个相等的实数根 (3) 0 方程无实数根
例5、关于x的方程kx2 6x 1 0有两个 实数根,求k的取值范围
解:由题意,k
0 (6)2
4k
0
注意:“方程kx2 6x 1 0有实数根”与 “一元二次方程kx2 6x 1 0有实数根” 的区别
(2)试用k的代数式表示x1; (3)当n 3时,求k的值.
例12、下列命题:①若a+b+c=0,则b2-4ac ≥ 0;
②若b>a+c,则一元二次方程ax2+bx+c=0有两个 不相等的实数根;
③若b=2a+3c,则一元二次方程ax2+bx+c=0有两 个不相等的实数根;
例4、若a b 4 4 b 5,求以a,b为根的 一元二次方程。
以x1, x2为根的一元二次方程 (二次项的系数为1)
x2 x1 x2 x x1 x2 0
10、根的判别式
ax2 bx c 0a 0 b2 4ac
(1) 0 方程有两个不相等的实数根
值是
()
A.3 B.3或-2 C.2或-3 D. 2
9、韦达定理
若ax2 bx c 0a 0的两根为x1, x2
则
x1 x1
x2 x2
c a
b a
例3、(1)当m __时,方程x2 5x m 0 的两根之差是7?
(2)已知a, b是关于x的方程x2 (2k 1)x k(k 1) 0的两个实数根,则a2 b2的 最小值是 ___ .
(2) 0 方程有两个相等的实数根 (3) 0 方程无实数根
例5、关于x的方程kx2 6x 1 0有两个 实数根,求k的取值范围
解:由题意,k
0 (6)2
4k
0
注意:“方程kx2 6x 1 0有实数根”与 “一元二次方程kx2 6x 1 0有实数根” 的区别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( x 2 ) 2 ( x 1 ) 2
的值.
解:根据题意得 x2+4x-5=0,且x2-x-30=0 ∴x=-5或x=1,且x=6或x=-5 ∴x=-5
( x 2 ) 2 ( x 1 ) 2 ( 5 2 ) 2 ( 5 1 ) 2 3
【例5】(2008年· 绍兴)若一个三角形的三边长均满 足x2-6x+8=0,则此三角形周长为 6,10,12 .
课时训练
6.(2008年· 新疆)用配方法解方程x2+6x-7=0. 解:x2+6x-7=0 x2+6x+9=7+9 (x+3)2=16 x+3=±4 x =1,x =-7 1 2
课时训练
1. (2008年·河南省)已知一元二次方程x2-2x=0,它的 解是 ( D ) A.0 B.2 C.0,-2 D.0,2 2. (2008年· 厦门市)一元二次方程x2+x-1=0的根是.
1 5 x 2Байду номын сангаас
3. (2008年·陕西省)方程(x+1)2=9的解是 ( C ) A.x=2 B.x=-4 C.x1=2,x2=-4 D.x1=-2,x2=4
2a
④因式分解法.
课前热身
1. (2008年·黑龙江)如果代数式4y2-2y+5的值为7, 那么代数式2y2-y+1的值等于 ( A ) A.2 B.3 C.-2 D.4 2. (2008年·北京海淀区)若a的值使得x2+4x+a=(x+2)2-1 成立,则a的值为 ( C ) A.5 B.4 C.3 D.2 3.(2008年· 吉林省)已知m是方程x2-x-2=0的一个根,则 2 代数式m2-m的值等于 。
1.解一元二次方程常见的思维误区是忽略几个关键: 用因式分解法解方程的关键是先使方程的右边为0; 用公式法解方程的关键是先把一元二次方程化为一般 形式,正确写出a、b、c的值;用直接开平方法解方 程的关键是先把方程化为(mx-n) 2=h的形式;用配方 法解方程的关键是先把二次项系数化为1,再把方程 的两边都加上一次项系数一半的平方. 2.一元二次方程解法的顺序:先特殊,后一般;即先 考虑能否用直接开平方法和因式分解法,否则再用公 式法,配方法一般不用.
(3)原方程变形为:y2-y-2=0 (y-2)(y+1)=0 y1=2,y2=-1. (4)用配方法得:m2-6m+9=616+9 (m-3)2=625m-3=±25 m1=28,m2=-22.
典型例题解析
【例4】 若实数x满足条件: (x2+4x-5)2+|x2-x-30|=0,求
3.一元二次方程及其解法 (1)一般形式:ax2+bx+c=0(a≠0). (2)一元二次方程的四种解法: ①直接开平方法:形如 x2=k(k≥0) 的形式均可用此法求 解. ②配方法:要先化二次项系数为 1 ,然后方程两边同加 上一次项系数的一半的平方,配成左边是完全平方,右 边是常数的形式,然后用直接开平方法求解. ③公式法:这是解一元二次方程通用的方法,只要化成 ax2+bx+c=02(a≠0),利用求根 公式:x= b 4 a c b2-4ac≥0)
典型例题解析
【例1】 (2008年· 甘肃省)若3是关于(4/3)x2-2a+1=0 的一个解,则2a的值是 ( C ) A.11 B.12 C.13 D.14 【例2】 (1)若2(y+3)的值与3(1-y)的值互为相反数,那 么y等于 ( D ) A.-8 B.8 C.-9 D.9 (2)若方程y2-3y+m=0的一个根是1,则它的另一个根是 2或1 ,m的值是 2 .
课前热身
4.(2008年· 四川)解方程x2+3x=10 解:x2+3x-10=0 (x+5)(x-2)=0 x=-5或x=2
x 2 2 2x 2 3 5.(2008年·河北省)用换元法解方程 x x 2 x 2 2
时,如果设 y x ,那么原方程可化为关于y的 2 一元二次方程的一般形式是 y 3 y 2 0 。
第二章第一课时:
整式方程
要点、考点聚焦 课前热身 典型例题解析 课时训练
要点、考点聚焦
1.一元一次方程 (1)定义:只含有一个未知数且所含未知数项的次数是 1 的整式方程,叫做一元一次方程. (2)一般形式:ax+b=0(a≠0). 2.一元一次方程的解法的一般步骤是: (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)系数化为1.
课时训练
4. (2008年·甘肃)方程(m+2)x|m|+3mx+1=0是关于x 的一元二次方程,则 ( B ) A.m=±2 B.m=2 C.m=-2 D.m≠±2 5.(2008年·安徽省)党的十六大提出全面建设小康社会, 加快推进社会主义现代化,力争国民生产总值到2020年 比2000年翻两番,在本世纪的头二十年(2001-2020年), 要实现这一目标,以十年为单位计算,设每个十年的国 民生产总值的增长率都是x,那么x满足的方程为 ( A ) A.(1+x)2=2 B.(1+x)2=4 C.1+2x=2 D.(1+x)+2(1+x)=4
典型例题解析
【例3】解方程:(1)x2-3x-10=0;(2)x2+4x-1=0; (3)y(y-1)=2; (4)m2-6m-616=0. 解:(1)(x-5)(x+2)=0,∴x1=5,x2=-2. (2)用公式法得x1,2=
4 4 2 4 ( 1 ) 2 5 2
的值.
解:根据题意得 x2+4x-5=0,且x2-x-30=0 ∴x=-5或x=1,且x=6或x=-5 ∴x=-5
( x 2 ) 2 ( x 1 ) 2 ( 5 2 ) 2 ( 5 1 ) 2 3
【例5】(2008年· 绍兴)若一个三角形的三边长均满 足x2-6x+8=0,则此三角形周长为 6,10,12 .
课时训练
6.(2008年· 新疆)用配方法解方程x2+6x-7=0. 解:x2+6x-7=0 x2+6x+9=7+9 (x+3)2=16 x+3=±4 x =1,x =-7 1 2
课时训练
1. (2008年·河南省)已知一元二次方程x2-2x=0,它的 解是 ( D ) A.0 B.2 C.0,-2 D.0,2 2. (2008年· 厦门市)一元二次方程x2+x-1=0的根是.
1 5 x 2Байду номын сангаас
3. (2008年·陕西省)方程(x+1)2=9的解是 ( C ) A.x=2 B.x=-4 C.x1=2,x2=-4 D.x1=-2,x2=4
2a
④因式分解法.
课前热身
1. (2008年·黑龙江)如果代数式4y2-2y+5的值为7, 那么代数式2y2-y+1的值等于 ( A ) A.2 B.3 C.-2 D.4 2. (2008年·北京海淀区)若a的值使得x2+4x+a=(x+2)2-1 成立,则a的值为 ( C ) A.5 B.4 C.3 D.2 3.(2008年· 吉林省)已知m是方程x2-x-2=0的一个根,则 2 代数式m2-m的值等于 。
1.解一元二次方程常见的思维误区是忽略几个关键: 用因式分解法解方程的关键是先使方程的右边为0; 用公式法解方程的关键是先把一元二次方程化为一般 形式,正确写出a、b、c的值;用直接开平方法解方 程的关键是先把方程化为(mx-n) 2=h的形式;用配方 法解方程的关键是先把二次项系数化为1,再把方程 的两边都加上一次项系数一半的平方. 2.一元二次方程解法的顺序:先特殊,后一般;即先 考虑能否用直接开平方法和因式分解法,否则再用公 式法,配方法一般不用.
(3)原方程变形为:y2-y-2=0 (y-2)(y+1)=0 y1=2,y2=-1. (4)用配方法得:m2-6m+9=616+9 (m-3)2=625m-3=±25 m1=28,m2=-22.
典型例题解析
【例4】 若实数x满足条件: (x2+4x-5)2+|x2-x-30|=0,求
3.一元二次方程及其解法 (1)一般形式:ax2+bx+c=0(a≠0). (2)一元二次方程的四种解法: ①直接开平方法:形如 x2=k(k≥0) 的形式均可用此法求 解. ②配方法:要先化二次项系数为 1 ,然后方程两边同加 上一次项系数的一半的平方,配成左边是完全平方,右 边是常数的形式,然后用直接开平方法求解. ③公式法:这是解一元二次方程通用的方法,只要化成 ax2+bx+c=02(a≠0),利用求根 公式:x= b 4 a c b2-4ac≥0)
典型例题解析
【例1】 (2008年· 甘肃省)若3是关于(4/3)x2-2a+1=0 的一个解,则2a的值是 ( C ) A.11 B.12 C.13 D.14 【例2】 (1)若2(y+3)的值与3(1-y)的值互为相反数,那 么y等于 ( D ) A.-8 B.8 C.-9 D.9 (2)若方程y2-3y+m=0的一个根是1,则它的另一个根是 2或1 ,m的值是 2 .
课前热身
4.(2008年· 四川)解方程x2+3x=10 解:x2+3x-10=0 (x+5)(x-2)=0 x=-5或x=2
x 2 2 2x 2 3 5.(2008年·河北省)用换元法解方程 x x 2 x 2 2
时,如果设 y x ,那么原方程可化为关于y的 2 一元二次方程的一般形式是 y 3 y 2 0 。
第二章第一课时:
整式方程
要点、考点聚焦 课前热身 典型例题解析 课时训练
要点、考点聚焦
1.一元一次方程 (1)定义:只含有一个未知数且所含未知数项的次数是 1 的整式方程,叫做一元一次方程. (2)一般形式:ax+b=0(a≠0). 2.一元一次方程的解法的一般步骤是: (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)系数化为1.
课时训练
4. (2008年·甘肃)方程(m+2)x|m|+3mx+1=0是关于x 的一元二次方程,则 ( B ) A.m=±2 B.m=2 C.m=-2 D.m≠±2 5.(2008年·安徽省)党的十六大提出全面建设小康社会, 加快推进社会主义现代化,力争国民生产总值到2020年 比2000年翻两番,在本世纪的头二十年(2001-2020年), 要实现这一目标,以十年为单位计算,设每个十年的国 民生产总值的增长率都是x,那么x满足的方程为 ( A ) A.(1+x)2=2 B.(1+x)2=4 C.1+2x=2 D.(1+x)+2(1+x)=4
典型例题解析
【例3】解方程:(1)x2-3x-10=0;(2)x2+4x-1=0; (3)y(y-1)=2; (4)m2-6m-616=0. 解:(1)(x-5)(x+2)=0,∴x1=5,x2=-2. (2)用公式法得x1,2=
4 4 2 4 ( 1 ) 2 5 2