RLC串联谐振电路应用ppt课件

合集下载

RLC串联电路介绍课件

RLC串联电路介绍课件

理解RLC串联电 路的物理原理
实验步骤和结果分析
准备实验器材:RLC 串联电路、信号发生 器、示波器等
01
连接实验电路:按照 实验要求连接RLC串 联电路
02
输入信号:使用信号 发生器输入正弦信号
03
06
总结实验结论:根据 实验结果总结RLC串 联电路的特性和规律, 为后续仿真和设计提 供依据
05
零状态响应的求解需要使 用拉普拉斯变换
零状态响应的求解可以帮 助我们分析电路的瞬态响
应特性
全响应
01
零输入响应:电路在零输入 条件下的响应
03
完全响应:电路在任意输入 和任意初始条件下的响应
05
稳态响应:电路在稳态条件 下的响应
02
零状态响应:电路在零状态 条件下的响应
04
瞬态响应:电路在瞬态条件 下的响应
网孔电流法:通过网孔电流方程求解电路中 的电压和电流
叠加定理:将电路中的电压源和电流源分解 为直流和交流两部分,分别求解后再叠加
戴维南定理:将电路中的电压源和电流源等 效为电压源和电阻,简化电路分析
零输入响应
01
零输入响应是指电路在无输 入信号的情况下的响应特性
03
稳态响应是指电路在无输入 信号的情况下,输出信号随 时间的变化情况
信号分析、信号合成、信号检测等
03
RLC串联电路在通信系统中的应用:用于
信号传输、信号处理、信号调制解调等
04
RLC串联电路在电子设备中的应用:用于
信号处理、信号放大、信号滤波等
实验目的和原理
01
02
Hale Waihona Puke 0304验证RLC串联电 路的谐振特性

第三讲串联谐振电路ppt课件

第三讲串联谐振电路ppt课件

电感、电容储能的总值与品质因数的关系:
Q 0L
R
0
LIm20 RIm20

1 2
LIm20
1 2
RIm20T0
谐振时电路中电磁场的总储能 2π谐振时一周期内电路消耗的能量
Q是反映谐振回路中电磁振荡程度的量,品质因数越大, 总的能量就越大,维持一定量的振荡所消耗的能量愈小,振荡 程度就越剧烈,则振荡电路的“品质”愈好。一般在要求发生 谐振的回路中总希望尽可能提高Q值。
2.1 串联谐振电路
1. 谐振的定义
含有R、L、C的一端口电路,在特定条件下出现端口电
压、电流同相位的现象时,称电路发生了谐振。
阻抗:在具有电阻、电感和电容的电路里,对交流电所
起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、
感抗和容抗三者组成,但不是三者简单相加。阻抗的单位
是欧。I
U
R,L,C 电路
当保持外加信号的幅值不变而改变其频率时,将回路电 流值下降为谐振值的 1 2 时对应的频率范围称为回路的通
频带也称为回路带宽,通常用B W来表示。
整理I-ω表达式可得
IR 2 0 U 0L 0 0 C 2R1 0 0 R U L 0 0 C R 2 I0
谐振时:
UL
XL R
U
0L U
R
UC
XC R
U
1U
0CR
QR R 0L01CRR 1
L C
QU L U C 0L 1
U U R
0RC
在谐振状态下,若 R<XL、R<XC ,Q 则体现了电容或电感 上电压比电源电压高出的倍数。且回路电阻R越小,Q越高,电
路对频率的选择性越好。

RLC串联谐振课件

RLC串联谐振课件
RLC串联谐振原理
谐振现象与谐振频率
谐振现象
当一个电网络含有电感(L)和电容 (C)元件时,若改变电路中的某一 参数,如电压或频率,电路中的电流 会发生变化,这种现象称为谐振。
谐振频率
当电路发生谐振时,其频率称为谐振 频率。对于RLC串联电路,其谐振频 率为f = 1 / (2π√(LC))。
串联谐振的条件
RLC串联谐振在物联网领域的应用前景
总结词
随着物联网技术的不断发展,RLC串联谐振 在物联网领域的应用前景也十分广阔。
详细描述
在物联网领域,RLC串联谐振可以应用于无 线通信、传感器网络、智能家居等方面。例 如,在无线通信中,RLC串联谐振可以用于 信号的发射和接收,提高通信系统的抗干扰 能力和传输质量。在传感器网络中,RLC串 联谐振可以用于信号的处理和传输,提高传 感器网络的可靠性和实时性。在智能家居中 ,RLC串联谐振可以用于智能电器的控制和 调节,提高智能家居的智能化程度和用户体
详细描述
RLC串联电路是一种基本的电路形式,其中电阻、电感和电容三个元件依次连接 ,形成一个串联回路。这种电路中的电流与外部激励源的频率有着密切的关系 。
工作原理
总结词
RLC串联电路通过相互间的电磁作用,形成一个具有特定频 率的振荡系统。
详细描述
当外部激励源对RLC串联电路施加电压时,电路中的电流将 按一定的规律变化。随着外部激励源频率的变化,电路的阻 抗也会发生变化。当外部激励源的频率与RLC串联电路的固 有频率相同时,电路发生谐振。
电路特点
总结词
RLC串联电路具有特定的阻抗特性,表现为在特定频率下的高阻抗和在其它频率 下的低阻抗。
详细描述
在RLC串联电路发生谐振时,其阻抗值达到最大。此时,电路中的电流最小,而 外部激励源的电压最大。此外,RLC串联电路还具有能量存储和转换的能力,可 以用于多种电子设备和系统中。

《rlc串联谐振》课件

《rlc串联谐振》课件

电力电子
逆变器
在电力电子中,逆变器是一种将直流电转换为交流电的装置,RLC串联谐振电路可以作为逆变器中的 滤波器,实现对输出交流电的滤波和整形,提高逆变器的性能和稳定性。
电机控制
电机控制是电力电子中的重要应用之一,RLC串联谐振电路可以用于电机控制中,通过调节电路的参 数,实现对电机转矩和转速的控制,提高电机的运行效率和稳定性。
04
RLC串联谐振的实验研究
实验设备与环境
实验设备
RLC串联电路、信号发生器、示波器、万 用表。
VS
环境要求
实验室环境,确保电源稳定,避免外界干 扰。
实验方法与步骤
01
连接RLC串联电路,确 保连接正确无误。
02
03
将信号发生器接入电路 ,调整信号频率,观察 示波器上的波形变化。
使用万用表测量各点的 电压和电流,记录数据 。
滤波器设计
利用RLC串联谐振的特性,可以设计 出各种滤波器,实现对信号的筛选和 处理,有效抑制噪声和干扰。
无线通信
发射机调谐
在无线通信中,发射机需要将信号传输到特定的频段,RLC串联谐振电路可以作为调谐器,对发射机输出的信号 进行频率选择和匹配,确保信号能够高效地传输出去。
接收机选频
在无线通信中,接收机需要从众多信号中选出需要的信号,RLC串联谐振电路可以作为选频器,对接收到的信号 进行筛选和过滤,提高接收机的灵敏度和选择性。
04
调整信号频率,重复上 述步骤,直至完成所有 实验数据采集。
实验结果与分析
01
02
03
04
观察示波器上的波形,记录不 同频率下的波形变化。
分析实验数据,得出RLC串联 电路的谐振频率和品质因数。

电路实验6.RLC串联谐振.ppt

电路实验6.RLC串联谐振.ppt

图5、真有效值交流 毫伏表,用来测量电 路中的电压。
1、在 不了解实验电 压大小的情况下,应 先选择较大量程,测 量时逐步切换至合适 量程;
2、L、C上的电压大 于R上电压,测量时 应注意切换量程;
3、当电压超量程报 警时应先拔下输入导 线,然后按复位按钮, 告警消失后切换至较 大量程再进行测量。
2、电路谐振的条件
由电阻R、电感L和电容C串联组成的一端口 网络如图1所示,该网络的等效复阻抗
Z R j L 1 C
是电源频率的函数。根据谐振的定义,当发 生谐振时,其端口电压与端口电流同相位。 满足此条件的复阻抗的虚部应该为零,即
亦即
Im Z j 0 L 1 C 0
得到谐振角频率为 0 ,有 0 1 LC
本步骤的注意事项:
• 实验电路谐振时Uo的大小并不等于输入电压
• f0应至少精确到100Hz • 测量UC和UL注意及时更换毫伏表的量限
(3)在谐振点两侧,按频率递增或递减500Hz或1KHz,
依次各取8 个测量点(即总测量点数为17个),逐点测
出UO,UL,UC之值,记入数据表格。
f(KHz)
UO(V)
5.要提高R、L、C串联电路的品质因数,电 路参数应如何改变
6.本实验在谐振时,对应的UL与UC是否相等? 如有差异,原因何在?
3、谐振电路的特性
电路达到谐振时,XL=Xc,电路呈纯阻性,电 路阻抗的模为最小。在输入电压Ui为定值时, 电路中的电流达到最大值,且与输入电压Ui同 相位。从理论上讲,此时 Ui=UR=UO,UL=Uc =QUi,有
Q UL 0 UC 0 0L 1 1 L
U
U
R 0CR R C
式中的Q 称为电路的品质因数。

RLC串联谐振电路应用ppt课件

RLC串联谐振电路应用ppt课件
3、电抗器并联时适合做长电缆,电抗器单台 使用或者串联时适合做短电缆。
10
举例试验
在作该类试验前应先了解试品情况并进行简单 估算,以免现场试验时不能谐振或烧毁试验设备。
例如:对YJV;6/10kV;3×150mm²;2kM电缆 进行交接耐压试验。
经查阅该电缆详细参数: C=0.358μF/km; U试=2U0=12kV; C=0.358μF/km×2=0.716μF
根据电缆规格长度计算试品电容C(μF)。
应考虑试验电流是否在电抗器及励磁变承受范围内。
I试
U试 1
2f0CU试
w0C
9
试验原则
作试验时应遵循以下几项原则来估算试验频率 和试验电流:
1、谐振在较低频率时,试验电流(I=2πfCU) 较小。
2、电抗器并联,电感量减小,耐压不变;电 抗器串联,电感量增大,耐压值升高。
0 2π LC

子说明,RLC串联电路谐振时w0(或f0)仅取决于电
路参数L和C,当L、C一定时,w0(或f0)也随之而
定的R、L、C串联电路,当电源角频率等
于电路的固有频率时,电路发生谐振。若电源频率
w一定,要使电路谐振,可以通过改变电路参数L或
C,以改变电路的固有频率w0使w=w0时电路谐振。 调节L或C使电路发生谐振的过程称为谐振。
3
串联谐振产生的条件
串联谐振电路由电感线圈和电容器串联组成,其 电路模型如右图,其中,R和L分别为线圈
的电阻和电感,C为电容器的电容。在角频率
为w的正弦电压作用下,该电路的复阻抗为:
ZRj( w-lw 1) cRj( XL-XL) RjX
Zz
R2X2arcX tg R
式中,感抗XL=wl,容抗XC=1/wc,电抗X=XL-XC、

RLC串联谐振电路应用

RLC串联谐振电路应用

品质因数计算公式
品质因数的影响因素
品质因数受到电阻、电感和电容的影 响,电阻越大,品质因数越低;电感 和电容越大,品质因数越高。
Q=ωL/R,其中ω是角频率,L是电感, R是电阻。
02
RLC串联谐振电路的应用 场景
信号源发生器
信号源发生器
RLC串联谐振电路可以用于产生特定频率的信号,如振荡器或信号源。通过调 整电感(L)和电容(C)的值,可以获得所需的频率,用于各种电子设备和系 统的信号源。
测量仪器
• 测量仪器:RLC串联谐振电路在 各种测量仪器中具有广泛应用, 如示波器、频谱分析仪和网络分 析仪等。这些仪器利用RLC电路 的谐振特性来测量信号的频率、 幅度和相位等参数,为科学研究 和技术开发提供准确的数据。
03
RLC串联谐振选择性
RLC串联谐振电路在某一特定频率下呈现零阻抗,而在其他频率下呈现
智能化
随着物联网和人工智能技术的融合,RLC串联谐振电路将 与传感器、执行器等智能器件集成,实现智能化控制和远 程监控。
技术展望
新材料的应用
随着新材料技术的不断发展,新型的电介质、磁性材料等将在 RLC串联谐振电路中得到应用,以提高其性能和稳定性。
先进封装技术
采用先进的封装技术,如三维集成和薄膜封装等,可实现RLC串联 谐振电路的高密度集成和微型化。
组成
RLC串联谐振电路由一个电阻器、一个电感器和两个电容器 组成。
工作原理
原理概述
RLC串联谐振电路在某一特定频率下呈现纯阻性, 此时电路的阻抗最小,电流最大。
电流最大值公式
当角频率ω=√(L/C)时,电路的阻抗最小,电流最 大。
频率计算公式
谐振频率f=1/√(2πLC)。

演示文稿91ppt课件

演示文稿91ppt课件
信号,求(1)调谐电容C值;(2)如输入电压为1.5V 求谐振电流和此时的电容电压。

(1)
1
C
(2
f )2 L 269 pF
(2)
I0
U R
1.5 10
0.15
A
UC I0 XC 158.5 V 1.5 V
or
UC
QU
0L
R
U
+R
u
L
_ C
(3) 谐振时的功率
P=UIcos=UI=RI02=U2/R,
串联电路实现谐振的方式:
(1) L C 不变,改变 。
0由电路本身的参数决定,一个 R L C 串联电路只 能有一个对应的0 , 当外加频率等于谐振频率时,电路
发生谐振。
(2) 电源频率不变,改变 L 或 C ( 常改变C )。
3. RLC串联电路谐振时的特点
(1).

U

I•同

.
入端阻抗Z为纯电阻,即Z=R。电路中阻抗值|Z|最小。
1 (Q ω Q ω0 )2
ω0
ω
I (η )
I0
1
1
Q2

1
η
)2
I(η ) I0
0.707
通用谐振曲线 Q=0.5
Q=1
Q=10
0
1 1 '2
Q越大,谐振曲线越尖。当稍微偏离谐振点时,曲线就 急剧下降,电路对非谐振频率下的电流具有较强的抑制能力, 所以选择性好。因此, Q是反映谐振电路性质的一个重要指 标。
I1 3.04% I0
I2 3.46% 小得多 I0
∴收到北京台820kHz的节目。
0 640 820 1200 f (kHz)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
1 LC
通过谐振条件产生的原因,可知有两种调节方式
产生谐振。
调节L或C使电路谐振,电感元件与电容元件的关
系为:L=L0=
ω;12 C C=C0=
。 1
ω 2L
调节电源频率,使得电源输出频率与电路固有频
率相等:W=W0=
1 LC

6
我们把处于L=1/C这一状态下的串联电路称为串联 谐振电路或电压谐振电路,谐振频率为:
0 2π LC

子说明,RLC串联电路谐振时w0(或f0)仅取决于电
路参数L和C,当L、C一定时,w0(或f0)也随之而
定,故称w0(或f0)为电路的固有频率。
对于给定的R、L、C串联电路,当电源角频率等
于电路的固有频率时,电路发生谐振。若电源频率
w一定,要使电路谐振,可以通过改变电路参数L或
C,以改变电路的固有频率w0使w=w0时电路谐振。 调节L或C使电路发生谐振的过程称为谐振。
3、电抗器并联时适合做长电缆,电抗器单台 使用或者串联时适合做短电缆。
10
举例试验
在作该类试验前应先了解试品情况并进行简单 估算,以免现场试验时不能谐振或烧毁试验设备。
例如:对YJV;6/10kV;3×150mm²;2kM电缆 进行交接耐压试验。
经查阅该电缆详细参数: C=0.358μF/km; U试=2U0=12kV; C=0.358μF/km×2=0.716μF
1
L
Qw0l w0c C
R RRR
8
根据串联谐振的特征(主要利用特征四)对大电容值 的容性电力设备进行交流耐压试验。
在作耐压试验前首先应了解被试品的情况,以便试验 能顺利进行。例如交联聚乙烯绝缘聚氯乙烯护套电力电 缆则需要了解其电压等级、截面规格等。
根据电缆规格并查阅本地或单位规程要求的试验电压 (交接试验或预防性试验)。
W 0 C 试
12
通过上述计算可得试验电流在电抗器(1.2A) 及励磁变(6.3A)可承受范围内,可进行试验。
13
或W0
1 LC
f0
2
1 LC
可见要使电路满足谐振条件,可以通过改变L、C或f来
实现。谐振时,电路的复阻Z=R+j[L-(1/C)]=R是一个
纯电阻,这时阻抗为最小值,阻抗角=0。若外加电压的
有效值U及电路中的电阻R为定值,则谐振时电路中电流
的有效值达到最大值I0=I(f0)=U/R。
7
串联谐振有以下特征: (1)电流与电压同相位,电路呈现纯阻性; (2)阻抗最小,电流最大。因为谐振时,电抗X=0,故 Z=R+jX=R,其值最小,电路中的电流I=U/R=I0为最大; (3)电感的端电压UL与电容的端电压UC大小相等,相位相 反,相互补偿,外加电压与电阻上的电压相平衡,即 UR=Ui; (4)电感或电容的端电压可能大大超过外加电压。电感或 电容的端电压与外电压之比为串联谐振电路的品质因数Q:
f 0 21 L C 2 3 . 1 4 2 1 0 2 . 7 1 1 - 6 6 0 4 . 1 0 H 2Z
其次估算试验电流值以判断电抗器及励磁变可否承 受。 I 试 U Z 试 U 1 试 2 f0 C 试 U 试 2 3 .1 4 .1 0 0 2 .7 1 1- 6 6 0 1 1 2 3 0 2 .1A 65
R、L、C串联谐振电路的应用
1
定义及其应用
谐振的定义:电容和电感元件的线性无源二 端网络对某一频率的正弦激励(达到稳态时)所表 现的端口电压与电流同相的现象。谐振电路分为并 联谐振电路与串联谐振电路。本次主要讨论串联谐 振电路的应用。
在电子设备中,经常需要完成在许多不同频 率的信号中,只选择某个频率的信号进行处理,而 其他频率信号被滤除的任务,如(收音机和电视机 等)。最常用的具有选频功能的电路是谐振电路, 因此说谐振电路的作用之一就是选频。
根据电缆规格长度计算试品电容C(μF)。
应考虑试验电流是否在电抗器及励磁变承受范围内。
I试
U试 1
2f0CU试
w0C
9
试验原则
作试验时应遵循以下几项原则来估算试验频率 和试验电流:
1、谐振在较低频率时,试验电流(I=2πfCU) 较小。
2、电抗器并联,电感量减小,耐压不变;电 抗器串联,电感量增大,耐压值升高。
阻抗角ΨZ = arctg(X/Z)均为电源角频率ω的函
数。那么谐振时U’S和I’同相,即Ψ=0,所以电
路谐振时应满足,X=0,即XL=XC,wl=1/wc。
4
串联谐振的频率、电路的固有频率
设电源角频率w=w0(f=f0)时,电路发生串联谐
振,由上面式子wl=1/wc可得:w0=L1C
或f = 1
11
首先 已0 2 有 W C 电2 1 抗f0 2 器 0 (.7 选 1 配1 - 6 )6 1 0 选6 .2 取 4 8 L=2 0 2 2 2H.1 ,2 H 3 计算谐振频
率 L=22H;C=0.358μF/km×2=0.716μF
3
串联谐振产生的条件
串联谐振电路由电感线圈和电容器串联组成,其 电路模型如右图,其中,R和L分别为线圈
的电阻和电感,C为电容器的电容。在角频率
为w的正弦电压作用下,该电路的复阻抗为:
ZRj( w-lw 1) cRj( XL-XL) RjX
Zz
R2X2arcX tg R
式中,感抗XL=wl,容抗XC=1/wc,电抗X=XL-XC、
2
另外变频谐振试验方法主要用于对大电容值 的容性电力设备的现场交流耐压试验,这类电力设 备包括交联聚乙烯绝缘聚氯乙烯护套电力电缆 (XLPE),全封闭高压组合电器(GIS)、发电机 定子、大型变压器、架空线电力线路、电力电容器 等。该作用主要是利用谐振时被试品电容两端电压 为电源电压的Q倍;谐振时源的激励功率仅为电容C 上电功率容量的1/Q,Q越大激励功率越小。基于上 述两个优点串联变频谐振方式进行容性试品的交流 耐压试验成为流行趋势。
相关文档
最新文档