小学奥数“鸡兔同笼”例题13种讲解方法
鸡兔同笼的13种解法

根据上面的表格,我们可以看出,鸡为9只,兔子为5只.我们在列表的时候不要按顺序列,否则做题的速度会很慢,比方说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那末下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!(方法二:最高兴的方法“画图法”)分析:画图法也是低年级小朋友很好承受的一个方法,呵呵,画图还可让数学变得形象化,而且常常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好.这样就有14×2=28条,差38-28=10条,而每只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡.(方法三:最酷的方法“金鸡独立法”)分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那末地上的总脚数只是原来的一半,即19只脚.鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只.(方法四:最逗的方法“吹哨法”)分析:假设及和兔承受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着.这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只.(方法五:最常常使用的方法“假设法”)分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只.(方法六:最常常使用的方法“假设法”)分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只鸡9兔子变成鸡,即鸡为9只,兔子为14-9=5只.(方法七:最牛的方法“特异功能法”)分析:鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有.假设鸡有特级功能,把两只翅膀变成2条腿,那末鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么呢?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只.(方法八:最牛的方法“特异功能法”)分析:假设每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是38-14×2=10条,因此兔的只数有10÷2=5只,进而知道鸡有14-5=9只.鸡兔具有“特异功能”,这个方法想得太棒了!呵呵,小朋友也要发挥自己的想象喔!(方法九:最牛的方法“特异功能法”)假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,当然鸡就有14-5=9只.呵呵,小朋友把兔“劈开”成“半兔”,想得奇吧!(方法十:最古老的方法“砍足法”)分析:假如把每只砍掉1只脚、每只兔砍掉3只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由38只变成了19只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只).所以,鸡的只数就是35-12=23(只)了. 呵呵,这个方法是古人想出来的,但有点残暴!(方法十一:史上最坑的方法“耍兔法”)分析:假如刘教师喊口令:“兔子,耍酷!”此时兔子们都把两只前脚高高抬起,两只后脚着地,呈酷酷的姿态,此时鸡兔都是两只脚着地.在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只.为什么会多呢?因为兔子们把它们的2只前脚抬了起来,所以兔的只数是10÷2=5只,鸡则是14-5=9只.方法十二:最万能的方法“方程法”分析:设鸡的数量为x只,则兔子有(14-x)只,有2x+4(14-x)=38,解出x=9,所以有鸡9只,兔子14-9=5只.(方法十三:最万能的方法“方程法”)分析:设兔子的数量为x只,则鸡有(14-x)只,有4x+2(14-x)=38.解得x=5,所以兔子有5只,鸡有14-5=9只.我们不但学会懂得答鸡兔同笼的题目,而且我们还发现了数学趣味无穷,在数学的世界里,只要小朋友们放飞自己的想象,将会想出很多奇妙的方法,有意想不到的收获!。
小学数学重难点突破:“鸡兔同笼”13种解题方法,学霸看了都私藏

⼩学数学重难点突破:“鸡兔同笼”13种解题⽅法,学霸看了都私藏
爱因斯坦曾经说过:“数学之所以⽐⼀切其它科学受到尊重,⼀个原因是因为他的命题绝对可靠
和⽆可争辩的。
另⼀个原由则是数学使⾃然科学实现定理化,给予⾃然科学某种程度的可靠
性。
”更深层的含义是,数学是⼀门极其理性的学科,学好数学能让孩⼦的逻辑思维更清晰,更
能开发孩⼦的⼤脑。
但在⼩学阶段的数学学习中,并不是⼀帆风顺的,对于孩⼦们⽽⾔,最头痛、丢分最多的,则
是应⽤题型。
考试中,应⽤题的分值占了三分之⼀,⽽⼤部分同学丢分都是在应⽤题型上掉了
链⼦,以致数学成绩不理想。
其实⼩数数学应⽤题,题⽬相对简单,结构也不复杂,题型就那
⼏种,答题模式也⼤都相似,同学们如果能够把这⼏类都学好,学习成绩⾃然能够提升。
就拿“鸡兔同笼”应⽤题来说,相信⼤⼈孩⼦都不陌⽣。
“鸡兔同笼”是历年数学考试都会出现的考
题(可以说是必考题)。
很多孩⼦在这类题中,失分⽐较严重。
鸡兔同笼应⽤题问题虽然复
杂,但解题⽅法却不⽌⼀种,学会了之后更能灵活变应。
下⾯,⽼师⽤⼀个例题,学习鸡兔同
笼问题的11种解答⽅法,相信能为孩⼦们做应⽤题这块打开思路。
小学数学鸡兔同笼问题解题思路和方法公式例题附答案

小学数学鸡兔同笼问题解题思路和方法公式例题附答案鸡兔同笼问题是一个古典的算术问题,它包括第一鸡兔同笼问题和第二鸡兔同笼问题。
第一鸡兔同笼问题是已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题;第二鸡兔同笼问题是已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题。
解答这类问题一般采用假设法,可以先假设都是鸡或都是兔,然后进行置换,使问题得到解决。
对于第一鸡兔同笼问题,假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2);假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)。
对于第二鸡兔同笼问题,假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2);假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)。
举个例子,假设一笼里有长毛兔子和芦花鸡,数数头有35,脚数共有94.我们可以先假设35只全为兔,然后求出鸡数和兔数;也可以先假设35只全为鸡,然后求出鸡数和兔数。
这样就可以得出答案,即有鸡23只,有兔12只。
另一个例子是,有2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?这个问题可以转化为“鸡兔同笼”问题。
假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)。
最后一个例子是第二鸡兔同笼问题,鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?我们可以假设全都是鸡或都是兔,然后求出鸡数和兔数。
根据计算,鸡有60只,兔有40只。
答案:有6辆车和270人。
年龄问题是指两人的年龄差不变,但是两人年龄之间的倍数关系随着年龄的增长在发生变化。
解题时要紧紧抓住“年龄差不变”这个特点,可以利用“差倍问题”的解题思路和方法。
例如,爸爸今年35岁,XXX今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?根据年龄差不变,可以得出35÷5=7(倍),明年爸爸的年龄是(35+1)÷(5+1)=6(倍)。
鸡兔同笼13种解题方法

鸡兔同笼13种解题方法鸡兔同笼问题是一类经典的数学问题,常见于初中数学题目中。
这个问题的基本思路是通过解方程组来求解鸡和兔子的数量。
在本文中,将介绍13种不同的解题方法,包括逆向思维、代数法、图形法等多种方法,帮助读者更好地理解和掌握这一问题。
一、逆向思维法逆向思维法是一种比较简单易懂的方法,其基本思路是先确定总数量,再确定其中一个物品的数量,最后计算出另一个物品的数量。
1. 假设笼子里有13只动物,则鸡和兔子的总数量为13。
2. 假设有x只鸡,则有13-x只兔子。
3. 根据题目所给条件“总腿数为32”,得到方程式2x+4(13-x)=32。
4. 解方程得到x=6,则笼子里有6只鸡和7只兔子。
二、代数法代数法是一种常用的解题方法,其基本思路是通过设定未知量来建立方程组,并通过求解方程组来得到答案。
1. 设鸡和兔子的数量分别为x和y,则有方程组:x+y=132x+4y=322. 通过求解方程组得到x=6,y=7,则笼子里有6只鸡和7只兔子。
三、图形法图形法是一种直观易懂的方法,其基本思路是通过画图来解决问题。
1. 在平面直角坐标系中,设鸡和兔子的数量分别为x和y,则可以用一条直线表示鸡和兔子的总数量为13。
2. 根据题目所给条件“总腿数为32”,可以得到另一条直线表示鸡和兔子的总腿数为32。
3. 通过求解两条直线的交点,即可得到笼子里有6只鸡和7只兔子。
四、枚举法枚举法是一种简单易行的方法,其基本思路是通过列举所有可能情况来找到符合条件的答案。
1. 从1到12枚举鸡的数量x。
2. 根据题目所给条件“总腿数为32”,计算出相应的兔子数量y。
3. 如果x+y=13,则找到符合条件的答案。
五、分段函数法分段函数法是一种利用函数性质解题的方法,其基本思路是将问题拆分成多个部分,并建立相应的函数关系式来求解问题。
1. 假设笼子里有x只鸡,则有13-x只兔子。
2. 根据题目所给条件“总腿数为32”,可以得到下列函数关系式: f(x)=2x+4(13-x)3. 通过求解f(x)=32的解,即可得到笼子里有6只鸡和7只兔子。
小升初:鸡兔同笼问题,14种解法,你会几种呢?

小升初:鸡兔同笼问题,14种解法,你会几种呢?鸡兔同笼问题,也许有人说so easy,但请不要小看这个“简单”的问题,早在1500年前,《孙子算经》中就记载了这个有趣的问题。
so它还是个古董呢!对于小学生来说,一直以来都是孩子们头痛的问题,特别是低年级的学生,根本不会用方程问题去解答。
今天呢,老师不仅要让你学会解决此类问题,还要让你会用多种方法解出答案。
题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,求鸡和兔子各有多少只?(请用尽量多的方法解答)方法一:列表法如果是的二年级的小朋友做这道题,可用列表法!直观、容易理解、还不会出错。
如下表所示:根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!方法二:画图法画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
方法三:假设法1分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
方法四:假设法2分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只。
方法五:金鸡独立法分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
鸡兔同笼问题十种解答

鸡兔同笼问题十种解答原题:今有鸡兔同笼上有三十五头下有九十四足问鸡兔各几何译为:今有鸡兔同在一笼,上有35个头,下有94只脚,问鸡兔各有几只?1、首先可以引用古代孙子的解法进行思考: 孙子提出了大胆的设想。
他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。
这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。
由此可知,多有一只“双脚兔”,脚的数量就会比头的数量多1。
所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。
2、其次,列方程来解答:解:设鸡有x只,则兔有(35-x)只,根据题意得:2x+4(35-x)=94x=2335-x=12即鸡有23只,兔有12只.解法3:假如此时有人大喊口令:“兔子立正”此时兔子们则把两只前脚抬起,两只后脚着地,呈立正姿态,此时鸡兔都是两只脚着地。
在地上脚的总数为35×2=70只(只),而原来共有94只脚,少了94-70=24(只),为什么会少呢?因为兔子们没把它们的2只前脚着地,所以兔子的只数是24÷2=12(只),则鸡是35-12=23(只)。
解法4:假设35只全部为鸡,则有35×2=70(只)脚,这就比实际少94-70=24(只)脚,为什么呢?因为我们把兔当作鸡来算,每只少算了2只脚,所以兔子是24÷2=12(只),则鸡是35-12=23(只)。
解法5:鸡有2只脚,而兔却有4只脚,这不公平,但是鸡有2只翅膀,兔子却一只也没有,假如鸡的两只翅膀变成了脚,此时脚的总数应该是35×4=140(只),但实际上只有94只,为什么呢?因为我们把鸡的翅膀当作脚来计算,所以鸡的翅膀有140-94=46只,鸡有46÷2=23(只),则兔有35-23=12(只).解法6:我们还以推算出一个专门解答“鸡兔同笼”问题的公式:(兔脚数×总头数—实有脚数)÷(兔脚数—鸡脚数)=鸡的只数或:(实有脚数—鸡脚数×总头数)÷(兔脚数—鸡脚数)=兔的只数解法6:用估算的方法来解答:94÷2=47(只),让鸡兔的脚各减一半,使鸡剩下一只脚,兔子剩下2只脚,47-35=12只(兔)。
鸡兔同笼解题方法13个

鸡兔同笼解题方法13个摘要:1.引言2.鸡兔同笼问题的基本解题思路3.13个解题方法详细解析a.方法1:列举法b.方法2:方程法c.方法3:比例法d.方法4:图形法e.方法5:逻辑推理法f.方法6:排除法g.方法7:转化法h.方法8:逆向思维法i.方法9:代换法j.方法10:假设法k.方法11:分类讨论法l.方法12:极限思维法m.方法13:归纳法4.结论与实用建议正文:【引言】鸡兔同笼问题,是我国古代数学中著名的一个问题,也是日常生活中常见的数学问题。
解决鸡兔同笼问题,可以锻炼我们的逻辑思维和数学运算能力。
下面,我们将详细介绍13种解决鸡兔同笼问题的方法。
【鸡兔同笼问题的基本解题思路】鸡兔同笼问题的一般表述为:有一笼子里关着鸡和兔子,我们只能看到笼子里有一定数量的头和脚。
已知鸡有一个头,两只脚;兔子有一个头,四只脚。
问:鸡和兔子各有多少只?【13个解题方法详细解析】a.方法1:列举法列举法是最基本的解题方法,根据鸡兔同笼问题的基本特征,列举出所有可能的情况,然后一一验证,找出符合题意的答案。
b.方法2:方程法设鸡的数量为x,兔子的数量为y,根据题意,我们可以得到两个方程:x+y=总头数,2x+4y=总脚数。
解这两个方程,就可以得到鸡和兔子的数量。
c.方法3:比例法根据鸡和兔子的脚数比例,设鸡的数量为x,兔子的数量为y,可以得到比例方程:x/y=2/4。
解这个比例方程,再结合头数方程,就可以求得鸡和兔子的数量。
d.方法4:图形法用图形表示鸡和兔子的头和脚,根据题意,画出所有可能的图形,然后分析每个图形的特征,找出符合题意的答案。
e.方法5:逻辑推理法根据题意,利用逻辑推理的方法,分析鸡和兔子可能出现的数量组合,逐步缩小范围,找出符合题意的答案。
f.方法6:排除法根据题意,先假设鸡和兔子的数量,然后计算出对应的头和脚的数量,与题目给出的头和脚的数量进行比较,排除不符合题意的组合,最后找出符合题意的答案。
鸡兔同笼的13种解法

例、现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿按照上面的表格,我们可以看出,鸡为9只,兔子为5只.我们在列表的时候不要按顺序列,不然做题的速度会很慢,比方说列完鸡为0只,兔子为14只,发明腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!(办法二:最快乐的办法“画图法”)阐发:画图法也是低年级小朋友很好接受的一个办法,呵呵,画图还可以让数学变得形象化,并且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好.这样就有14×2=28条,差38-28=10条,而每一只鸡补2条腿就酿成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡.(办法三:最酷的办法“金鸡独立法”)阐发:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚.鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只.(办法四:最逗的办法“吹哨法”)阐发:假设及和兔接受过特种军队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着.这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只.(办法五:最经常使用的办法“假设法”)阐发:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡酿成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡酿成兔子,即兔子为5只,鸡为14-5=9只.(办法六:最经常使用的办法“假设法”)阐发:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子酿成一只鸡腿减少2条,18÷2=9只,所以需要9只鸡9兔子酿成鸡,即鸡为9只,兔子为14-9=5只.(办法七:最牛的办法“特异功效法”)阐发:鸡有2条腿,比兔子少2条腿,这不公道,但是鸡有2只翅膀,兔子却没有.假设鸡有特级功效,把两只翅膀酿成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么呢?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只.(办法八:最牛的办法“特异功效法”)阐发:假设每只鸡兔都具有“特异功效”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是38-14×2=10条,因此兔的只数有10÷2=5只,进而知道鸡有14-5=9只.鸡兔具有“特异功效”,这个办法想得太棒了!呵呵,小朋友也要阐扬自己的想象喔!(办法九:最牛的办法“特异功效法”)假设孙悟空酿成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,酿成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,当然鸡就有14-5=9只.呵呵,小朋友把兔“劈开”成“半兔”,想得奇吧!(办法十:最陈旧的办法“砍足法”)阐发:假如把每只砍掉1只脚、每只兔砍掉3只脚,则每只鸡就酿成了“独角鸡”,每只兔就酿成了“双脚兔”.这样,鸡和兔的脚的总数就由38只酿成了19只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题?看到这个题目,大概有宝宝会不屑地说:“小学生都会!”可是今天的问题,不是要解出答案,而是你会用多少种解法解出答案?
不要小看这个“简单”的问题,早在1500年前,《孙子算经》中就记载了这个有趣的问题.WOW,还是个古董呢~
好啦,废话少说,请听题……
题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)
『方法一:人见人爱的列表法』
如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!
鸡 0 3 5 79...
兔1411 9 7 5...
腿5650464238...
根据上面的表格,我们可以看出,鸡为9只,兔子为5只.我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!
分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚.鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只.
『方法四:最逗的吹哨法』
分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着.这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只.(惊现跑男中包贝尔的抬脚法有木有!)
『方法五:最常用的假设法』
分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只.
『方法六:最常用的假设法』
分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只.
『方法七:最牛的特异功能法』
分析:鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有.假设鸡有特级功能,把两只翅膀变成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么呢?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只.
『方法八:最牛的特异功能法2 』
分析:假设每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是38-14×2=10条,因此兔的只数有10÷2=5只,进而知道鸡有14-5=9只.鸡兔具有“特异功能”,这个方法想得太棒了!
『方法九:最牛的特异功能法3 』
假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,当然鸡就有14-5=9只.呵呵,小朋友把兔“劈开”成“半兔”,想得奇吧!
『方法十:最古老的砍足法』
分析:假如把每只砍掉1只脚、每只兔砍掉2只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由38只变成了19只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只).所以,鸡的只数就是14-5=9(只)了. 呵呵,这个方法是古人想出来的,但有点残忍!
『方法十一:史上最坑的耍兔法』
分析:假如刘老师喊口令:“兔子,耍酷!”此时兔子们都把两只前脚高高抬起,两只后脚着地,呈酷酷的姿态,此时鸡兔都是两只脚着地.在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只.为什么会多呢?因为兔子们把它们的2只前脚抬了起来,所以兔的只数是10÷2=5只,鸡则是14-5=9只.
『方法十二:最万能的方程法』
分析:设鸡的数量为x只,则兔子有(14-x)只,有2x+4(14-x)=38,解出x=9,所以有鸡9只,兔子14-9=5只.
『方法十三:最万能的方程法』
分析:设兔子的数量为x只,则鸡有(14-x)只,有4x+2(14-x)=38.解得x=5,所以兔子有5只,鸡有14-5=9只.
鸡兔同笼的13种方法就给大家讲完了,最后我们来总结一下!
•十三种方法•
1、列表法
2、画图法
3、金鸡独立法
4、吹哨法
5、假设法
6、假设法
7、特异功能法8、特异功能法
9、特异功能法10、砍足法
11、耍兔法12、方程法
13、方程法
记忆方法:假设“列表”同学画完图以后,有了3大特异功能,摆了一个金鸡独立的pose,吹了一声哨,耍了一下兔,看足了,于是“方程”去了!。