高中数学(课前预习+课初+课中+课末+课后)§1-9 对数函数及性质教案 新人教A版必修1
高中数学对数函数讲课教案

高中数学对数函数讲课教案
教学内容:对数函数的定义、性质和计算
教学目标:学生能够理解对数函数的概念,掌握对数函数的性质和计算方法
教学重点和难点:对数函数的定义、性质和计算方法
教学步骤:
一、导入(5分钟)
1. 引出对数函数的概念,让学生思考对数函数与指数函数之间的关系;
2. 提出对数函数的定义,引入对数的概念;
二、讲解对数函数的性质(15分钟)
1. 对数函数的定义:y=loga(x);
2. 对数函数的性质:对数函数的定义域、值域、图像、性质等;
3. 讲解对数函数的性质,解释对数函数的特点;
三、解题演练(20分钟)
1. 练习对数函数的基本计算,如对数函数的值计算、对数函数性质的应用等;
2. 指导学生做相应的练习题,巩固对数函数的计算方法;
四、综合应用(10分钟)
1. 结合实际问题,引导学生将对数函数应用到实际生活中,如幂函数、对数函数的应用等;
2. 指导学生做相应的应用题,提高对数函数的实际运用能力;
五、小结与评价(5分钟)
1. 总结本节课的重点知识点,强调对数函数的重要性;
2. 对学生的学习情况进行评价和反馈,并指导下节课的学习内容;
教学反思:在本节课的教学中,应注重对数函数的定义和性质的讲解,帮助学生建立对对
数函数的认识,同时通过练习和应用,提高学生对对数函数的理解和运用能力。
同时,教
师应根据学生的实际学习情况,适时调整教学方法和内容,提高教学效果。
对数函数及其性质教案完整版

对数函数及其性质一、教材分析《对数函数》出现在高中数学必修一第二章第二节第二课时。
对数函数是高中数学在指数函数之后的重要初等函数之一,无论从知识角度还是思想方法的角度对数函数与指数函数都有类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活、能力要求也更高。
而且学习对数函数是对指数函数知识和方法的巩固、深化和提高,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
也为解决函数总和问题及其在实际中的应用奠定良好的基础。
二、学情分析函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.学生在高中有一定的形象思维和抽象思维能力,已经学习了三种基本函数:一次函数、二次函数、反比例函数,已经具有一定的函数基础知识,并且在对数函数之前学习了指数函数,这为过渡到本节的学习起着铺垫作用;具备通过类比指数函数学习来认识对数函数的性质。
因此本节对数函数既是对以前函数知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后学习提供了必要的基础知识.三、教学目标和重点难点依据对教材和学情的分析,遵循《普通高中数学课程标准》对本节的教学要求,将对数函数及其性质此节课的教学目标、重点和难点设置为:(一)教学目标:1.知识与技能:进一步理解对数函数的定义,掌握对数函数的图像和性质;初步利用对数函数的图像与性质来解决简单问题(会求对数函数的定义域;会用对数函数的定义比较两个对数的大小)。
2.过程与方法目标:经过探究对数函数的图像和性质的过程,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力,培养学生严谨的思维和科学正确的计算能力;渗透类比、数形结合、分类讨论等基本数学思想方法。
3.情感态度与价值观目标:在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣,增强学好数学的信心。
高中数学必修1 《对数函数及其性质》教学案

《对数函数及其性质》教学案课程分析:(本课的作用和学习本课的意义)函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.教学构想及目标:知识目标: 1.理解对数函数的概念;2. 2.掌握对数函数的图像和性质,学会其简单的运用;3. 3.通过具体的函数图像的画法逐步认识对数函数的特征。
能力目标: 通过教学培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力。
情感目标: 在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。
教学重点: 理解并掌握对数函数的概念、图像与性质。
教学难点: 对数函数的图像和性质的探究。
教学方法:采用 “从特殊到一般”、“从具体到抽象”的方法,并在教学过程中渗透类比、数形结合、分类讨论等数学思想方法。
师生活动 复习回顾:1、N x N a a a a x log ,10=⇔=≠>则且若2、指数函数及其性质设计意图复习指数函数的图象和性质有利于对数函数的学习,为学习对数函数的定义,图像和性质做铺垫,渗透类比数学思想。
问题情境1:某细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,细胞个数 y 是分裂次数 x 的函数已知分裂的次数x ,就能求出细胞的个数 y 。
问题:已知细胞的个数 y ,如何确定分裂的次数x 呢?问题情境2:某种放射性物质不断变化为其他物质,且每经过一年,这种物质剩留的质量是原来的84%.写出这种物质的剩留量 y ,关于时间 x 的函数关系式。
(设该物质最初的质量为1)已知经过的时间 x ,就能求出该物质的剩留量 y .问题:已知该物质的剩留量 y ,如何求经过的时间 x 呢?这样我们得到了两个关于变量x,y 之间关系的表达式,抛开它们的实际背景,对于正数 y 的每一个给定的值,x 都有xy 2=)(*N x ∈yx 2log =x y 84.0=)0(>x yx 84.0log =惟一确定的值与之相对应. 这样就得到一类新的函数:习惯上,我们用x 表示自变量, y 表示函数,所以有:新知建构:对数函数的概念:一般地,函数叫做对数函数,定义域为探究学习:用描点法做出下列函数的图象(两点一线---定位)1、 3、2、 4、 有教师通过幻灯片演示,再利用几何画板实验,让同学们观察图象。
对数函数及其性质的教学设计【2篇】

对数函数及其性质的教学设计【2篇】篇一:高中数学对数函数教案篇一教学目标1、在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。
2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。
3、通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。
教学重点,难点重点是理解对数函数的定义,掌握图像和性质。
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。
教学方法启发研讨式教学用具投影仪教学过程一。
引入新课今天我们一起再来研究一种常见函数。
前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。
这个熟悉的函数就是指数函数。
提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的。
并由一个学生口答求反函数的过程:由得。
又的值域为,所求反函数为。
那么我们今天就是研究指数函数的反函数__对数函数。
2.8对数函数(板书)一。
对数函数的概念1、定义:函数的反函数叫做对数函数。
由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。
如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件。
在此基础上,我们将一起来研究对数函数的图像与性质。
二。
对数函数的图像与性质(板书)1、作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。
同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。
高中数学《对数函数及其性质》教案

高中数学《对数函数及其性质》教案一、教学目标1. 理解对数函数的基本概念和性质;2. 掌握对数函数的画图方法;3. 掌握对数函数的应用:解指数方程、求复利等。
二、教学内容1. 对数函数的基本概念和性质(1)对数函数的定义及其基本概念:对数函数 y=log ax 表示以 a 为底数,x 的对数等于 y。
(2)对数函数的性质:对数函数 y=log ax 的基本性质有:a. 函数定义域:x>0;b. 奇偶性:对数函数为奇函数;c. 单调性:对数函数在定义域内单调递增;d. 图像和渐近线:对数函数 y=log a x 在 x 轴正半轴上有一渐近线 y=0,在 y 轴上有一渐近线 x=1。
2. 对数函数的画图方法(1)确定定义域和值域;(2)确定渐近线和相关坐标轴;(3)列出一些特殊点(如 a 和 1);(4)画出函数图像。
3. 对数函数的应用(1)解指数方程;(2)求复利。
三、教学方法1. 讲授方法:通过例题演示,引导学生初步理解对数函数的基本概念和性质。
2. 练习方法:结合生活实际,利用习题提高学生应用对数函数解决实际问题的能力。
3. 思考方法:开展思考启发,引导学生在巩固掌握对数函数知识的同时,思考对数函数和指数函数之间的联系。
四、教学步骤1. 对数函数的基本概念和性质(1)导入概念:将介绍对数函数的概念和定义,引导学生认识对数函数的意义。
(2)讲解基本性质:讲解对数函数的基本性质,引导学生掌握对数函数在定义域内的奇偶性、单调性、渐近线以及相关图像的特点。
(3)例题演示:通过例题演示,让学生理解对数函数的基本性质和应用方法。
2. 对数函数的画图方法(1)导入实例:通过实例导入,引导学生初步理解对数函数的画图方法。
(2)具体步骤:讲解对数函数的具体画图步骤,引导学生掌握对数函数的画图方法和技巧。
(3)实战演练:通过案例演练,让学生掌握对数函数的画图方法。
3. 对数函数的应用(1)导入实例:通过实例导入,引导学生初步认识对数函数的应用。
《对数函数及其性质(第1课时)》教学设计

《对数函数及其性质(第1课时)》教学设计有了学习指数函数的图象和性质的学习经历,以及对数知识的知识准备,对数函数概念的引入,对数函数图象和和性质的研究便水到渠成。
对数函数的概念是通过一个关于细胞分裂次数的确定的实际问题引入的,既说明对数函数的概念来自于实践,又便于学生接受。
在教学中,学生往往容易忽略对数函数的定义域,因此在进行定义教学时,要结合指数式强调说明对数爱护念书的定义域,加强对数函数的定义域为()0,+∞的理解。
在理解对数函数概念的基础上掌握对数函数的图象和性质,是本节的教学重点,而理解底数a的值对于函数值变化的影响(即对对数函数单调性的影响)是教学的一个重点,教学时要充分利用图象,数形结合,帮助学生理解。
研究了对数函数的图象和性质之后,可以将对数函数的图象和性质与指数函数的图象和性质进行比较,以便加深学生对对数函数的概念、图象和性质的理解,同时也可以为反函数的概念的引出作一些准备。
三维目标1.知识技能①理解对数函数的概念,熟悉对数函数的图象与性质;②掌握对数函数的性质.2.过程与方法引导学生结合图象,类比指数函数的性质,探索研究对数函数的性质. 3.情感、态度与价值观培养学生数形结合的思想以及分析推理的能力;培养学生严谨的科学态度.学法与教学用具1.学法:通过让学生观察、思考、讨论、交流、发现对数函数的性质;2.教学用具:直尺、挂图、黑板笔教学重点、难点重点:理解对数函数的定义,掌握对数函数的图象和性质.难点:对数函数的性质第一课时教学过程一、复习导入:(1)知识方法准备我们在前面学习了指数函数及其性质,那么指数函数具有哪些性质呢?下面我和同学们一起来借助指数函数的图象来复习它的性质.引导学生复习指数函数的性质,适时的把性质在挂图上补充完整,完成后表扬学生,激发学生学习新知识的兴趣.(2)引例:在58P 练习题3中,我们知道某种细胞分裂时,由1个分裂成2个,2个分裂成4个……不难得出下表:由对数的意义可知,当分裂后细胞个数为2时,细胞分裂次数为21log 2=次;当分裂后细胞个数为4时,细胞分裂次数为22log 4=次;当分裂后细胞个数为8时,细胞分裂次数为23log 8=次……当分裂后细胞个数为x 时,细胞分裂次数为2log y x =次,我们发现对于每一个分裂后细胞个数x ,通过对应关系2log y x =,细胞分裂次数y 都有唯一的值与之对应,从而y 是关于x 的函数,这是一个什么样的函数呢?这就是我们今天要研究的对数函数. 二、推进新课 1、对数函数的概念一般地,我们把函数()log 01a y x a a =>≠且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:① 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:()log 1a y x =+,22log y x = 都不是对数函数,而只能称其为对数型函数.②对数函数对底数的限制:01a a >≠且2、在同一坐标系中画出下列对数函数的图象: (1)①2log y x =; ②12log y x =;做图步骤:列表、描点、用平滑曲线连结起来(2)③ 3log y x = ④13log y x =思考:这些函数的图象有什么关系?类比底数互为倒数的两个指数函数的图象关于y轴对称,得出底数互为倒数的两个对数函数的图象关于x轴对称同理我们也可以画出底数为152a=……等等的对数函数图象,4,,,425我们不难发现如下共同特征:3、类比指数函数图象和性质,研究对数函数图象和性质学生以大组为单位讨论对数函数的性质,5分钟后每一组推举一名表达较好的代表来描述对数函数性质,对于拿不准的同学给予鼓励,对于描述正确的同学予以表扬.三、课堂小节1、对数函数的概念.2、对数函数的图象与性质.3、数形结合的数学思想.四、作业预习课本P例7~例9,为下次课的对数函数性质的应用做71好准备五、板书设计设计感想本节课是在前面研究了对数及常用对数、指数函数的基础上,研究的第二类具体初等函数,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习的基础,鉴于这种情况,安排教学时,要充分利用函数图象,数形结合,无论是导入还是概念得出的过程,都比较的详细,通俗易懂,因此课堂容量教大,要提高学生互动的积极性特别是归纳出对数函数的图象和性质后,要与指数函数的图象和性质进行比较,加深学生对对数函数的概念、图象和性质的理解,要提高课堂的效率和节奏,多运用信息化的教学手段,顺利完成本节课的任务。
对数函数及其性质教案

对数函数及其性质1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.7072复习1:画出2x y =、1()2x y =的图象,并以这两个函数为例,说说指数函数的性质.复习2:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.(列式)二、新课导学※ 学习探究探究任务一:对数函数的概念新知:一般地,当a >0且a ≠1时,函数log a y x =叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞).形式特点:系数 底数 真数 1.判断:以下函数是对数函数的( )A. y=log 2(3x-2)B. y=log (x-1)xC. y=2log 1/3 xD. y=lnx2.f (x )=(a 2 -a+1) log (a+1)x 是对数函数,则实数a=( )探究任务二:对数函数的图象和性质 问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 在同一坐标系中画出下列对数函数的图象.2log y x =; 12log y x =反思:((※ 典型例题例1求下列函数的定义域:(1)2log a y x =; (2)log (4)a y x =-例2比较大小:(1)22log 3.4,log 8.5; (2)0.30.3log 1.8,log 2.7; (3)log 5.1,log 5.9a a . (4)23log 3log 2和.小结:利用单调性比大小;注意格式规范.三、总结提升※ 学习小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.学习评价※当堂检测(时量:5分钟 满分:10分)计分:1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 函数0.2log (6)y x =--的定义域是 .4.不等式的41log 2x >解集是( ).A. (2,)+∞B. (0,2)B. 1(,)2+∞ D. 1(0,)25. 比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8.课后作业1. 已知下列不等式,比较正数m 、n 的大小:(1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域:(1)2log (35)y x =- (2)0.5log 43y x =-。
《对数函数的图像与性质》教案

《对数函数的图像与性质》教案一、教学目标:1. 知识与技能:(1)理解对数函数的定义和性质;(2)能够绘制对数函数的图像;(3)掌握对数函数在实际问题中的应用。
2. 过程与方法:(1)通过观察、分析、归纳对数函数的性质;(2)利用数形结合的方法,研究对数函数的图像;(3)运用对数函数解决实际问题。
3. 情感态度与价值观:(1)培养学生的数学思维能力;(2)激发学生对数学的兴趣和好奇心;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 对数函数的定义与性质;2. 对数函数的图像特点;3. 对数函数的应用。
三、教学重点与难点:1. 重点:对数函数的定义、性质和图像特点;2. 难点:对数函数在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生探究对数函数的性质;2. 利用数形结合法,绘制对数函数的图像;3. 实例分析法,讲解对数函数在实际问题中的应用。
五、教学过程:1. 引入新课:(1)复习指数函数的图像与性质;(2)提问:指数函数与对数函数有何关系?引出对数函数的概念。
2. 自主学习:(1)让学生阅读教材,理解对数函数的定义;3. 课堂讲解:(1)讲解对数函数的定义与性质;(2)利用数学软件或板书,绘制对数函数的图像;(3)分析对数函数图像的特点。
4. 实例分析:(1)给出实际问题,让学生运用对数函数解决;(2)引导学生分析问题,解答问题。
5. 巩固练习:(1)布置练习题,让学生巩固对数函数的性质;(2)挑选学生上台板书,讲解答案。
6. 课堂小结:(2)强调对数函数在实际问题中的应用。
7. 课后作业:(1)编写对数函数的应用题;(2)让学生完成练习题,巩固所学知识。
六、教学评价:1. 课堂讲解评价:(1)评价学生对对数函数定义与性质的理解程度;(2)评价学生对对数函数图像特点的掌握情况。
2. 实例分析评价:(1)评价学生运用对数函数解决实际问题的能力;(2)评价学生在分析问题、解答问题过程中的思维品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1 第一章
§1-9 对数函数及性质
【课前预习】阅读教材P70-73完成下面填空
1.一般地,函数 叫做对数函数;
2.对数函数的图象和性质
【课初5分钟】课前完成下列练习,课前5分钟回答下列问题
1.已知f(x)=(a 2-1)x 在区间(-∞,+∞)内是减函数,则实数a 的取值范围是
( )
A.|a|<1
B.|a|>1
C.|a|<2
D.1<|a|<2
2.若)2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是( )
A.)1,0(
B.)2,0(
C.)2,1(
D.),2(+∞
3.函数)813
1(log 3≤≤=x x y 的反函数的定义域为( ) A .),0(+∞ B .)81,31( C .)4,1( D .)4,1(-
4.在区间),0(+∞上不是增函数的是 ( )A .
2x y = B.y = C.x
y 2= D.221y x x =++ 强调(笔记):
【课中35分钟】边听边练边落实
5.函数22()log (2)
x f x x =
-的定义域是 . 6.设函数421()log 1
x x f x x x -⎧<=⎨>⎩, 求满足()f x =41的x 的值. 7.求函数)64(log 22+-=x x y 的定义域、值域、单调区间
8.已知函数2
2
2(3)lg 6x f x x -=-, (1)求()f x 的定义域;(2)判断()f x 的奇偶性。
9.已知函数2328()log 1
mx x n f x x ++=+的定义域为R ,值域为[]0,2,求,m n 的值。
强调(笔记):
【课末5分钟】 知识整理、理解记忆要点 1. 2. 3. 4.
【课后15分钟】 自主落实,未懂则问
1
.函数(21)log x y -= ( )
A .()2,11,3⎛⎫+∞ ⎪⎝⎭
B .()1,11,2⎛⎫+∞ ⎪⎝⎭
C .2,3⎛⎫+∞ ⎪⎝⎭
D .1,2⎛⎫+∞ ⎪⎝⎭
2.下列关系式中,成立的是 ( )
A .10log 514log 3
10
3>⎪⎭⎫ ⎝⎛>
B .4log 5110log 3031>⎪⎭⎫ ⎝⎛>
C .0
3135110log 4log ⎪⎭⎫ ⎝⎛>>
D .0
33
1514log 10log ⎪⎭⎫ ⎝⎛>> 3.函数212log (617)y x x =-+的值域是 ( )
A .R
B .[)8,+∞
C .(),3-∞-
D .[)3,+∞
4.若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是
( B ) A .⎪⎭⎫ ⎝⎛43,0 B .⎪⎭⎫⎢⎣⎡43,0 C .⎥⎦⎤⎢⎣⎡43,0 D .⎪⎭
⎫ ⎝⎛+∞-∞,43]0,(
5.求函数y =)23(log 22
1+-x x 的递增区间。
6.已知f (x )=log a 1+x 1-x
(a >0,且a ≠1)、 (1)求f (x )的定义域;
(2)判断f (x )的奇偶性并予以证明;
(3)求使f (x )>0的x 的取值范围、
互助小组长签名:。