因式分解与分式的计算练习题(题型全)

合集下载

因式分解及分式的计算测验题(题型全)

因式分解及分式的计算测验题(题型全)

分式计算练习二周案序 总案序 审核签字一.填 空: 1.x 时,分式42-x x 有意义; 当x时,分式1223+-x x 无意义; 2.当x= 时,分式2152x x --的值为零;当x 时,分式xx --112的值等于零.3.如果ba=2,则2222b a b ab a ++-= 4.分式ab c 32、bc a 3、ac b 25的最简公分母是 ; 5.若分式231-+x x 的值为负数,则x 的取值范围是 .6.已知2009=x 、2010=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .二.选 择: 1.在31x+21y, xy 1 ,a +51 ,—4xy , 2x x , πx 中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3.下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2 B 、3 C 、4 D 、54.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式5.下列各式正确的是( )A 、11++=++b a x b x a B 、22xy x y = C 、()0,≠=a ma na m n D 、a m a n m n --= 6.下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、2222xy y x y x ++D 、()222y x yx +- 7.下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a b a b D 、()()yx a b y b a x =-- 8.下列约分正确的是( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 9.(更易错题)下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c bB 、b a b a b a +=++122C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222 10.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、y x y x y x y x +-=--+-C 、yx yx y x y x -+=--+- D 、y x y x y x y x +--=--+-12.若0≠-=y x xy ,则分式=-xy 11 ( ) A 、xy 1 B 、x y - C 、1 D 、-113. 若x 满足1=xx,则x 应为( )A 、正数 B 、非正数 C 、负数 D 、非负数14.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 61115、(多转单约分求值)已知113x y -=,则55x xy yx xy y+---值为( )A 、72-B 、72C 、27D 、72-三.化简:1.m m -+-3291222. a+2-a -243. 22221106532x yx y y x ÷⋅ 4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x 6.224)2222(x x x x x x -⋅-+-+- 7. 22224421yxy x y x y x y x ++-÷+-- 8.1111-÷⎪⎭⎫ ⎝⎛--x xx 9. m n n n m m m n n m -+-+--210.⎪⎪⎭⎫⎝⎛++÷--ab b a b a b a 22222 11.⎪⎭⎫ ⎝⎛--+÷--13112x x x x 12.(22+--x x x x )24-÷x x 13. 1⎪⎭⎫⎝⎛⋅÷÷a b b a b a 32492314..()2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+; 15.168422+--x x x x ,其中x =5.分式计算练习一1. 2234xy z ·(-28z y )等于( ) A .6xyz B .-23384xy z yz- C .-6xyz D .6x 2yz2. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-∙ ②8b a b a b a 32326)43(-=-÷; ③(;1)()b a b a b a b a +=+∙-⋅+ ④(2232)()()ba b a b a b a =-÷-∙- A.1个 B.2个 C.3个 D.4个3. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--4. (2008黄冈市)计算()ab a bb aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+5. 计算34x x y -+4x y y x +--74yx y-得( )A .-264x y x y +- B .264x yx y+- C .-2 D .2二 计算:(1)2223x y mn ·2254m n xy ÷53xym n . (2)2216168m m m -++÷428m m -+·22m m -+(3)(-2b a )2÷(b a -)·(-34b a )3. (4)21x x --x-1. 三、 先化简,再求值:1、232282x x x x x +-++÷(2x x -·41x x ++).2、22)11(yxy y x y y x -÷-++, 其中x=-45. 其中2-=x ,1=y .3、已知a=25,25-=+b ,4、已知3=a ,2-=b ,求2++b a a b 得值。

因式分解与分式

因式分解与分式

1、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

提公因式法是因式分解的最基本也是最常用的方法。

它的理论依据就是乘法分配律。

多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。

(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。

下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】1. 把下列各式因式分解(1)-+--+++a x a b x a c xa xm m m m 2213 (2)a a b a b a a b b a ()()()-+---32222 分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。

解:-+--=--+++++a x a b xa c x a x a x a x b x c x m m m m m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a n n n n -=--=----222121;,是在因式分解过程中常用的因式变换。

解:a a b a b a a b b a ()()()-+---32222 )243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=2. 利用提公因式法简化计算过程 例:计算1368987521136898745613689872681368987123⨯+⨯+⨯+⨯分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。

解:原式)521456268123(1368987+++⨯==⨯=987136813689873. 在多项式恒等变形中的应用 例:不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x yx y x x y +-++的值。

八年级数学因式分解和分式方程经典试题汇总

八年级数学因式分解和分式方程经典试题汇总

因式分解与分式方程经典试题1.=++-==+xy y x xy y x 6,2,222则已知 。

=-+--==-3223,23b ab b a a ab b a 多项式,已知 。

2.是,则的边长,且是ABC ac c ab b ABC c b a ∆+=+∆22,,22 三角形。

3.),另一个因式为的一个因式是(的多项式,若关于3122--+x ax x x 。

4.的值为的一个因式,则是已知k x kx x 1232+++ 。

(这里我需要指出的是2x 项的系数为两因式x 项系数的乘积,常数项是两因式常数的乘积,因此我们可以设另一因式为)4(+kx ,然后利用对应项系数相等求得)多项式m a a +-322含有因式3-a ,求m 并分解多项式。

5.的可能的值可以是因式,则能用完全平方公式分解若多项式m mx x 42++ 。

6.已知36442++mx x 是完全平方式,那么m 的值是 。

7.若整式142++Q x 是完全平方式,请你写出一个满足条件的单项式Q 是 。

8.的值是,则能分解为若m n x x mx x ))(3(152++-+ 。

9.多项式229)1(b ab k a +-+能用乘法公式因式分解,则k= 。

10.若))(2)(4(24b x x x a x -++=-,则=a ,=b 。

11.若=+++-=+yxy x y xy x y x 35322211,则 。

12.已知=++++=+22222211yxy y xy y x y x ,则 。

13.若=+---=-abb a b ab a b a 7222411,则 。

14.已知=++=+n m m n n m n m ,求711 。

15.已知,,124-=-=+xy y x 求1111+++++y x x y 的值。

16.,则,设060.22=-+>>ab b a b a 的值等于a b b a -+ 。

17.若=+=+-2221013aa a a ,则 。

(因式分解分式)单元测试卷

(因式分解分式)单元测试卷

(因式分解\分式)单元测试卷一、填空题:(每空格2分,共42分)1、 直接写出因式分解的结果:①2332255y x y x -= ②_________________22=+++n n na a a ③_____________________942=-x ④=+-3632a a 2、 若是完全平方式162+-mx x ,那么m=________。

若n x x ++1242是一个完全平方式,则n = 。

3、 如果_________;,2,52222=+=+==+y x xy y x xy y x 则4、 利用因式分解简便计算(必须写出完整计算过程)①____________________________________________75.225.722=-②______________________________________1443824382=+⨯+=5、 多项式.____________96922的公因式是与++-x x x6、 分式22-+x x 等于0,则x . 当x 时,分式354-+x x 有意义. 7、 ab a 21,312的最简公分母是 . 3912+-m m m 与的最简公分母是 . 8、 分式方程331-=-+x k x x 无解,则k=______. 9、分式方程134313=---+x x x 的解是_______. 10、件商品,进价为50元,售价为a 元,利润率为_____________.11、一项工作,甲要5小时才可完成,乙要x 小时完成,若甲乙合作, 3小时可完成_____________12、某班学生到距学校12千米的烈士陵园扫墓,一部分人骑自行车先行,经0.5时后,其余的人乘汽车出发,结果他们同时到达.已知汽车的速度是自行车的3倍,求自行车和汽车的速度.若设自行车的速度为x 千米/时,根据以上条件可列分式方程:_______________________________13、种原料和乙种原料的每千克单价比是2:3,将价值200元的甲种原料有价值100元的乙混合后,单价为9元,求甲的单价。

最新因式分解及分式的计算练习题(题型全)

最新因式分解及分式的计算练习题(题型全)

分式计算练习二周案序 总案序 审核签字一.填 空: 1.x 时,分式42-x x 有意义; 当x 时,分式1223+-x x 无意义; 2.当x= 时,分式2152x x --的值为零;当x 时,分式xx --112的值等于零.3.如果b a=2,则2222b a b ab a ++-=4.分式ab c 32、bc a 3、ac b25的最简公分母是 ; 5.若分式231-+x x 的值为负数,则x 的取值范围是 .6.已知2009=x 、2010=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .二.选 择: 1.在31x+21y, xy 1 ,a +51 ,—4xy , 2xx , πx中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3.下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2 B 、3 C 、4 D 、54.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式5.下列各式正确的是( )A 、11++=++b a x b x a B 、22x y x y = C 、()0,≠=a ma na m n D 、a m a n m n --= 6.下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、2222xy y x y x ++ D 、()222y x y x +- 7.下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a ba b D 、()()y x a b y b a x =--8.下列约分正确的是( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 9.(更易错题)下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c bB 、b a b a b a +=++122C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222 10.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、y x y x y x y x +-=--+-C 、yx y x y x y x -+=--+- D 、y x yx y x y x +--=--+-12.若0≠-=y x xy ,则分式=-xy 11 ( ) A 、xy 1B 、x y -C 、1D 、-113. 若x 满足1=xx,则x 应为( )A 、正数 B 、非正数 C 、负数 D 、非负数14.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 61115、(多转单约分求值)已知113x y -=,则55x xy yx xy y+---值为( )A 、72- B 、72 C 、27 D 、72-三.化简:1.m m -+-3291222. a+2-a -243. 22221106532xyx y y x ÷⋅4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x6.224)2222(x x x x x x -⋅-+-+-7. 22224421y xy x y x y x y x ++-÷+-- 8.1111-÷⎪⎭⎫ ⎝⎛--x x x 9. mn nn m m m n n m -+-+--210.⎪⎪⎭⎫⎝⎛++÷--ab b a b a b a 22222 11.⎪⎭⎫ ⎝⎛--+÷--13112x x x x12.(22+--x x x x )24-÷x x 13. 1⎪⎭⎫⎝⎛⋅÷÷a b b a b a 32492314..()2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+; 15.168422+--x x x x ,其中x =5.分式计算练习一1. 2234xy z ·(-28z y )等于( ) A .6xyz B .-23384xy z yz- C .-6xyz D .6x 2yz 2. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-• ②8b a b a b a 32326)43(-=-÷; ③(;1)()b a ba b a b a +=+•-⋅+ ④(2232)()()b a b a b a b a =-÷-•-A.1个B.2个C.3个D.4个3. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--4. (2008黄冈市)计算()ab a bb aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+5. 计算34x x y -+4x y y x +--74yx y-得( ) A .-264x y x y +- B .264x yx y+- C .-2 D .2二 计算:(1)2223x y mn ·2254m n xy ÷53xym n . (2)2216168m m m -++÷428m m -+·22m m -+(3)(-2b a )2÷(b a -)·(-34b a)3. (4)21x x --x-1.三、 先化简,再求值:1、232282x x x x x +-++÷(2x x -·41x x ++).2、22)11(yxy y x y y x -÷-++, 其中x=-45. 其中2-=x ,1=y .3、已知a=25,25-=+b ,4、已知3=a ,2-=b ,求2++ba ab 得值。

整数因式分解、分式练习题

整数因式分解、分式练习题

整式因式分解题型一:直接提公因式1.因式分解:xy -y = 2.分解因式:2x x += . 3.分解因式:24_________.x x -= 4.分解因式:2a 2-4a= . 5.因式分解:2x 3-x 2=______________. 6.分解因式:ax+ay= .7. 分解因式:24_________.x x -= 8.分解因式:23x x += . 题型二:直接用公式平方差公式:))((22b a b a b a -+=-完全平方公式:222)(b ab a b a ++=+ 222)(b ab a b a +-=- 立方和公式、立方差公式、十字交叉(中考不作要求)1.分解因式:225x -= .2.分解因式:24x -=______.3.因式分解:21a -= ,4.分解因式:x 2-9=______.5.因式分解:229x y -=_______________.6.分解因式:=-142x ____________________.7.分解因式:41242++x x = . 8.分解因式:2168()()x y x y --+-= . 题型三:把代数式作为一个整体(整体思维)1. (2011山东莱芜)分解因式(a+b)3-4(a+b)=______________.2. (2011山东威海)分解因式: =+---16)(8)(2y x y x .3. (2011江苏南通)分解因式:3m (2x -y )2-3mn 2=题型四:分组分解法(分组再套公式)1.分解因式:321a a a +--=_________________ 2、因式分解:bc ac ab a -+-2=_______________. 3.因式分解:22a b ac bc -++ . 4、因式分解:y y x x ---22=___________. 三一分法:(一般三项一组的都会用到完全平方公式)1、 因式分解:19622-+-y xy x =_____________2、因式分解:=-+-xy y x 22522_____ ________ 综合:题型五:先提公因式,再套平方差或者完全平方公式。

因式分解与分式综合复习测试题

因式分解与分式综合复习测试题

因式分解与分式综合检测一 选择题1. 下列变形正确的是 ( )A .22a ab b +=+ B .2a a b ab = C .a ax b ax = D .2a abb b =2、下列各式的分解因式:①()()2210025105105p q q q -=+- ②()()22422m n m n m n --=-+-③()()2632x x x -=+- ④221142x x x ⎛⎫--+=-- ⎪⎝⎭正确的个数有( ) A 、0 B 、1 C 、2 D 、33.下列多项式,不能运用平方差公式分解的是( )A.42+-mB.22y x --C.122-y x D.412-x 4.若4x 2-mxy +9y 2是一个完全平方式,则m 的值为( ) A.6 B.±6 C.12 D.±12 5. 下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+ D .222()x y x y +=+ 6.若()()26323----x x 有意义,则x 的取值范围是( )A .3>xB .2<xC .3≠x 或2≠xD .3≠x 且2≠x 7.下列各式中,能用完全平方公式分解因式的是( ).A.4x 2-2x +1B.4x 2+4x -1C.x 2-xy +y 2 D .x 2-x +128.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 9、已知正方形的面积是()22168x x cm -+(x >4cm),则正方形的周长是( ) A 、()4x cm - B 、()4x cm - C 、()164x cm - D 、()416x cm -10、下列变形正确的是( ) A .x y x y x y x y -+--=-+ B .x y x y x y x y -+-=--+ C .x y x y x y x y -++=--- D .x y x yx y x y-+-=---+ 二、耐心填一填1.分解因式:244x x ---=_____________。

代数式、整式、分式、因式分解精选训练题

代数式、整式、分式、因式分解精选训练题

代数式、整式、分式、因式分解精选训练题一、选择题1.计算12-的值为( ) A .2B .12C .2-D .1-2.计算:11()(6-= ) A .6-B .6C .16-D .163.下列各式从左到右的变形为分解因式的是( ) A .32321836x y x y =B .2(2)(3)6m m m m +-=--C .289(3)(3)8x x x x x +-=+-+D .26(2)(3)m m m m --=+-4.计算211x xx x--÷的结果是( ) A .2x B .2x -C .xD .x -5.如果1(0.1)a -=-,0(2022)b =-,23()2c -=-,那么a 、b 、c 三个数的大小为()A .b c a >>B .c b a >>C .b a c >>D .c a b >>6.单项式232x y-的系数和次数分别是( )A .3-,2B .12-,3C .32-,2D .32-,37.下列计算正确的是( ) A .22(3)9a a +=+ B .222(9)189x y x xy y -=-+ C .22(23)469a a a +=++D .222()2x y x xy y -+=-+8.若关于x 的多项式2(2)(24)x ax x ++-展开合并后不含2x 项,则a 的值是( ) A .0B .12C .2D .2-9.已知多项式2ax bx c ++,其因式分解的结果是(1)(4)x x +-,则abc 的值为()A .12B .12-C .6D .6-10.下列等式中,从左到右的变形是因式分解的是( ) A .2(2)2x x x x +=+ B .22(3)69x x x -=-+ C .211()x x x x+=+D .29(3)(3)x x x -=+-11.下列四个式子中在有理数范围内能因式分解的是( ) A .21x +B .2x x +C .221x x +-D .21x x -+12.下列从左边到右边的变形,属于因式分解的是( ) A .2(2)(3)6x x x x -+=+- B .2(2)24x x -=- C .24414(1)1x x x x -+=-+D .3(1)(1)x x x x x -=-+13.下列各式中.是因式分解的是( ) A .292(9)2m m m m -+=-+ B .3()33m n m n +=+ C .2244(2)m m m ++=+D .2223623(2)m m m m --=-+14.下列分式的变形正确的是( )A .33a ab b +=+B .22a a b b=C .2a ab b b =D .a aa b a b-=-++ 15.如果分式1xx +有意义,那么x 的取值范围( ) A .0x ≠ B .1x ≠ C .1x =- D .1x ≠-16.若分式中22aba W+的a 和b 都扩大3倍,且分式的值不变,则W 可以是( ) A .3B .bC .2bD .3b17.下列分式是最简分式的是( ) A .93b aB .22aba bC .a ba b+- D .2aa ab- 18.计算32(3)x y -的结果是( ) A .329x yB .629x yC .326x yD .626x y -19.若2(3)(5)15x x x mx -+=+-,则m 的值为( )A .8-B .2C .2-D .5-20.在下列计算中,正确的是( ) A .4482a a a ⋅=B .236(2)8a a -=-C .347a a a +=D .623a a a ÷=21.下列计算正确的是( ) A .2221x x -= B .22234a a a -+=-C .3(1)31a a +=+D .2(1)22x x -+=--22.若29x mx ++是完全平方式,则m 的值是( ) A .3±B .6-C .6D .6±23.单项式24m n-的系数和次数是( )A .系数是14,次数是3B .系数是14-,次数是3C .系数是14-,次数是2D .系数是3,次数是14-24.一个多项式与221x x +-的和是32x +,则这个多项式为( ) A .251x x -++B .23x x -++C .251x x ++D .23x x --25.下列多项式中,能进行因式分解的是( ) A .22x y +B .32x y x y +C .x y +D .1y +26.下列多项式,能用平方差公式分解的是( ) A .224x y -+B .2294x y +C .22(2)x y +-D .224x y --27.下列等式中,从左到右的变形是因式分解的是( ) A .2(3)(3)9x x x +-=- B .22(2)44x x x +=++ C .2(3)(5)215x x x x -+=+-D .222469(23)x xy y x y -+=-28.将下列多项式因式分解,结果中不含有3x +因式的是( ) A .29x -B .23x x +C .269x x -+D .269x x ++29.多项式2224333126x y x y x y --的公因式是( )A .223x y zB .22x yC .223x yD .323x y z30.下列式子运算结果为1x +的是( )A .2211x x x x -⋅+ B .11x- C .2211x x x +++D .111x x x +÷- 31.下列选项中最简分式是( )A .23x x x+B .224x C .211x x +- D .211x + 32.若234a b c ==,且0abc ≠,则32a bc a+-的值是( ) A .2B .2-C .3D .3-33.下列式子:33,,,21x y a xx a π++,其中是分式的是( ) A .4个 B .3个 C .2个 D .1个34.下列各式中,运算正确的是( )A .11223x x x +=B .2112111x x x +=+-- C .2642142y x x y y⋅=D .221323y xy x y÷=35.下列运算正确的是( ) A .222a a a +=B .235a a a ⋅=C .236(2)8a a -=D .222()a b a b +=+36.下列计算正确的是( ) A .2222a a a ⋅= B .321a a a-⋅= C .235()a a =D .222()a b a ab b -=++37.下列变形中,从左到右不是因式分解的是( ) A .22(2)x x x x -=- B .2221(1)x x x ++=+ C .24(2)(2)x x x -=+-D .22(1)x x x+=+38.若多项式2x bx c ++因式分解的结果为(2)(3)x x -+,则b c +的值为( ) A .5-B .1-C .5D .639.已知223A x x =--,2234B x x =-+,则A B -等于( ) A .21x x --B .21x x -++C .2357x x --D .27x x -+-40.已知23x y -=,则代数式221744x xy y -++的值为( ) A .434B .134C .3D .4二、填空题41.多项式23223x y xy y --+的次数是 .42.已知2b a=,则2222444a ab b a b ++=- .43.若210y y m ++是一个完全平方式,则m = . 44.单项式232x y -的系数为 . 45.若分式2xx-有意义,则x 的取值范围是 . 46.计算:223()2a b ---= . 47.若分式242a a -+的值为零,则a 的值是 .48.因式分解22mx mx m ++= .49.若2610x x -+=,则242461x x x =++ .50.分解因式:2327a -= . 三、解答题51.计算:2213[4.5(3)2]2x x x x ---+.52.先化简,再求值:23(2)[15(2)]a a b a b -----,其中1a =,5b =-.53.因式分解:(1)2()6()m a b n a b ---;(2)222(91)36a a +-;(3)222(5)8(5)16x x -+-+.54.因式分解: (1)229a b -;(2)22242a ab b -+.55.计算:(1)22()()x x y x y -++;(2)[(2)2()()]y x y x y x y x --+-÷;56.先化简,再求值:228(2)22x xx x x x +÷+---,其中1x =.57.先化简,再求值:23211(1)x x x x---÷,其中20x x -.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式计算练习二周案序 总案序 审核签字一.填 空: 1.x 时,分式42-x x 有意义; 当x时,分式1223+-x x 无意义; 2.当x= 时,分式2152x x --的值为零;当x 时,分式xx --112的值等于零.3.如果b a=2,则2222ba b ab a ++-= 4.分式ab c 32、bc a 3、ac b25的最简公分母是 ; 5.若分式231-+x x 的值为负数,则x 的取值围是 .6.已知2009=x 、2010=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .二.选 择: 1.在31x+21y, xy 1 ,a +51 ,—4xy , 2xx , πx中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3.下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2 B 、3 C 、4 D 、54.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式5.下列各式正确的是( )A 、11++=++b a x b x a B 、22x y x y = C 、()0,≠=a ma na m n D 、a m a n m n --=6.下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x xy +-22 C 、2222xy y x y x ++ D 、()222y x y x +- 7.下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a ba b D 、()()y x a b y b a x =--8.下列约分正确的是( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 9.(更易错题)下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c bB 、b a b a b a +=++122C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222 10.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、y x y x y x y x +-=--+-C 、yx y x y x y x -+=--+- D 、y x yx y x y x +--=--+-12.若0≠-=y x xy ,则分式=-x y 11 ( ) A 、xy1B 、x y -C 、1D 、-113. 若x 满足1=xx,则x 应为( )A 、正数 B 、非正数 C 、负数 D 、非负数14.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 61115、(多转单约分求值)已知113x y -=,则55x xy yx xy y+---值为( )A 、72-B 、72C 、27D 、72-三.化简:1.m m -+-3291222. a+2-a -243. 22221106532xyx y y x ÷⋅4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x6.224)2222(x x x x x x -⋅-+-+-7. 22224421yxy x y x y x y x ++-÷+-- 8.1111-÷⎪⎭⎫ ⎝⎛--x x x 9. mn nn m m m n n m -+-+--210.⎪⎪⎭⎫⎝⎛++÷--ab b a b a b a 22222 11.⎪⎭⎫ ⎝⎛--+÷--13112x x x x12.(22+--x x x x )24-÷x x 13. 1⎪⎭⎫⎝⎛⋅÷÷a b b a b a 32492314..()2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+; 15.168422+--x x x x ,其中x =5.分式计算练习一1. 2234xy z ·(-28z y )等于( ) A .6xyz B .-23384xy z yz- C .-6xyz D .6x 2yz2. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-• ②8b a b a b a 32326)43(-=-÷; ③(;1)()b a ba b a b a +=+•-⋅+ ④(2232)()()b a b a b a b a =-÷-•-A.1个B.2个C.3个D.4个3. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--4. (2008黄冈市)计算()ab a bb aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+5. 计算34x x y -+4x y y x +--74yx y-得( ) A .-264x y x y +- B .264x yx y+- C .-2 D .2二 计算:(1)2223x y mn ·2254m n xy ÷53xym n . (2)2216168m m m -++÷428m m -+·22m m -+(3)(-2b a )2÷(b a -)·(-34b a)3. (4)21x x --x-1.三、 先化简,再求值:1、232282x x x x x +-++÷(2x x -·41x x ++).2、22)11(yxy y x y y x -÷-++, 其中x=-45. 其中2-=x ,1=y .3、已知a=25,25-=+b ,4、已知3=a ,2-=b ,求2++ba ab 得值。

求2211()2ab a b a ab b +⋅++的值.第一章《因式分解》练习题一、选择题1. 下列各式中能用完全平方公式进行因式分解的是( ) (A )21xx ++ (B )221x x +- (C )21x - (D )269x x -+2、下列式子从左到右变形是因式分解的是( ) A .a 2+4a-21=a (a+4)-21 B .a 2+4a-21=(a-3)(a+7) C .(a-3)(a+7)=a 2+4a-21 D .a 2+4a-21=(a+2)2-25 3、下列因式分解正确的是( ) A .x 2-y 2= (x -y ) 2B .a 2+a +1=(a +1) 2C .xy -x =x (y -1)D .2x +y = 2(x +y )4、下列因式分解中正确的个数为 ①()3222xxy x x x y ++=+;②()22442x x x ++=+;③()()22x y x y x y -+=+-。

A .3个B .2个C .1个D .0个 5、将下列多项式分解因式,结果中不含因式1x -的是( ) A .21x -B .(2)(2)x x x -+-C .221x x -+D .221x x ++6、下列四个多项式中,能因式分解的是( )7、 若2242ab a b -=-=,,则a b +的值为( ).(A )2-(B )2 (C )1 (D )28、把代数式2218x -分解因式,结果正确的是( )A .22(9)x -B .22(3)x -C .2(3)(3)x x +-D .2(9)(9)x x +-9. 若代数式x 2+ax 可以分解因式,则常数a 不可以取( ) A .﹣1 B .0 C.1 D .2二、填空题10. ab=3,a-2b=5,则a 2b-2ab 2的值是 . 11. 当a=9时,代数式a 2+2a+1的值为 .12. 81x 2-kxy+49y 2是一个完全平方式,则k 的值为三、计算题 1、因式分解(1)6m -42m 3 (4)-3ab 2-6a 2b -12ab (8)3(a -b ) 2+6(b -a )(5)2.34×13.2+0.66×13.2-26.4 (9)x (x -y ) 2-y (y -x ) 2(11)22419b a - (12)33364xy y x - (10)41681x -,(13)22363ay axy ax ++ (14)1)(2)(2++-+b a b a (15)-x 2-6x -9(16)8 (a 2+1)-16a (17)()96++x x (19)()221+x 24x -2.先分解因式,再计算求值:已知.32,52=-=+b a b a 求22205b a -的值3、已知x 、y 是二元一次方程组⎩⎨⎧=+=-54232y x y x 的解,求代数式x 2-4y 2的值4.证明:若n 为正整数,则22)12()12(--+n n 一定能被8整除。

四.附加题 1、已知x-y=2,求21x 2-xy+21y 22、当x 取何值时,整式222++x x 取得最小值?最小值是多少?八年级数学阶段性测试题一.选 择:1.下列各式中能用完全平方公式进行因式分解的是( ) (A )21xx ++ (B )221x x +- (C )21x - (D )269x x -+2.下列因式分解中正确的个数为 ①()3222x xy x x x y ++=+; ②()22442x x x ++=+;③()()22xy x y x y -+=+-。

A .3个 B .2个 C .1个 D .0个3.将下列多项式分解因式,结果中不含因式1x -的是( ) A .21x -B .(2)(2)x x x -+- C .221x x -+D .221x x ++4. 若221142ab a b -=-=,,则a b +的值为( ).(A )12-(B )12 (C )1 (D )25. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-• ②8b a b ab a 32326)43(-=-÷; ③(;1)()b a b a b a b a +=+•-⋅+ ④(2232)()()ba b a b a b a =-÷-•-A.1个B.2个C.3个D.4个6. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--7.在31x+21y, xy 1 ,a +51 ,—4xy , 2xx , πx中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 8.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍9.若0≠-=y x xy ,则分式=-x y 11 ( ) A 、xy1B 、x y -C 、1D 、-1 10.下列约分正确的是( )A 、326x x x =B 、0=++y x y xC 、x xy x y x 12=++D 、214222=y x xy11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+- B 、y x y x y x y x +-=--+- C 、yx y x y x y x -+=--+- D 、y x yx y x y x +--=--+-12.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 611二.填 空:1. ab=3,a-2b=5,则a 2b-2ab 2的值是 .2.25x 2-kxy+64y 2是一个完全平方式,则k 的值为3.分解因式:8(a-b)2-12(b-a)=4.x 时,分式42-x x有意义;当x 时,分式x x --112的值等于零.5.分式ab c 32、bc a 3、acb25的最简公分母是 ;6.已知2014=x 、2015=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .三、因式分解(1)2m 2-18 (2)-6ab 3-6a 3b+12a 2b 2(3)4a(x -2) 2-2b(2-x )3(4)21×4.32-4.3×3.3+21×3.32、(5)41681x -,(6)1)(2)(2++-+b a b a(7)8 (a 2+1)-16a (8)()221+x 24x -四、计算:1.mm -+-329122 2. a+2-a -24 3.21x x --x-1.4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x6.1111-÷⎪⎭⎫ ⎝⎛--x x x 7.(-2b a )2÷(b a -)·(-34b a )3.8.2223x y mn·2254m n xy ÷53xym n . 9. m n n n m m m n n m -+-+--210 2216168m m m -++÷428m m -+·22m m -+ 11.(22+--x xx x )24-÷x x五、 先化简,再求值:22)11(yxy y x y y x -÷-++, 其中2-=x ,1=y .。

相关文档
最新文档