九年级数学上册第一章特殊平行四边形1.1菱形的性质与判定第3课时菱形的性质与判定的综合应用同步练

合集下载

九年级上册数学全册教案集-62页word资料

九年级上册数学全册教案集-62页word资料

b第一章特殊平行四边形1.1 菱形的性质与判定第1【教学目标】1.掌握菱形的概念、性质。

2.掌握菱形的性质定理“菱形的四条边相等”。

3.掌握菱形的性质定理“菱形的对角线互相垂直,并且每条对角线平分一组对角”。

4.探索菱形的对称性。

【教学重难点】重点:菱形的性质.难点:菱形的轴对称需要用折叠和推理相结合的方法,是本节的教学难点.【教学过程】一、复习引入观察以下由火柴棒摆成的图形,议一议:(2)与图一相比,图二与图三有什么共同的特点?目的是让学生经历菱形的概念,性质的发现过程,并让学生注意以下几点:(1)要使学生明确图二、图三都为平行四边形;(2)引导学生找出图二、图三与图一在边方面的差异.二、探究新知再用多媒体教科书中有关菱形的美丽图案,让学生感受菱形具有工整,匀称,美观等许多优点.菱形也是特殊的平行四边形,所以它除具有一般平行四边形的性质外还具有一些特殊的性质.定理1:菱形的四条边都相等.这个定理要求学生自已完成证明,可以根据菱形的定义推出,课堂上只需让学生说说理由就可以了,不必写证明过程.定理2:菱形的对角线互相垂直,并且每条对角线平分一组对角.课时例:已知:在菱形ABCD中,对角线AC、BD相交于点O.求证:AC⊥BD,AC平分∠BAD和∠BCD,BD平分∠ABC和∠ADC.分析:由菱形的定义得ΔABD是什么三角形?BO与OD有什么关系?根据什么?由此可得AC与BD有何关系?与∠BAD有何关系?根据什么?证明:∵四边形ABCD是菱形,∴AB=AD(菱形的定义),BO=OD(平行四边形的对角线互相平分)∴AC⊥BD,AC平分∠BAD(等腰三角形三线合一的性质).同理,AC平分∠BCD,BD平分∠ABC和∠ADC,∴对角线AC和BD分别平分一组对角.由定理2可以得出菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴.另外,还可以从折叠来说明轴对称性.同时指出以上两个性质只是菱形不同于一般平行四边形的特殊性质.菱形还具有平行四边形的所有共性,比如:菱形是中心对称图形,对称中心为两条对角线的交点.三、范例点击例:在菱形ABCD中,对角线AC、BD相交于点O, ∠BAC=30°,BD=6,求菱形的边长和对角线AC的长.分析:本题是菱形的性质定理2的应用,由∠BAC= 30°,得出ΔABD为等边三角形,就抓住了问题解决的关键.解:∵四边形ABCD是菱形∴AB=AD(菱形的定义),AC平分∠BAD(菱形的每条对角线平分一组对角)又∵∠BAC= 30°,∴∠BAD=60°,∴ΔABD为等边三角形,∴AB=BD=6.又∵OB=OD=3 (平行四边形的对角线互相平分), AC⊥BD (菱形的对角线互相垂直).由勾股定理得AO²+BO²=AB²,∴AO=3√3AC=2AO=6√3.第2【教学目标】1.经历菱形的判定定理的发现过程.2.掌握菱形的判定定理“四边相等的四边形是菱形”.第 1 页3.掌握菱形的判定定理“对角线互相垂直的平行四边形是菱形”.4.通过运用菱形知识解决具体问题,提高分析能力和观察能力,并根据平行四边形、矩形、菱形的从属关系,向学生渗透几何思想.【教学重难点】重点:菱形的判定定理.难点:菱形判定方法的综合应用.课本“做一做”既需要一定的空间想象力,又要有较强的逻辑思维能力. 【教学过程】一、复习引入教师提问:菱形的定义和性质.定义:一组邻边对应相等的平行四边形叫做菱形.性质:除具备一般平行四边形的性质外,还具备四条边相等,对角线互相垂直,并且每条对角线平分一组对角判定一个四边形是不是菱形可根据什么来判定?定义,此外还有两种判定方法,今天我们就要学习菱形的判定.(板书课题)二、创设情境,引入新课学生拿出准备好的长方形纸片,按P6“做一做”中的图的方法对折两次,并沿第3个图中的斜线剪开,展开剪下的部分,猜想这个图形是哪一种四边形?一定是菱形吗?为什么?剪出的图形四条边都相等,根据这个条件首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.四、巩固练习教材P4随堂练习五、课堂小结:本节课应掌握:一个定义(菱形的定义),二条定理(菱形的性质定理),二个结论(菱形是轴对称图形,又是中心对称图形).六、布置作业教材P4~5习题1. 1课时结论:菱形判定定理1:四边都相等的四边形是菱形.(板书)三、探究新知例1:已知:如图,在ABCD中,BD⊥AC,O为垂足.求证:四边形ABCD是菱形.分析:在已知是平行四边形的情况下,要证明是菱形,只要证明一组邻边相等.证明:∵四边形ABCD是平行四边形,∴AO=CO(平行四边形的对角线互相平分).∵BD⊥AC,∴AD=CD,∴四边形ABCD是菱形(菱形的定义).结论:菱形判定定理2:对角线互相垂直的平行四边形是菱形.猜想:对角线互相垂直平分的四边形是不是菱形?启发:通过四个直角三角形的全等得到四条边相等结论:对角线互相垂直平分的四边形是菱形.例2:如图,在矩形ABCD中,对角线AC的垂直平分线与AD,BC分别交于点E,F,求证:四边形AFCE 是菱形.启发:已知对角线互相垂直,还需什么条件就能说明四边形是菱形?证明:∵四边形ABCD是矩形,∴AE//FC(矩形的定义),∴∠1=∠2.又∵∠AOE=∠COF,AO=CO,∴ΔAOE≌ΔCOF,∴EO=FO,∴四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形).又∵EF⊥AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).四、巩固练习1.教材P7、P9随堂练习.2.思考题:如图,ΔABC中,∠A=90°,∠B的平分线交AC于D,AH、DF都垂直于BC,H、F为垂足,求证:四边形AEFD为菱形.五、课堂小结本节课应掌握:1.菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):(1)一组邻边相等的平行四边形.(2)四条边相等的四边形.(3)对角线互相垂直的平行四边形.(4)对角线互相垂直平分的四边形.2.想一想:说明平行四边形、矩形、菱形之间的区 1. 教材P7习题1.22.教材P9〜10习题1. 31.2矩形的性质与判定第1课时【教学目标】1.了解矩形的有关概念,理解并掌握矩形的有关性质.2.经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.【教学重难点】重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.【教学过程】一、联系生活,形象感知【显示投影片】教师活动:将收集来的有关长方形图片播放出来,让学生进行感性认识,然后定义出矩形的概念.矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形)教师活动:介绍完矩形概念后,为了加深理解,也为了继续研究矩形的性质,拿出教具,同学生一起探究下面问题:问题1:改变平行四边形活动框架,将框架夹角α变为90°,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.问题2:既然它具有平行四边形的所有性质,那么矩形是否具有它独特的性质呢?(教师提问)学生活动:由平行四边形对边平行以及刚才α变为90°,可以得到α的补角也是90°从而得到:矩形的四个角都是直角.评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).学生活动:观察发现:矩形的两条对角线相等.口述证明过程是:充分利用(SAS)三角形全等来证明.口述:∵四边形ABCD是矩形,∴∠ABC=∠DCB= 90°,AB=DC.又∵B C为公共边,∴ΔABC≌ΔDCB(SAS),∴AC=BD.教师提问:AO=AC, BO=BD呢?BO是RtΔABC的什么线?由此你可以得到什么结论?学生活动:观察、思考后发现AO=1/2AC,BO=1/2BD,BO是RtΔABC的中线.由此归纳直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.别与联系.第 3 页直角三角形中,30°角所对的边等于斜边的一半(师生回忆).【设计意图】采用观察、操作、交流、演绎的手法来解决重点,突破难点.二、范例点击例1:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2. 5,这个矩形对角线的长. (投影显示)分析:利用矩形对角线相等且平分得到OA=OB,由于∠AOB=60°,因此,可以发现ΔAOB为等边三角形,这样可求出OA=AB=2. 5,∴AC=BD= 2OA=5.【活动方略】教师活动:板书例1,分析例1的思路,教会学生解题分析法,然后板书解题过程(课本P13).学生活动:参与教师讲例,总结几何分析思路. 【问题探究】(投影显示)如图,ΔABC中,∠A=2∠B,CD是ΔABC的高,E 是AB的中点,求证::D E=1/2AC.分析:本题可从E是AB的中点切入,考虑应用三角形中位线定理.应用三角形中位线必需找到另一个中点.分析可知:可以取BC中点F,也可以取AC的中点G为尝试.教师活动:操作投影仪,引导、启发学生的分析思路,教会学生如何书写辅助线.学生活动:分四人小组,合作探索,想出几种不同的证法.证法一:取BC的中点F,连接EF、DF,如图(1).【设计意图】补充这道演练题是训练学生的应用能力,提高一题多解的意识,形成几何思路. 三、随堂练习教材P13随堂练习四、应用拓展已知:如图,从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线相交于点E,求证:AC=CE.∠FAB .现在只要证明∠BAF=∠DAC即可,而实际上,∠BAF=∠BDA=∠DAC,问题迎刃而解.五、课堂小结本节课应掌握:1.矩形定义:有一个角是直角的平行四边形叫做矩形,因此矩形是平行四边形的特例,具有平行四边形所有性质。

1.1+菱形的性质与判定++课件+++2024--2025学年北师大版九年级数学上册

1.1+菱形的性质与判定++课件+++2024--2025学年北师大版九年级数学上册
.∴菱形的周长=4AB= 4 3 5 12 5( cm ).
学习目标
活动探究
当堂检测
课堂总结
问题2:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:
∠AFD=∠CBE.
证明:∵四边形ABCD是菱形, C
∴CB=CD,CA平分∠BCD,∴∠BCE=∠DCE.
B F
EA
又∵CE=CE,∴△BCE≌△DCE(SAS),∴∠CBE=∠CDE. D
∵在菱形ABCD中,AB∥CD,∴∠AFD=∠CDE,
∴∠AFD=∠CBE.
学习目标
活动探究
当堂检测
课堂总结
练一练 如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于( B )
A.20
B.16
C.15
D.14
学习目标
活动探究
当堂检测
课堂总结
1.根据下图填一填:
(1)在菱形ABCD中,∠ABC=120 °,则∠BAC=___3_0_°__.
在等腰△ABD中,OB=OD,
∴AO⊥BD, 即AC⊥BD.
变式:试证明上题中的对角线是否都平分对角. ∵在等腰△ABD中,OB=OD,∴AO平分∠DAB, 同理可得BO平分∠ABC,CO平分∠BCD,DO平分∠ADC.
∴每条对角线平分一组对角.
学习目标
活动探究
当堂检测
课堂总结
归纳总结 菱形是特殊的平行四边形,它除具有平行四边形的所有性质外还有 平行四边形所没有的性质.
问题1:如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,
AC=6cm,求菱形的周长.
解:∵四边形ABCD是菱形,
∴AC⊥BD,AO= 1 AC,BO= 1 BD.

九年级数学上册ppt全套课件

九年级数学上册ppt全套课件
∴ ∠ABC= ∠DCB,AB=CD.
在△ABC和△DCB中, AB=DC
∵ ∠ABC= ∠DCB BC=CB
∴ △ ABC≌△DCB(SAS) ∴ AC=BD.
A
D
B
C
19
矩形的特殊性质 性质1、矩形的四个角都是直角. 性质2、矩形的两条对角线相等.
几何语言: ∵四边形ABCD是矩形
∴∠A=∠B=∠C=∠D=90° AC = BD
2
动手做做
如下图,取两根长度不等的细木棒,让两个木 棒的中点重合并固定在一起,用笔和直尺画出木棒四个 端点的连线。我们知道,这样得到的四边形是一个平行 四边形.若转动其中一个木棒,重复上面的做法,当两 个木棒之间的夹角等于90°时,得到的图形是什么图形 呢?
3
动手做做
如下图,你还可以作一个两条对角线互相垂直的平行 四边形.
16
矩形有哪些性质? 具有平行四边形的所有性质
边:矩形的对边平行且相等
角:矩形对角相等;邻角互补 对角线:矩形对角线互相平分
矩形还有哪些特殊性质?
17
A
D
矩形的特殊性质:
B
C
性质1、矩形的四个角都是直角.
18
性质2: 矩形的对角线相等.
已知:如图,矩形ABCD. 求证:AC=BD.
证明: ∵四边形ABCD是矩形,
AB=4cm,求矩形对角线
B
C 的长.
解:∵四边形ABCD是矩形,
∴AC=BD(矩形的对角线相等).
又∵OA=OC= 1 AC, OB=OD= 1 BD,
22
练习1:
3、如图,在矩形ABCD中,AC与BD相交于点O,
AB=3cm,BC=4cm 则AC= 5 cm,BO= 2.5cm,

北师大版九年级数学第一章特殊平行四边形菱形的性质与判定

北师大版九年级数学第一章特殊平行四边形菱形的性质与判定

菱形【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点进阶:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点进阶:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点进阶:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质例1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE=18°.求∠CEF的度数.例2、如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4举一反三:【变式】如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB的中点,如果EO=2,求四边形ABCD的周长.类型二、菱形的判定例3、如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.举一反三:【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.⑴求四边形AQMP的周长;⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.类型三、菱形的综合应用例4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.【巩固练习】一.选择题1.下列命题中,正确的是( )A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形2. 菱形的周长为高的8倍,则它的一组邻角是()A.30°和150°B.45°和135°C.60°和120°D.80°和100°3.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6cm,8cm B. 3cm,4cm C. 12cm,16cm D. 24cm,32cm4.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°5. 如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.46. 如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()A.3B.2C.3D.27. 将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.8.如图,已知菱形ABCD,其顶点A、B在数轴上对应的数分别为-4和1,则BC=_____.cm. 9.如图,菱形ABCD的边长是2cm,E是AB中点,且DE⊥AB,则菱形ABCD的面积为______210.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是.11. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.12.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.13. 如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过A作AM∥FC交BC于点M,连接EM.求证:(1)四边形AMCF是菱形;(2)△ACB≌△MCE.14.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.15.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点(不与端点重合),且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.。

1 菱形的性质与判定 数学北师大版九年级上册

1 菱形的性质与判定 数学北师大版九年级上册
对角线:平行四边形的对角线互相平分. 对称性:平行四边形是中心对称图形.
—— 探究新知 ——
观察平行四边形图形的变化,你有什么发现?
菱形的定义: 有一组邻边相等的平行四边形 叫做菱形.

下面几幅图片中都含有一些平行四边形, 观察这些平行四边形,你能发现它们有什么样 的共同特征?
你能举出一些生活中菱形的例子吗?与同伴交流。
知AB=5cm,AO=4cm,求 BD 的长.
A
【选自教材P4页 随堂练习】
∵四边形ABCD 是菱形,
∴BD=2BO= 2×3=6(菱形的对角线
D
互相平分).
O
B
∴BD 的长为 6 cm.
C
2.已知:如图,在菱形ABCD 中,∠BAD=2∠B.求证: △ABC是等边三角形. 【选自教材P4页 习题1.1 第1题】
A
C′
D
由题意可知,OC=OC′,CD=C′D,CE=C′E.
又∵AD∥BC,∠EOC=∠DOC′,
∴△COE≌△C′OD,即 EC=C′D.
B
又∵C′D=CD,∴C′D=CD=EC=C′E,
O
E
C
∴四边形 CDC′E 是菱形.
课堂小结
菱形的定义 有一组邻边相等的平行四边形是菱形.
菱形的判定定理 对角线互相垂直的平行四边形是菱形. 四边相等的四边形是菱形.
A
∴BD是线段 AC 的垂直平分线 ∴BA = BC ∴四边形 ABCD 是菱形(菱形定义)
B C
O D
定理 对角线互相垂直的平行四边形是菱形.
∵四边形 ABCD 是平行四边形,
AC⊥BD,
A
∴四边形 ABCD是菱形。
B C

北师大版九年级数学上册 知识点归纳

北师大版九年级数学上册 知识点归纳

九年级数学上册知识点归纳第一章特殊平行四边形1.菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

2.矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。

矩形是特殊的平行四边形。

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。

(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。

3.正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

※两条腰相等的梯形叫做等腰梯形。

※一条腰和底垂直的梯形叫做直角梯形。

※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

※三角形的中位线平行于第三边,并且等于第三边的一半。

※夹在两条平行线间的平行线段相等。

※在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1.认识一元二次方程※只含有一个未知数的整式方程,且都可以化为02=bxax(a、+c+b、c为常数,a≠0)的形式,这样的方程叫一元二次方程......。

※把02=bxax(a、b、c为常数,a≠0)称为一元二次方程的一+c+般形式,a为二次项系数;b为一次项系数;c为常数项。

北师大版九年级上册数学全册教学课件


1 2
BD.
∵AC=6cm,BD=12cm,
∴AO=3cm,BO=6cm.
在Rt△ABO中,由勾股定理得
AB AO2 BO2 32 62 3 5 cm.
∴菱形的周长=4AB=4×3 5 =12 5 (cm).
例2 如图,在菱形ABCD中,CE⊥AB于点E, CF⊥AD于点F,求证:AE=AF.
欣赏视频,前面的图片中出现的图形是平行四边形, 和视频中菱形一致,那么什么是菱形呢?这节课让 我们一起来学习吧.
讲授新课
一 菱形的性质
思考 如果从边的角度,将平行四边形特殊化,内角 大小保持不变仅改变边的长度让它有一组邻边相等, 这个特殊的平行四边形叫什么呢?
平行四边形 邻边相等


归纳总结
定义:有一组邻边相等的平行四边形. 菱形是特殊的平行四边形. 平行四边形不一定是菱形.
D.对角线相等
2.如图,在菱形ABCD中,AC=8,BD=6,则
△ABD的周长等于
(B)
A.18
B.16
C.15
D.14
3.根据下图填一填:
(1)已知菱形ABCD的周长是12cm,那么它的边长
是 __3_c_m__.
(2)在菱形ABCD中,∠ABC=120 °,则∠BAC=
___3_0_°__.
(3)菱形ABCD的两条对角线长分别为6cm和8cm,
1
九年级数学上(BS) 教学课件
第一章 特殊平行四边形
1.1 菱形的性质与判定
第1课时 菱形的性质
导入新课
讲授新课
当堂练习
课堂小结
1.了解菱形的概念及学其习与目平行标四边形的关系.
2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点 )

北师版九年级数学上册课件 第一章 特殊平行四边形 菱形的性质与判定 第3课时 菱形的性质和判定的应用

∴四边形 AECF 的面积为12 AC·EF=12 ×8×6=24
17.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°, 则四边形ABCD的面积为__6__3___.
18.(教材 P10 习题 5 变式)(2020·广州)如图,在△ABD 中,∠ABD=∠ADB. (1)作点 A 关于 BD 的对称点 C; (要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)所作的图中,连接 BC,DC,连接 AC,交 BD 于点 O. ①求证:四边形 ABCD 是菱形;
北师版
第一章 特殊平行四边形
1.1 菱形的性质与判定
第3课时 菱形的性质和判定的应用
1.菱形的两条对角线的长为 a 和 b,且 a,b 满足(a-1)2+ b-4 =0, 那么菱形的面积为__2__.
2.(2020·营口)如图,在菱形 ABCD 中,对角线 AC,BD 交于点 O, 其中 OA=1,OB=2,则菱形 ABCD 的面积为_4__.
7.(2020·遵义)如图,在菱形 ABCD 中,AB=5,AC=6,
过点 D 作 DE⊥BA,交 BA 的延长线于点 E,则线段 DE 的长为(D )
A.152
B.158
C.4 D.254
8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6, 24
OE⊥AD于点E,交BC于点F,则EF的长为____5___.
B.52 C.3 D.4
13.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一 个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( D)
A.15°或30° B.30°或45° C.45°或60° D.30°或60°
14.如图,菱形 ABCD 的周长为 8 cm,高 AE 长为 3 cm, 则对角线 AC 和 BD 的长之比为 __1_∶___3_____ .

北师大版数学九年级上册 菱形的性质与判定 第3课时


回忆:菱形有哪些性质?
2. 如图2所示,在□ABCD中添加一个条件使其成为菱形:
添加方式 1:一组邻边相等;
B
添加方式 2:AC⊥BD.
A
C
D 图2
回忆:菱形有哪些判定定理?
例1 如图3,四边形ABCD是边长为13 cm的菱形,其中 对角线BD长为10 cm.
求:(1)对角线AC的长度;
图3
解:(1)∵四边形ABCD是菱形,
D
图7
3. 已知:如图8,在四边形ABCD中,AD=BC,点E,F,G, H
分别是AB,CD,AC,BD的中点,则四边形EGFH是( B )
A.矩形
B.菱形
C.等腰梯形 D.正方形
图8
4. 如图9,在Rt△ABC中, ∠ACB=90°,∠BAC=60°,BC的
垂直平分线分别交BC和AB于点D,E,点F在DE的延长线上,
1. 如图6所示,菱形ABCD的周长为40 cm,它的一条对角 线BD长为10 cm,则∠ABC= 120 °,AC= 10 3 cm.
B
A
C
D 图6
2. 已知:如图7,四边形ABCD是菱形,对角线AC 和BD相交于
点O,AC=4 cm,BD=8 cm,则这个菱形的面积是 16 cm².
A O B C
图4
答案:(1) 10 cm,(2) 9.6 cm . 思考:求菱形面积的方法有几种? 重大发现:菱形的面积等于其对角线乘积的一半.
做一做
如图5,两张等宽的纸条交叉重叠在一起, 重叠部分ABCD是菱形吗?为什么?
图5
图5
重叠的部分ABCD是菱形. 首先要根据纸条的两边长 互相平行说明四边形ABCD是平行四边形;然后由纸条等 宽说明两条邻边上的高相等,进而利用平行四边形的面 积说明两邻边相等.

北师大版九年级数学上册全册教案

第一章特殊平行四边形1 菱形的性质与判定第1课时菱形的性质【知识与技能】理解菱形的概念,掌握菱形的性质.【过程与方法】经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.【情感态度】培养学生主动探究的习惯、严密的思维意识和审美意识.【教学重点】理解并掌握菱形的性质.【教学难点】形成推理的能力.一、情境导入,初步认识四人为一小组先在组内交流自己收集的有关菱形的图片,实物等,然后进行全班性交流.引入定义:有一组邻边相等的平行四边形叫做菱形.【教学说明】认识菱形,感受菱形的生活价值.二、思考探究,获取新知教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是平行四边形的特例,因此,菱形也具有平行四边形的所有性质.【教学说明】通过教师的教具操作感受菱形的定义.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:1.这是一个什么样的图形呢?2.有几条对称轴?3.对称轴之间有什么位置关系?4.菱形中有哪些相等的线段?【教学说明】充分地利用学具的制作,发现菱形所具有的性质,激发课堂学习的热情.【归纳结论】菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.三、运用新知,深化理解1.见教材P3第1题.2.见教材P3例1 .3.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)A.15B.153 2C.7.5D.153【教学说明】本题考查有一个角是60°的菱形的一条对角线等于菱形的边长.4.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC且交BC的延长线于点E.求证:DE=12 BE.分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由30°所对的直角边等于斜边的一半,即可证得DE=12 BE.证明:方法一:如图,连接BD,∵四边形ABCD是菱形,∠ABC=60°,∴BD⊥AC,∠DBC=30°,∵DE∥AC,∴DE⊥BD,即∠BDE=90°,∴DE=12 BE.方法二:∵四边形ABCD是菱形,∠ABC=60°,∴AD∥BC,AC=AD,∵AC∥DE,∴四边形ACED是菱形,∴DE=CE=AC=AD,又四边形ABCD是菱形,∴AD=AB=BC=CD,∴BC=EC=DE,即C为BE的中点,∴DE=BC=12 BE.【教学说明】此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.5.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2,又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°,∴BE=1.【教学说明】本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.学生自主完成,如有一定难度可相互交流,最后由教师总结.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作补充.1.布置作业:教材“习题1.1”中第1、2 题.2.完成练习册中相应练习.本节课中,重在探索菱形性质的过程,在操作活动和观察分析过程中发展学生的审美意识,进一步体会和理解说理的基本步骤,了解菱形的现实应用.第2课时菱形的判定【知识与技能】1.理解并掌握菱形的定义及两个判定方法;2.会用这些判定方法进行有关的论证和计算.【过程与方法】经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法.【情感态度】培养良好的思维意识以及推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】菱形的两个判定方法.【教学难点】判定方法的证明及运用.一、情境导入,初步认识回顾:(1)菱形的定义:一组邻边相等的平行四边形.(2)菱形的性质:性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角.(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)【教学说明】通过对菱形的性质复习回顾,让学生养成勤复习的习惯.用以温故而知新.二、思考探究,获取新知活动1按下列步骤画出一个平行四边形:(1)画一条线段长AC=6cm;(2)取AC的中点O,再以点O为中点画另一条线段BD=8cm,且使BD⊥AC;(3)顺次连接A、B、C、D四点,得到平行四边形ABCD.猜猜你画的是什么四边形?【归纳结论】菱形的判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.【教学说明】首先教师活动让学生观察,然后让学生自己动手亲自体验活动从而猜想出结论来.已知:在□ABCD中,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,AC ⊥BD,∴□ABCD是菱形.活动2画一画:作一条线段AC,分别以A、C为圆心,以大于AC的一半为半径画弧,两弧分别交于B、D两点,依次连接A、B、C、D.思考:四边形ABCD是什么四边形?你能证明吗?【归纳结论】菱形的判定方法2:四条边相等的四边形是菱形.【教学说明】让学生亲自动手体验活动,猜想出结论来并进行证明.从而加深印象.三、运用新知,深化理解1.见教材P6例2 .2.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG 与FH交点于O,则图中的菱形共有(B)A.4个B.5个C.6个D.7个3.下列说法正确的是(B)A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形4.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.求证:AD=CE;证明:∵MN是AC的垂直平分线.∴OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO,∴AD=CE.5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;证明:∵CE平分∠ACB,EA⊥CA,EF⊥BC,∴AE=FE,∵∠ACE=∠ECF,∴△AEC≌△FEC,∴AC=FC,∵CG=CG,∴△ACG≌△FCG,∴∠CAG =∠CFG =∠B,∴GF∥AE,∵AD⊥BC,EF⊥BC,∴AG∥EF,故四边形AGFE是平行四边形又∵AG=GF(或AE=EF),∴平行四边形AGFE是菱形(一组邻边相等的平行四边形是菱形).【教学说明】让学生先独立完成,然后将不会的问题各小组交流讨论得出结果.让学生从题目中找解题信息,从图形中找解决问题的突破口.四、师生互动、课堂小结1.师生共同回顾判定一个四边形是菱形的方法:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.2”中第2、3题.2.完成练习册中相应练习.本节课让学生动手操作,不仅可以调动学生的积极性,而且通过动手做一做,然后再说一说的过程,巩固了菱形的判定.只有这样,才能使学生在今后的学习中有更严密的思维,使他们的抽象概括能力有更好的提升.第3课时菱形的性质与判定的运用【知识与技能】能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.【过程与方法】经历菱形性质定理及判定定理的应用过程,体会数形结合、转化的思想.【情感态度】培养良好的探究意识以及推理能力,感悟其应用价值;培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】利用菱形性质定理与判定定理解决一些相关问题.【教学难点】菱形性质的探究.一、情境导入,初步认识活动:如图,你能用一张锐角三角形纸片ABC折出一个菱形,使∠A成为菱形的一个内角吗?【教学说明】通过折纸活动激发学生的兴趣,同时对于菱形的相关判定方法也进行了巩固.二、思考探究,获取新知如图,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?拓展:若纸条的宽度是4cm ,∠ABC=60°,你会求菱形的面积吗?你有几种不同的方法?与同学交流.【归纳结论】菱形面积的计算公式:①如图,S 菱形ABCD =AB ·DE ,即菱形的面积等于底乘高;②S 菱形ABCD =12AC ·BD ,即菱形的面积等于两条对角线乘积的一半.【教学说明】对菱形性质的归纳是学生对菱形特征的认识、是知识的一次升华,有助于培养学生的概括能力,突出教学重点.三、运用新知,深化理解如图,在△ABC 中,AB=BC ,D 、E 、F 分别是BC 、AC 、AB 的重点.(1)求证:四边形BDEF 是菱形;(2)若AB=10cm ,求菱形BDEF 的周长.解:(1)证明:∵E 、F 分别是AC 、AB 的中点,∴EF=12BC ,EF ∥CB. 又∵D 、E 分别是BC 、AC 的中点,∴DE=12AB ,DE ∥AB, ∴四边形BDEF 是平行四边形.又∵AB=BC ,∴EF=DE ,∴四边形BDEF 是菱形.(2)∵F 是AB 的中点,∴BF=12AB.又∵AB=10cm,∴BF=5cm.∵四边形BDEF是菱形,∴BD=DE=EF=BF,∴四边形BDEF的周长为4×5=20(cm).【教学说明】菱形的性质与判定的综合应用,一般先证明四边形是菱形,再利用菱形的性质进行求解或证明,要注意两者的区别与联系.四、师生互动、课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.3”中第2、3、4题.2.完成练习册中相应练习.通过复习回顾菱形的性质和判定,唤醒学生的记忆,然后给学生设置好一个个有梯度的问题,调动学生的求知欲,树立勇于战胜自我的信念.2 矩形的性质与判定第1课时矩形的性质【知识与技能】了解矩形的有关概念,理解并掌握矩形的有关性质.【过程与方法】经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.【情感态度】培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.【教学重点】掌握矩形的性质,并学会应用.【教学难点】理解矩形的特殊性.一、情境导入,初步认识将收集来的有关长方形的图片给学生观察,让学生进行感性认识,引入新课——矩形.【教学说明】让学生体会到数学来源于生活,找到数学的价值.二、思考探究,获取新知1.拿一个活动的平行四边形教具,轻轻拉动一个点并观察,它还是一个平行四边形吗?为什么?(演示拉动过程如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?【归纳结论】矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).让学生观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有性质.思考:矩形还具有哪些特殊的性质?为什么?【教学说明】采用观察、操作、交流、演绎的手法来解决重点突破难点.【归纳结论】矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.3.矩形是轴对称图形吗?如果是,它有几条对称轴?4.如图,在矩形ABCD中,AC、BD相交于点O,求AO与BD的数量关系.【归纳结论】直角三角形斜边上的中线等于斜边的一半.【教学说明】引导学生尽可能多地发现结论,养成善于观察的好习惯.三、运用新知,深化理解1.已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知条件,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD = 2OA=2×4=8(cm).2.已知:如图,矩形ABCD,AB长8cm ,对角线比AD长4cm.求AD的长及点A到BD的距离AE的长.分析:因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:(1)设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6. 则AD=6cm.(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE·DB=AD·AB,解得AE =4.8cm.3.已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.【教学说明】给予学生足够的时间,让学生独立思考,小组合作,由不同学生表述自己的不同思路,展示不同的方法.使学生能做一题会一类,熟知矩形中的基本图形.4.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20 cm.解:本题需分两种情况解答.即矩形的一个角的平分线分一边为4cm和3cm,或者矩形的角平分线分一边为3cm和4cm.当矩形的一个角的平分线分一边为4cm和3cm时,矩形的周长为2×(3+4)+2×4=22cm;当矩形的角平分线分一边为3cm和4cm时,矩形的周长为2×(3+4)+2×3=20cm.【教学说明】本题考查的是矩形的基本性质,学生需要注意的是分两种情况作答即可.四、师生互动,课堂小结1.师生共同回顾矩形的性质.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.4”中第2、3题.2.完成练习册中相应练习.本节课以“平行四边形变形为矩形的过程”的演示引入课题,将学生的视线集中在数学图形上,思维集中在数学思考上,更好地突出了观察的对象,使学生更容易把握问题的本质,真实、自然、和谐,体现了数学学习的内在需要,加强了学生对知识之间的理解和把握.第2课时矩形的判定【知识与技能】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【过程与方法】经历探索矩形判定的过程,发展学生实验探索的意识;形成几何分析思路和方法.【情感态度】培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要.【教学重点】理解并掌握矩形的判定方法及其证明,掌握判定的应用.【教学难点】定理的证明方法及运用.一、情境导入,初步认识事例引入:小华想做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?【教学说明】事例引入,激发学生的兴趣.二、思考探究,获取新知动手操作,拿一个活动的平行四边形教具,轻轻拉动一个点.思考:1.随着∠α的变化,两条对角线的长度将发生怎样的变化?2.当两条对角线的长度相等时,平行四边形有什么特征?你能证明吗?【教学说明】让学生动脑思考,动手操作.为下面的学习做准备.【归纳结论】对角线相等的平行四边形是矩形.证明:(见教材P14例题)矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.【归纳结论】有三个角是直角的四边形是矩形.【教学说明】培养学生的归纳总结能力,同时也训练了学生的语言表达能力和分析问题的能力.三、运用新知,深化理解1. 对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.解析:矩形的判定定理有:(1)对角线相等的平行四边形是矩形;(2)有三个角是直角的四边形是矩形.2.下列说法正确的是(D )A.一组对边平行且相等的四边形是矩形B.一组对边平行且有一个角是直角的四边形是矩形C.对角线互相垂直的平行四边形是矩形D.一个角是直角且对角线互相平分的四边形是矩形解析:A、一组对边平行且相等的四边形是平行四边形,故A错误;B、一组对边平行且相等并有一个角是直角的四边形是矩形,故B错误;C、对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”),故C 错误;D、对角线互相平分且相等的四边形是矩形,故D正确.【教学说明】让学生口答第1、2道题,训练学生的语言表达能力.3.如图所示,□ABCD的四个内角的平分线分别相交于E、F、G、H,试说明四边形EFGH是矩形.解:∵∠HAB+∠HBA=90°.∴∠H=90°.同理可求得∠HEF=∠F=∠FGH=90°∴四边形EFGH是矩形.【教学说明】在黑板上展示第3题,有多种证明方法的题目学生口答展示,教师予以总结.既训练了学生的语言表达能力,也训练了学生的书写能力和分析问题的能力.四、师生互动,课堂小结1.师生共同回顾矩形有哪些判定定理?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.5”中第2、3题.2.完成练习册中相应练习.本节课用逻辑推理的方法对以前曾用直观感知、操作说明得到的矩形判定进行的重新研究,让学生充分感受到逻辑推理是研究几何的重要方法.尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高.第3课时矩形的性质与判定的运用【知识与技能】熟练运用矩形的性质和判定定理进行相关的计算和证明.【过程与方法】经历从性质到判定的转化过程,合理、准确地运用已有的知识进行推导、证明,体会数学知识之间的联系和区别.【情感态度】通过严谨的推理,强化学生的规范意识.【教学重点】灵活运用矩形的性质和判定定理进行相关的计算和证明.【教学难点】利用矩形的相关性质构造新的图形,进而对知识进行转化.一、情境导入,初步认识如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE.求AE的长.【教学说明】通过例题感受知识的应用的同时体会知识之间的联系及转化,并通过规范的步骤强调教学推理的严谨性.二、思考探究,获取新知已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN为△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.【思考】在上例中,连接DE,交AC于点F.(1)试判断四边形ABDE的形状,并证明你的结论;(2)线段DF与AB有怎样的关系?请证明你的结论.【教学说明】让学生感受矩形与等腰三角形之间的联系,感受知识转化在解决问题中的作用.三、运用新知,深化理解1.见教材P16~P17例3.2.如图,O是矩形ABCD的对角线的交点,过点O的直线EF分别交AB、CD于点E、F,那么阴影部分的面积是矩形ABCD的面积的(B )3.(一题多解)如图所示,△ABC为等腰三角形,AB=AC,CD⊥AB于D,P为BC上的一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F,则有PE+PF=CD,你能说明为什么吗?解:解法一:能.如图所示,过P点作PH⊥DC,垂足为H.可得四边形PHDE是矩形,∴PE=DH,PH∥BD∴∠HPC=∠B又∵AB=AC∴∠B=∠ACB∴∠HPC=∠FCP.又∵PC=CP,∠PHC=∠CFP=90°∴△PHC≌△CFP∴PF=HC∴DH+HC=PE+PF即:DC=PE+PF.解法二:能.如图,延长EP,过C点作CH⊥EP,垂足为点H,如图所示,可得四边形HEDC是矩形,∴EH=PE+PH=DC,CH∥AB∴∠HCP=∠B.∴△PHC≌△PFC∴PH=PF∴PE+PF=DC.【教学说明】通过应用性的练习,巩固基础知识的同时,感受知识的综合运用在解题过程中的重要性,使所学知识进行深化.四、师生互动,课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.6”中第1、2、3题.2.完成练习册中相应练习.本节课在复习前一节课内容的基础上利用矩形的性质和判定解决具体问题,在例题的选择和设计上,追寻知识向能力的转化,让学生主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,同时训练学生清晰、有条理地表达自己的思考过程,从而培养学生的推理能力和分析问题的能力.3 正方形的性质与判定第1课时正方形的性质【知识与技能】使学生掌握正方形的概念,知道正方形具有矩形和菱形的一切性质,并会用它们进行有关的论证和计算.【过程与方法】学会用正方形的性质解决一些问题,进一步发展学生的推理能力,促进其逐步掌握说理的基本方法.【情感态度】通过分析正方形的概念、性质与矩形、菱形的概念、性质的联系和区别,对学生进行辩证唯物主义教育.【教学重点】正方形的性质.【教学难点】正方形的性质.一、情境导入,初步认识1.在我们的生活中除了平行四边形、矩形、菱形外,还有什么特殊的平行四边形呢?2.展示正方形图片,学生观察它们有什么共同特征?【教学说明】学生回答后,再展示图片,使学生感受到生活中到处存在数学,激发学习热情.【归纳结论】有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.二、思考探究,获取新知1.做一做:用一张长方形的纸片折出一个正方形.2.观察:这个正方形具有哪些性质?【教学说明】让学生在动手操作中对正方形产生感性认识.【归纳结论】正方形的四个角都是直角,四条边相等.正方形的对角线相等且互相垂直平分.3.议一议:平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地说明吗?【教学说明】小组交流,引导学生从角、对角线的角度归纳总结.使学生感受变化过程,更清晰地了解各四边形之间的联系与区别.三、运用新知,深化理解1.见教材P21例1 .2.如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中互相全等的三角形的对数为()A.12B.13C.26D.30解析:根据全等三角形的判定可以确定全等三角形的对数,由于图中全等三角形的对数较多,可以根据斜边长的不同确定对数,可以做到不重不漏.设AB=3,图中所有三角形均为等腰直角三角形,其中,斜边长为1的有5个,它们组成102的有6个,它们组成15对全等三角形;斜边长为2的有2个,它们组成1对全等三角形;共计26对.故选C.3.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为(1,0)和(1,1).(只写一组)解析:首先根据正方形ABCD的点A(0,1),点B(0,0),在坐标系内找出这两点,根据正方形各边相等,从而可以确定C,D的坐标.∵正方形ABCD 的点A(0,1),点B(0,0),∴AD∥x轴,CD∥y轴,这样画出正方形,即可得出C与D的坐标,分别为:C(1,0),D(1,1).4.如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,求∠EAF度数.分析:根据角平分线的判定,可得出△ABF≌△AGF,故有∠BAF=∠GAF,再证明△AGE≌△ADE,有∠GAE=∠DAE,所以可得∠EAF=45°.解:在Rt△ABF与Rt△AGF中,∵AB=AG,AF=AF,∠B=∠G=90°,∴△ABF≌△AGF(HL),∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAG+∠FAG=12(∠DAG+ ∠BAG)=12∠DAB=45°,故∠EAF=45°【教学说明】主要考查了正方形的性质和全等三角形的判定.5.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°.(1)求证:DF+BE=EF;(2)求∠EFC的度数.分析:(1)延长EB至G,使BG=DF,连接AG.利用正方形的性质,证明△AGE≌△AFE,△FAE≌△GAE,得出DF+BE=EF;(2)根据△AGE≌△AFE及角之间的关系从而求得∠EFC的度数;解:(1)延长EB至G,使BG=DF,连接AG,∵四边形ABCD是正方形,∴AB=AD,∠ABG=∠ADF=∠BAD=90°,∵BG=DF,∴△ABG≌△ADF,∴AG=AF,∵∠BAE=30°,∠DAF=15°,∴∠FAE=∠GAE=45°,∵AE=AE,∴△FAE≌△GAE,∴EF=EG=GB+BE=DF+BE;(2)∵△AGE≌△AFE,∴∠AFE=∠AGE=∠DFA=90°-∠DAF=75°,∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,∴∠EFC=30°.【教学说明】学生独立完成以培养学生的独立意识.四、师生互动,课堂小结1.师生共同回顾正方形有哪些性质?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.7”中第2 、3题.2.完成练习册中相应练习.本课虽然是学习正方形的性质,实际上应起到对平行四边形、矩形、菱形性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时 菱形的性质与判定的
综合应用 
知识点 1 菱形的面积
1.已知菱形的两条对角线长分别是12和16,则此菱形的面积是( )
A.192 B.96 C.48 D.40
图1-1-28
2.如图1-1-28,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是( )
A.6 B.12
C.24 D.48
3.如图1-1-29,已知菱形ABCD两条对角线BD与AC的长度之比为3∶4,周长为40 cm,求菱形的面积及高.
 图1-1-29
知识点 2 菱形的性质与判定的应用
4.如图1-1-30,在平行四边形ABCD中,AC平分∠DAB,AB=2,则四边形ABCD的周长为( )
A.4 B.6 C.8 D.12
1-1-301-1-31
5.如图1-1-31,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
A.∠ABC=∠ADC,∠BAD=∠BCD
B.AB=BC
C.AB=CD,AD=BC
D.∠DAB+∠BCD=180°
6.如图1-1-32,将等边三角形ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC;②BD,AC互相平分;③四边形ACED是菱形;④BD⊥DE.
其中正确的个数是( )
A.1 B.2 C.3 D.4
1-1-31-1-33
7.如图1-1-33,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.
8.如图1-1-34所示,在菱形ABCD中,AE⊥BC,BE=EC,AE=2,则AB=________.
1-1-31-1-35
9.如图1-1-35,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,且AD交EF于点O,则∠AOF=________°.
10.如图1-1-36,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=6,∠BEF=120°,求四边形BCFE的周长.
图1-1-36
 图1-1-37
11.如图1-1-37,四边形ABCD 的四边相等,且面积为120 cm 2,对角线AC =24 cm ,则四边形ABCD 的周长为( )
A .52 cm
B .40 cm
C .39 cm
D .26 cm
12.如图1-1-38,在给定的一张平行四边形纸片ABCD 上作一个菱形,甲、乙两人的作法如下:
图1-1-38
甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.
乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,则四边形ABEF 是菱形.
根据两人的作法可判断( )
A .甲正确,乙错误
B .甲错误,乙正确
C .甲、乙均正确
D .甲、乙均错误
图1-1-39
13.如图1-1-39,菱形ABCD 的边长为8 cm ,∠A =60°,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形BEDF 的面积为________ cm 2.
14.如图1-1-40,在菱形ABCD 中,P 是AB 上的一个动点(不与点A ,B 重合),连接DP 交对角线AC 于点E ,连接BE .
(1)求证:∠APD =∠CBE ;
(2)试问P 点运动到什么位置时,△ADP 的面积等于菱形ABCD 面积的,为什么?
1
4
图1-1-40
15.2017·贺州如图1-1-41,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为O.
(1)求证:四边形ABCD是菱形;
5
(2)若CD=3,BD=2 ,求四边形ABCD的面积.
图1-1-41
16.教材“做一做”变式题明明将两张长为8 cm,宽为2 cm的长方形纸条交叉叠放,如图1-1-42①所示,他发现重叠部分可能是一个菱形.
(1)请你帮助明明证明四边形ABCD是菱形;
(2)明明又发现:如图②所示,当菱形的一条对角线与长方形纸条的一条对角线重合时,菱形ABCD的周长最大,求此时菱形ABCD的周长.
图1-1-42。

相关文档
最新文档