2014抚顺中考数学试题(解析版)

合集下载

XXXX辽宁省抚顺市中考数学试题及参考答案(含解析word版)_0

XXXX辽宁省抚顺市中考数学试题及参考答案(含解析word版)_0

XXXX辽宁省抚顺市中考数学试题及参考答案(含解析word版) 正确的()8422236236222a . a \a = ab。

(﹣2a) = ﹣8a特区?a = a d(a-3)= a-925。

我校四名跳远运动员前10次跳远测试的平均成绩是一样的,方差s如表所示。

如果有一名跳远成绩最稳定的运动员被选中参加抚顺市运动会,被选中的参赛选手是()参赛选手甲、乙、丙、丙、丁、丁。

为了实践“绿色生活”的理念,甲、乙双方每天都要骑自行车。

甲以匀速骑行30公里,乙以匀速骑行25公里。

众所周知,a的时速比b高2公里,假设a的时速是x公里。

根据标题中列出的等式,正确的等式是()a.3 025?x?2x B.3025?xx?2摄氏度3025?xx?2 D.3025?x?2x7..如图所示,直线l1和l2分别穿过矩形ABCD的顶点A和D,使得L1 ∪l2、l2和边BC在点P相交。

如果∪1 = 38,则ABCD是()A.162B.152C.142 8。

如果主函数y=kx+b的图像如图所示。

则()d . 1281a . k 0,b > 0 9。

下列事件之一是()a .任意绘制一个规则的五边形。

它是一个中心对称图c.k 0d.k > 0,b b。

3是有意义的,那么实数x > 3 c a,b都是实数。

如果a=38,b=4,则a > bd.5数据分别为:6,6,3,2,1,则这组数据的中位数为310。

如图所示,菱形ABCD的边长为2,a .b .c .d .2 .填空(这个大问题有8个条目,每个条目有3分。

共24分)211。

因式分解:a b-a = 0 .212。

假设x上的等式x+2x-m = 0有实数解,则m的取值范围为. 13。

如图所示,用平行的反面切两张纸。

随机重叠,重叠部分形成四边形ABCD,当线段AD=3时,线段BC的长度为。

14。

众所周知,A(x1,y1),B(x2,y2)是反比函数Y??3图像上的两点,以及x1 > x2 > 0,y1 y2x(填充”>“或” 15。

辽宁省大连市2014年中考数学真题试题(解析版)

辽宁省大连市2014年中考数学真题试题(解析版)

辽宁省大连市2014年中考数学真题试题(解析版)一、选择题(共8小题,每小题3分,共24分)1.3的相反数是()A. 3 B.-3 C.13D.132.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()【考点】简单组合体的三视图.3.《2013年大连市海洋环境状况公报》显示,2013年大连市管辖海域总面积为29000平方公里,29000用科学记数法表示为()A. 2.9×103 B.2.9×104 C.29×103 D. 0.29×105【考点】科学记数法—表示较大的数.4.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)【考点】坐标与图形变化-平移.5.下列计算正确的是()A. a+a2=a3 B.(3a)2=6a2 C.a6÷a2=a3 D.a2•a3=a5【考点】1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.6.不等式组1324xx x+-⎧⎨⎩>>的解集是()A. x>-2 B.x<-2 C.x>3 D. x<3【考点】解一元一次不等式组.7.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红的概率为()A.16B.13C.12D.56【考点】列表法与树状图法.8.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A. 12πcm2 B.15πcm2 C.20πcm2 D.30πcm2【考点】圆锥的计算.二、填空题(共8小题,每小题3分,共24分)9.分解因式:x2-4=10.函数y=(x-1)2+3的最小值为【答案】3.【解析】【考点】1.因式分解-运用公式法;2.代数式求值.12.如图,△ABC中,D、E分别是AB、AC的中点,若BC=4cm,则DE= cm.【考点】三角形中位线定理.13.如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO= .【答案】35°.【解析】【考点】菱形的性质.14.如图,从一般船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离约为m(精确到1m).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)【答案】59.【解析】试题分析:根据灯塔顶部B的仰角为35°,BC=41m,可得tan∠BAC=BCAC,代入数据即可求出观测点A到灯塔BC的距离AC的长度.试题解析:在Rt△ABC中,∵∠BAC=35°,BC=41m,∴tan∠BAC=BC AC,∴AC=4159tan350.7BC=≈︒(m).【考点】解直角三角形的应用-仰角俯角问题.15.如表是某校女子排球队队员的年龄分布:3则该校女子排球队队员的平均年龄为 岁.【考点】加权平均数.16.点A (x1,y 1)、B (x 2,y 2)分别在双曲线y=1x的两支上,若y 1+y 2>0,则x 1+x 2的范围是 .∵y 1+y 2>0,y 1y 2<0, ∴-2112y y y y >0,即x 1+x 2>0.【考点】反比例函数图象上点的坐标特征.三、解答题(本题共4小题,17.18.19各9分,20题12分,共39分) ((13)-1.18.解方程:31122xx x=+++.【考点】解分式方程.19.如图:点A、B、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF.【答案】证明见解析.【解析】试题分析:根据两直线平行,同位角相等可得∠A=∠FBD,∠D=∠ACE,再求出AC=BD,然后利用“角边角”证明△ACE和△BDF全等,根据全等三角形对应边相等证明即可.【考点】全等三角形的判定与性质.20.某地为了解气温变化情况,对某月中午12时的气温(单位:℃)进行了统计.如表是根据有关数据制作的统计图表的一部分.根据以上信息解答下列问题:(1)这个月中午12时的气温在8℃至12℃(不含12℃)的天数为天,占这个月总天数的百分比为%,这个月共有天;(2)统计表中的a= ,这个月中行12时的气温在范围内的天数最多;(3)求这个月中午12时的气温不低于16℃的天数占该月总天数的百分比.【答案】(1)6,20,30;(2)3,12≤x<16;(3)40%.【解析】【考点】1.频数(率)分布表;2.扇形统计图.四、解答题(共3小题,其中21.22各9分,23题10分,共28分)21.某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?答:2013年到2015年这种产品产量的年增长率10%.(2)2014年这种产品的产量为:100(1+0.1)=110(万件).答:2014年这种产品的产量应达到110万件.【考点】一元二次方程的应用.22.小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a= ,b= ;(2)求小明的爸爸下山所用的时间.【答案】(1)a=8,b=280;(2) 14分.【解析】【考点】一次函数的应用.23.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD= °,理由是;(2)⊙O的半径为3,AC=4,求CD的长.【答案】(1)90;圆的切线垂直于经过切点的半径;(3). 【解析】∵BD∥AC,∴∠CBD=∠OCD=90°,∴在直角△ABC中,==∠A+∠ABC=90°,∵OC=OB,∴∠BCO=∠ABC,∴∠A+∠BCO=90°,又∵∠OCD=90°,即∠BCO+∠BCD=90°,∴∠BCD=∠A,又∵∠CBD=∠OCD,∴△ABC∽△CDB,∴CD BC AB AC=,∴6CD =, 解得:CD=.【考点】切线的性质.五、解答题(共3题,其中24题11分,25.26各12分,共35分)24.如图,矩形纸片ABCD 中,AB=6,BC=8.折叠纸片使点B 落在AD 上,落点为B ′.点B ′从点A 开始沿AD 移动,折痕所在直线l 的位置也随之改变,当直线l 经过点A 时,点B ′停止移动,连接BB ′.设直线l 与AB 相交于点E ,与CD 所在直线相交于点F ,点B ′的移动距离为x ,点F 与点C 的距离为y .(1)求证:∠BEF=∠AB ′B ;(2)求y 与x 的函数关系式,并直接写出x 的取值范围.【答案】(1)证明见解析;(2)y=220886143(123143(123x x x x x x ≤≤⎧-+⎪⎪⎨⎪-+-⎪⎩<﹣﹣). 【解析】∴在等腰△BEB ′中,EF 是角平分线,∴EF ⊥BB ′,∠BOE=90°, ∴∠ABB ′+∠BEF=90°,∵∠ABB ′+∠AB ′B=90°,∴∠BEF=∠AB ′B ;∵由(1)知∠BEF=∠AB ′B , ∴26836612x x y =---,化简,得y=112x 2-x+3,(0<x≤8) ②当点F 在点C 下方时,如图2所示.设直线EF 与BC 交于点K设∠ABB ′=∠BKE=∠CKF=θ,则tan θ=AB AB '=6x . BK=tan BE θ,CK=BC-BK=8-tan BE θ. ∴CF=CK•tan θ=(8-tan BE θ)•tan θ=8tan θ-BE=x-BE .【考点】1.翻折变换(折叠问题);2.矩形的性质.25.如图1,△ABC 中,AB=AC ,点D 在BA 的延长线上,点E 在BC 上,DE=DC ,点F 是DE 与AC 的交点,且DF =FE .(1)图1中是否存在与∠BDE 相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证:BE=EC ;(3)若将“点D 在BA 的延长线上,点E 在BC 上”和“点F 是DE 与AC 的交点,且DF=FE”分别改为“点D 在AB 上,点E 在CB 的延长线上”和“点F 是ED 的延长线与AC 的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a 时,求BE 的长(用含k 、a 的式子表示).【答案】(1)存在,证明见解析;(2)证明见解析;(3)2cos 1k kα-. 【解析】∴∠BDE=∠DEC-∠DBC=∠DCE-∠ACB=∠DCA .(2)过点E 作EG ∥AC ,交AB 于点G ,如图1,则有∠DAC=∠DGE .在△DCA 和△EDG 中,DCA GDE DAC DGE DC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCA ≌△EDG (AAS ).∴DA=EG ,CA=DG .∴DG=AB .∴DA=BG .∵AF ∥EG ,DF=EF ,∴DA=AG .∴AG=BG .∵EG ∥AC ,DCA GDE DAC DGE DC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCA ≌△EDG (AAS ).∴DA=EG ,CA=DG∴DG=AB=1.∵AF ∥EG ,∴△ADF ∽△G DE . ∴AD DF DG DE=. ∵DF=kFE ,∴DE=EF-DF=(1-k )EF . ∴1(1)AD kEF k EF=-. ∴AD=1k k-. ∴GE=AD=1k k -. 过点A 作AH ⊥BC ,垂足为H ,如图2,∵AB=AC ,AH ⊥BC ,∴BH=CH .【考点】相似形综合题.26.如图,抛物线y=a (x-m )2+2m-2(其中m >1)与其对称轴l 相交于点P ,与y 轴相交于点A (0,m-1).连接并延长PA 、PO ,与x 轴、抛物线分别相交于点B 、C ,连接BC .点C 关于直线l 的对称点为C ′,连接PC ′,即有PC ′=PC .将△PBC 绕点P 逆时针旋转,使点C 与点C ′重合,得到△PB ′C ′.(1)该抛物线的解析式为 (用含m 的式子表示);(2)求证:BC ∥y 轴;(3)若点B ′恰好落在线段BC ′上,求此时m 的值.【答案】(1) y=21m m(x-m )2+2m-2.(2)证明见解析;(3). 【解析】试题分析:(1)只需将A 点坐标(0,m-1)代入y=a (x-m )2+2m-2,即可求出a 值,从而得到抛物线的解析式.(2)证明:如图1,设直线PA的解析式为y=kx+b,∵点P(m,2m-2),点A(0,m-1).∴22 01mk b mb m+=-⎧⎨+=-⎩.∴直线OP 的解析式是y=22m m-x . 联立22221()22m y x m m y x m m m -⎧=⎪⎪⎨-⎪=-+-⎪⎩解得:22x m y m =⎧⎨=-⎩或22x m y m =-⎧⎨=-⎩. ∵点C 在第三象限,且m >1,∴点C 的横坐标是-m .∴BC ∥y 轴.(3)解:若点B ′恰好落在线段BC ′上,设对称轴l 与x 轴的交点为D ,连接CC ′,如图2,则有∠PB'C'+∠PB'B=180°.∵△PB′C′是由△PBC绕点P逆时针旋转所得,∴∠PBC=∠PB'C',PB=PB′,∠BPB′=∠CPC′.∴∠PBC+∠PB'B=180°.∵BC∥AO,∴∠ABC+∠BAO=180°.∴∠PB'B=∠BAO.∵PB=PB′,PC=PC′,∴∠PB′B=∠PBB′=1802BPB'︒-∠,∴∠PCC′=∠PC′C=1802CPC'︒-∠.。

2014年辽宁抚州市中考数学试题及答案(word解析版2)

2014年辽宁抚州市中考数学试题及答案(word解析版2)

江西省抚州市2014年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项D.D4.(3分)(2014•抚州)抚州名人雕塑园是国家4A级旅游景区,占地面积约560000m2,将5.(3分)(2014•抚州)某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()解:从几何体的正面看可得6.(3分)(2014•抚州)已知a、b满足方程组,则3a+b的值为(),7.(3分)(2014•抚州)为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这8.(3分)(2014•抚州)一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和杯子的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是()二、填空题(本大题共6小题,每小题3分,共18分.把正确的答案填写在答题卷相应位置的横线上.)9.(3分)(2014•抚州)计算:﹣=2.﹣=3=2.210.(3分)(2014•抚州)因式分解:a3﹣4a=a(a+2)(a﹣2).11.(3分)(2014•抚州)如图,a∥b,∠1+∠2=75°,则∠3+∠4=105°.12.(3分)(2014•抚州)关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k 可取的最大整数为6.<,13.(3分)(2014•抚州)如图,△ABC内接于⊙O,∠OAB=20°,则∠C的度数为70°.∠14.(3分)(2014•抚州)如图,两块完全相同的含30°角的直角三角板ABC和A′B′C′重合在一起,将三角板A′B′C′绕其直角顶点C′按逆时针方向旋转角α(0<α≤90°),有以下四个结论:①当α=30°时,A′C与AB的交点恰好为AB中点;②当α=60°时,A′B′恰好经过B;③在旋转过程中,存在某一时刻,使得AA′=BB′;④在旋转过程中,始终存在AA′⊥BB′,其中结论正确的序号是①②④.(多填或填错得0分,少填酌情给分)==BB(﹣三、(本大题共2小题,每小题5分,共10分)15.(5分)(2014•抚州)如图,△ABC与△DEF关于直线l对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l.16.(5分)(2014•抚州)先化简:(x﹣)÷,再任选一个你喜欢的数x代入求值.•==x四、(本大题共2小题,每小题7分,共14分)17.(7分)(2014•抚州)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为;(2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.个项目中任选一个,恰好是田赛项目的概率为:;故答案为:;=.18.(7分)(2014•抚州)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.得到对应的自变量的|k|+×|6|=8y=|k|+×|6|=8y=(五、(本大题共2小题,每小题8分,共16分)19.(8分)(2014•抚州)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.20.(8分)(2014•抚州)某校举行“汉字听写”比赛,每位学生听写汉字39个.比赛结束后1统计图的一部分.(1)本次共随机抽查了100名学生,并补全图2条形统计图;(2)若把每组听写正确的个数用这组数据的组中值代替,刚被抽查学生听写正确的个数的平均数是多少?(3)该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.组被查出的学生所占的百分比为:组被查出的学生所占的百分比为:×100%=25%六、(本大题共2小题,每小题9分,共18分)21.(9分)(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形变成均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)CEH==10cmAD=3×20≈103.9DEI==20×cm≈23.6cm22.(9分)(2014•抚州)如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于A、B两点,连接AP并延长分别交⊙P、x轴于点D、点E,连接DC并延长交y轴于点F.若点F的坐标为(0,1),点D的坐标为(6,﹣1).(1)求证:DC=FC;(2)判断⊙P与x轴的位置关系,并说明理由;(3)求直线AD的解析式.中,.则,,y=x七、(本大题共2小题,每小题10分,共20分)23.(10分)(2014•抚州)如图,抛物线y=ax2+2ax(a<0)位于x轴上方的图象记为F1,它与x轴交于P1、O两点,图象F2与F1关于原点O对称,F2与x轴的另一个交点为P2,将F1与F2同时沿x轴向右平移P1P2的长度即可得到F3与F4;再将F3与F4同时沿x轴向右平移P12P的长度即可得到F5与F6;…;按这样的方式一直平移下去即可得到一系列图象F1,F2,…,Fn.我们把这组图象称为“波浪抛物线”.(1)当a=﹣1时,①求图象F1的顶点坐标;②点H(2014,﹣3)不在(填“在”或“不在”)该“波浪抛物线”上;若图象Fn的顶点Tn的横坐标为201,则图象Fn对应的解析式为y=(x﹣201)2﹣1,其自变量x的取值范围为200≤x≤202.(2)设图象Fn、Fn+1的顶点分别为Tn、Tn+1(m为正整数),x轴上一点Q的坐标为(12,0).试探究:当a为何值时,以O、Tn、Tn+1、Q四点为顶点的四边形为矩形?并直接写出此时m的值.a=±﹣24.(10分)(2014•抚州)【试题背景】已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”.【探究1】(1)如图1,正方形ABCD为“格线四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F,求正方形ABCD的边长.【探究2】(2)矩形ABCD为“格线四边形”,其长:宽=2:1,则矩形ABCD的宽为或.(直接写出结果即可)【探究3】如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l、k于点G、点M.求证:EC=DF.【拓展】(4)如图3,l∥k,等边△ABC的顶点A、B分别落在直线l、k上,AB⊥k于点B,且AB=4,∠ACD=90°,直线CD分别交直线l、k于点G、点M、点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.==,即正方形的边长是BC AE=BF==;;故答案为:或。

2014-2015年辽宁省抚顺市初三上学期期末数学试卷及参考答案

2014-2015年辽宁省抚顺市初三上学期期末数学试卷及参考答案

2014-2015学年辽宁省抚顺市初三上学期期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列方程中,是一元二次方程的是()A.x2+2x+y=1B.x2+﹣1=0C.x2=0D.(x+1)(x+3)=x2﹣12.(3分)下列汽车标志中,既是轴对称又是中心对称图形的是()A.B.C.D.3.(3分)下列说法中正确的是()A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于24.(3分)如图⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75°B.30°C.45°D.60°5.(3分)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2B.p1>p2C.p1=p2D.不能确定6.(3分)在同圆中,下列四个命题:①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦也相等;③两条弦相等,所对的劣弧也相等;④等弧所对的圆心角相等.其中真命题有()A.4个B.3个C.2个D.1个7.(3分)抛物线y=﹣2(x﹣1)2﹣3与y轴的交点纵坐标为()A.﹣3B.﹣4C.﹣5D.﹣18.(3分)用配方法解关于x的方程x2+px+q=0,方程可变形为()A.(x+)2=B.(x+)2=C.(x﹣)2=D.(x﹣)2=9.(3分)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF,将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则α=()A.60°B.90°C.120°D.45°10.(3分)已知二次函数y=ax2+bx+c的图象如图所示,其对称轴为直线x=﹣1,给出下列结论:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)4a﹣2b+c<0.则正确的结论有()A.2个B.3个C.4个D.5个二、填空题(共8小题,每小题3分,满分24分)11.(3分)方程x2=x的根是.12.(3分)众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是.13.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,则可列方程.14.(3分)如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是.15.(3分)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是.16.(3分)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第象限.17.(3分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是m.18.(3分)观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是.三、解答题(共2小题,满分22分)19.(10分)解方程:(1)x2﹣6x﹣6=0(2)2x2﹣7x+6=0.20.(12分)△ABC在平面直角坐标系中的位置如图所示(A、B、C三点在格点上),把△ABC绕原点O顺时针旋转90°,A、B、C旋转后的对应点分别是A1、B1、C1(1)画出旋转后的△A1B1C1,并直接写出A1、B1、C1的坐标;(2)在旋转过程中,求点A到点A1所经过的路径的长.四、解答题(本题共2小题,每小题12分,共24分)21.(12分)在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.22.(12分)我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)五、(本题12分)23.(12分)如图,AB为⊙O的直径,BC为⊙O的切线,连接AC交⊙O于D点,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)若∠A=60°,AD=2,求图中阴影部分的面积.六、(本题12分)24.(12分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.七、(本题12分)25.(12分)如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.八、(本题14分)26.(14分)如图,在直角坐标系中,矩形ABCD的边AD在y轴正半轴上,点A、C的坐标分别为(0,1)、(2,4).点P从点A出发,沿A⇒B⇒C以每秒1个单位的速度运动,到点C停止;点Q在x轴上,横坐标为点P的横、纵坐标之和.抛物线经过A、C两点.过点P作x轴的垂线,垂足为M,交抛物线于点R.设点P的运动时间为t(秒),△PQR的面积为S(平方单位).(1)求抛物线对应的函数关系式;(2)分别求t=1和t=4时,点Q的坐标;(3)当0<t≤5时,求S与t之间的函数关系式,并直接写出S的最大值.参考公式:抛物线y=ax2+bx+c的顶点坐标为,.2014-2015学年辽宁省抚顺市初三上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列方程中,是一元二次方程的是()A.x2+2x+y=1B.x2+﹣1=0C.x2=0D.(x+1)(x+3)=x2﹣1【解答】解:A:含有两个未知数,不是一元二次方程;B:含有分母,是分式方程,不是整式方程,所以不是一元二次方程;C:符合一元二次方程的定义,是一元二次方程;D:化简后不含二次项,不是一元二次方程;故选:C.2.(3分)下列汽车标志中,既是轴对称又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、既不是轴对称图形,也不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.3.(3分)下列说法中正确的是()A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于2【解答】解:A、用频率估计概率,不确定事件的概率是确定的,故A错误;B、抛掷硬币,正面朝上的概率等于反面朝上的概率,故B正确;C、不可能发生事件的概率是0,故C错误;D、抛掷一枚均匀的骰子两次,朝上一面的点数之和可能等于2,故D错误,故选:B.4.(3分)如图⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75°B.30°C.45°D.60°【解答】解:连接OC,∵OA=OC=OB,∴∠ACO=∠CAO=15°,∠BCO=∠CBO=45°,∴∠ACB=∠BCO﹣∠ACO=30°,∴∠AOB=2∠ACB=60°.故选:D.5.(3分)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2B.p1>p2C.p1=p2D.不能确定【解答】解:大于2小于5的数有2个数,∴p1==;投掷一次正面朝上的概率为,两次正面朝上的概率为p2=×=,∵>,∴p1>p2.故选:B.6.(3分)在同圆中,下列四个命题:①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦也相等;③两条弦相等,所对的劣弧也相等;④等弧所对的圆心角相等.其中真命题有()A.4个B.3个C.2个D.1个【解答】解:圆心角是顶点在圆心的角,所以①正确;在同圆中,两个圆心角相等,它们所对的弦也相等,所以②正确;在同圆中,两条弦相等,所对的劣弧也相等,所以③正确;等弧所对的圆心角相等,所以④正确.故选:A.7.(3分)抛物线y=﹣2(x﹣1)2﹣3与y轴的交点纵坐标为()A.﹣3B.﹣4C.﹣5D.﹣1【解答】解:当x=0时,y=﹣2﹣3=﹣5,所以,抛物线与y轴的交点纵坐标为﹣5.故选:C.8.(3分)用配方法解关于x的方程x2+px+q=0,方程可变形为()A.(x+)2=B.(x+)2=C.(x﹣)2=D.(x﹣)2=【解答】解:x2+px+q=0,x2+px=﹣q,x2+px+()2=﹣q+()2,(x+)2=,故选:A.9.(3分)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF,将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则α=()A.60°B.90°C.120°D.45°【解答】解:连结AC和BD,它们相交于点O,如图,∵四边形ABCD为正方形,∴AB=AC,∠AOB=90°,∵△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α,∴△ABC中点A与△BCF中的点B是对应点,∴α=∠AOB=90°.故选:B.10.(3分)已知二次函数y=ax2+bx+c的图象如图所示,其对称轴为直线x=﹣1,给出下列结论:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)4a﹣2b+c<0.则正确的结论有()A.2个B.3个C.4个D.5个【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,即b2>4ac,所以(1)正确;∵抛物线开口向上,∴a>0,∵抛物线与y轴交于(0,c),∴c<0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a>0,∴abc<0,所以(2)错误;∵b=2a,即2a﹣b=0,所以(3)错误;∵x=1时,y>0,∴a+b+c>0,所以(4)正确;∵x=﹣2时,y<0,∴4a﹣2b+c<0,所以(5)正确.故选:B.二、填空题(共8小题,每小题3分,满分24分)11.(3分)方程x2=x的根是x1=0,x2=.【解答】解:方程整理得:x(x﹣)=0,可得x=0或x﹣=0,解得:x1=0,x2=.故答案为:x1=0,x2=12.(3分)众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是.【解答】解:∵某人的手机号码位于中间的数字共有10种等可能的结果,数字为5的只有1种情况,∴某人的手机号码位于中间的数字为5的概率是:.故答案为:.13.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,则可列方程(80+2x)(50+2x)=5400.【解答】解:∵挂图的长为80+2x,宽为50+2x,∴可列方程为(80+2x)(50+2x)=5400.故答案为(80+2x)(50+2x)=5400.14.(3分)如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是0.【解答】解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴当k=0时,这个函数是二次函数.故答案为:0.15.(3分)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是.【解答】解:圆锥的底面周长是:π;设圆锥的底面半径是r,则2πr=π.解得:r=.故答案是:.16.(3分)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.【解答】解:根据图象得:a<0,b>0,c>0,故一次函数y=bx+c的图象不经过第四象限.故答案为:四.17.(3分)如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是250m.【解答】解:设半径为r,则OD=r﹣CD=r﹣50,∵OC⊥AB,∴AD=BD=AB,在直角三角形AOD中,AO2=AD2+OD2,即r2=(×300)2+(r﹣50)2=22500+r2+2500﹣100r,r=250m.答:这段弯路的半径是250m.18.(3分)观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是.【解答】解:这一组数的第n个数是.故答案为:.三、解答题(共2小题,满分22分)19.(10分)解方程:(1)x2﹣6x﹣6=0(2)2x2﹣7x+6=0.【解答】解:(1)x2﹣6x﹣6=0,b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x=,x1=3+,x2=3﹣;(2)2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,2x﹣3=0,x﹣2=0,x1=,x2=2.20.(12分)△ABC在平面直角坐标系中的位置如图所示(A、B、C三点在格点上),把△ABC绕原点O顺时针旋转90°,A、B、C旋转后的对应点分别是A1、B1、C1(1)画出旋转后的△A1B1C1,并直接写出A1、B1、C1的坐标;(2)在旋转过程中,求点A到点A1所经过的路径的长.【解答】解:(1)如图所示,△A1B1C1即为所求.由图可知,A1(4,﹣2),B1(1,﹣1),C1(2,﹣3);(2)连接OA,则OA==2,故点A到点A1所经过的路径的长==π.四、解答题(本题共2小题,每小题12分,共24分)21.(12分)在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.【解答】解:(1)∵1﹣35%﹣20%﹣20%=25%,∴1000×25%=250(辆).答:参加销展的D型轿车有250辆;(2)如图,1000×20%×50%=100;(3)四种型号轿车的成交率:A:×100%=48%;B:×100%=49%;C:50%;D:×100%=52%∴D种型号的轿车销售情况最好.(4)∵.∴抽到A型号轿车发票的概率为.22.(12分)我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)【解答】解:(1)设y与x的函数关系式为y=kx+b(k≠0),把x=22,y=780,x=25,y=750代入y=kx+b得,解得∴函数的关系式为y=﹣10x+1000;(2)设该工艺品每天获得的利润为w元,则w=y(x﹣20)=(﹣10x+1000)(x﹣20)=﹣10(x﹣60)2+16000;∵﹣10<0,∴当20<x≤30时,w随x的增大而增大,所以当售价定为30元/时,该工艺品每天获得的利润最大.即w=﹣10(30﹣60)2+16000=7000元;最大答:当售价定为30元/时,该工艺品每天获得的利润最大,最大利润为7000元.五、(本题12分)23.(12分)如图,AB为⊙O的直径,BC为⊙O的切线,连接AC交⊙O于D点,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)若∠A=60°,AD=2,求图中阴影部分的面积.【解答】证明:(1)连接OD,OE,∵AB是⊙O的直径,BC为⊙O的切线,∴∠ABC=90°,∵E为BC的中点,OA=OB,∴OE∥AC,∴∠EOB=∠A,∠EOD=∠ODA,∵OA=OB,∴∠ODA=∠A , ∴∠EOB=∠EOD , 在△OBE 和△ODE 中,,∴△OBE ≌△ODE (SAS ), ∴∠ODE=∠ABC=90°, ∴DE 是⊙O 的切线.(2)∵OA=OD ,∠A=60°, ∴△ODA 是等边三角形, ∴∠BOD=2∠A=120°, ∴∠EOB=∠EOD=60°, ∵∠ODE=90°, ∴∠OED=30°,∴OE=2OD=4,EB=ED==2,∴S阴影=S△BOE +S△DOE﹣S扇形OBD =+﹣=.六、(本题12分)24.(12分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.【解答】(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,)代入y=ax2得:a=,∴二次函数的解析式为y=x2;(2)证明:∵点P在抛物线y=x2上,∴可设点P的坐标为(x,x2),过点P作PB⊥y轴于点B,则BF=|x2﹣1|,PB=|x|,∴Rt△BPF中,PF==x2+1,∵PM⊥直线y=﹣1,∴PM=x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥y轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).七、(本题12分)25.(12分)如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.【解答】解:(1)猜想:AF=BD且AF⊥BD.(1分)证明:设AF与DC交于点G.∵FC=DC,AC=BC,∠BCD=∠BCA+∠ACD,∠ACF=∠DCF+∠ACD,∠BCA=∠DCF=90°,∴∠BCD=∠ACF.∴△ACF≌△BCD.∴AF=BD.(4分)∴∠AFC=∠BDC.∵∠AFC+∠FGC=90°,∠FGC=∠DGA,∴∠BDC+∠DGA=90度.∴AF⊥BD.(7分)∴AF=BD且AF⊥BD.(2)结论:AF=BD且AF⊥BD.图形不惟一,只要符合要求即可.画出图形得(1分),写出结论得(1分),此题共(2分).如:①CD边在△ABC的内部时;②CF边在△ABC的内部时.八、(本题14分)26.(14分)如图,在直角坐标系中,矩形ABCD的边AD在y轴正半轴上,点A、C的坐标分别为(0,1)、(2,4).点P从点A出发,沿A⇒B⇒C以每秒1个单位的速度运动,到点C停止;点Q在x轴上,横坐标为点P的横、纵坐标之和.抛物线经过A、C两点.过点P作x轴的垂线,垂足为M,交抛物线于点R.设点P的运动时间为t(秒),△PQR的面积为S(平方单位).(1)求抛物线对应的函数关系式;(2)分别求t=1和t=4时,点Q的坐标;(3)当0<t≤5时,求S与t之间的函数关系式,并直接写出S的最大值.参考公式:抛物线y=ax2+bx+c的顶点坐标为,.【解答】解:(1)由抛物线经过点A(0,1),C(2,4),得,解得,∴抛物线对应的函数关系式为:y=﹣x2+2x+1.(2)当t=1时,P点坐标为(1,1),∴Q点坐标为(2,0).当t=4时,P点坐标为(2,3),∴Q点坐标为(5,0).(3)∵0<t≤5,当0<t≤2时,S=(﹣t2+2t+1﹣1)×1,S=﹣t2+t=﹣(t﹣4)2+2,∵t=4不在0<t≤2中,∴当t=2时(如图所示),S的最大值为1.5;当2<t≤5时,S=(5﹣t)(2+t﹣2+1﹣2),S=﹣t2+3t﹣=﹣(t﹣3)2+2,因此当t=3时,S的最大值为2.综上所述,S的最大值为2.。

2014年辽宁省抚顺市中考数学试卷(含解析版).doc

2014年辽宁省抚顺市中考数学试卷(含解析版).doc

2014年辽宁省抚顺市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2014•抚顺)的倒数是()A.﹣2 B.2C.D.2.(3分)(2014•抚顺)若一粒米的质量约是0.000012kg,将数据0.000012用科学记数法表示为()A.21×10﹣4B.2.1×10﹣6C.2.1×10﹣5D.2.1×10﹣43.(3分)(2014•抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD 的度数是()A.45°B.40°C.35°D.30°4.(3分)(2014•抚顺)如图放置的几何体的左视图是()A.B.C.D.5.(3分)(2014•抚顺)下列事件是必然事件的是()A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.半径分别为3和5的两圆相外切,则两圆的圆心距为8D.三角形的内角和是360°6.(3分)(2014•抚顺)函数y=x﹣1的图象是()A.B.C.D.7.(3分)(2014•抚顺)下列运算正确的是()A.﹣2(a﹣1)=﹣2a﹣1 B.(﹣2a)2=﹣2a2C.(2a+b)2=4a2+b2D.3x2﹣2x2=x2 8.(3分)(2014•抚顺)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A.+=2来源学科网B.﹣=2 C.+= D.﹣= 9.(3分)(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=x3(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小10.(3分)(2014•抚顺)如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板PAB的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•抚顺)函数y=中,自变量x的取值范围是.12.(3分)(2014•抚顺)一组数据3,5,7,8,4,7的中位数是.13.(3分)(2014•抚顺)把标号分别为a,b,c的三个小球(除标号外,其余均相同)放在一个不透明的口袋中,充分混合后,随机地摸出一个小球,记下标号后放回,充分混合后,再随机地摸出一个小球,两次摸出的小球的标号相同的概率是.14.(3分)(2014•抚顺)将抛物线y=(x﹣3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为.15.(3分)(2014•抚顺)如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF的值是.16.(3分)(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为米.17.(3分)(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= 度.18.(3分)(2014•抚顺)如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作OE2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,O n和点E4,E5,…,E n.则O n E n= AC.(用含n的代数式表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)(2014•抚顺)先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°.20.(12分)(2014•抚顺)居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.四、解答题(第21题12分,第22题12分,共24分)21.(12分)(2014•抚顺)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.22.(12分)(2014•抚顺)近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?五、解答题(满分12分)23.(12分)(2014•抚顺)如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、A D长为半径作⊙A交AB于点M,过点B作⊙A的切线BF,切点为F.(1)请判断直线BE与⊙A的位置关系,并说明理由;(2)如果AB=10,BC=5,求图中阴影部分的面积.六、解答题(满分12分)24.(12分)(2014•抚顺)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?七、解答题(满分12分)25.(12分)(2014•抚顺)已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.26.(14分)(2014•抚顺)如图,抛物线y=ax2+x+c与x轴交于点A(4,0)、B(﹣1,0),与y轴交于点C,连接AC,点M是线段OA上的一个动点(不与点O、A重合),过点M作MN∥AC,交OC于点N,将△OMN沿直线MN折叠,点O的对应点O′落在第一象限内,设OM=t,△O′MN与梯形AMNC重合部分面积为S.(1)求抛物线的解析式;(2)①当点O′落在AC上时,请直接写出此时t的值;②求S与t的函数关系式;(3)在点M运动的过程中,请直接写出以O、B、C、O′为顶点的四边形分别是等腰梯形和平行四边形时所对应的t值.2014年辽宁省抚顺市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2014•抚顺)的倒数是()A.﹣2 B.2C.D.考点:倒数.专题:常规题型.分析:根据倒数的定义求解.解答:解:﹣的倒数是﹣2.故选:A.点评:本题主要考查了倒数的定义,解题的关键是熟记定义.来源学§科§网2.(3分)(2014•抚顺)若一粒米的质量约是0.000012kg,将数据0.000012用科学记数法表示为()A.21×10﹣4B.2.1×10﹣6C.2.1×10﹣5D.2.1×10﹣4考点:科学记数法—表示较小的数..分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000012=1.2×10﹣5;故选:C.点评:题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2014•抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD 的度数是()A.45°B.40°C.35°D.30°考点:平行线的性质..分析:根据平行线的性质求出∠DCA,根据角平分线定义求出∠DCE即可.解答:解:∵AB∥CD,∠A=120°,∴∠DCA=180°﹣∠A=60°,∵CE平分∠ACD,∴∠ECD=∠DCA=30°,故选:D.点评:本题考查了平行线的性质,角平分线定义的应用,注意:两直线平行,同旁内角互补.4.(3分)(2014•抚顺)如图放置的几何体的左视图是()A.B.C.D.考点:简单组合体的三视图..分析:根据从左边看得到的图形是左视图,可得答案.解答:解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示,.故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意中间看不到的线用虚线表示.A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.半径分别为3和5的两圆相外切,则两圆的圆心距为8D.三角形的内角和是360°考点:随机事件..分析:必然事件就是一定发生的事件,即发生的概率是1的事件.解答:解:A、如果|a|=|b|,那么a=b或a=﹣b,故A选项错误;B、平分弦的直径垂直于弦,并且平分弦所对的两条弧,此时被平分的弦不是直径,故B选项错误;C、半径分别为3和5的两圆相外切,则两圆的圆心距为8,故C选项正确;D、三角形的内角和是180°,故D选项错误,故选:C.点评:考查了随机事件,解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)(2014•抚顺)函数y=x﹣1的图象是()A.B.C.D.考点:一次函数的图象..分析:根据函数解析式求得该函数图象与坐标轴的交点,然后再作出选择.解答:解:∵一次函数解析式为y=x﹣1,∴令x=0,y=﹣1.令y=0,x=1,即该直线经过点(0,﹣1)和(1,0).故选:D.点评:本题考查了一次函数图象.此题也可以根据一次函数图象与系数的关系进行解答.7.(3分)(2014•抚顺)下列运算正确的是()A.﹣2(a﹣1)=﹣2a﹣1 B.(﹣2a)2=﹣2a2C.(2a+b)2=4a2+b2D.3x2﹣2x2=x2考点:完全平方公式;合并同类项;去括号与添括号;幂的乘方与积的乘方..分析:A、原式利用去括号法则计算得到结果,即可做出判断;B、原式利用积的乘方运算法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式合并得到结果,即可做出判断.解答:解:A、﹣2(a﹣1)=﹣2a+2,故A选项错误;B、(﹣2a)2=4a2,故B选项错误;C、(2a+b)2=4a2+4ab+b2,故C选项错误;D、3x2﹣2x2=x2,故D选项正确.故选:D.点评:此题考查了完全平方公式,熟练掌握公式及法则是解本题的关键.8.(3分)(2014•抚顺)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来x/A.+=2来源学科网B.﹣=2C.+=D.﹣=考点:由实际问题抽象出分式方程..分析:设原来的平均速度为x千米/时,高速公路开通后平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.解答:解:设原来的平均速度为x千米/时,由题意得,﹣=2.故选:B.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.(3分)(2014•抚顺)如图,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点P 是双曲线y=x3(x >0)上的一个动点,PB ⊥y 轴于点B ,当点P 的横坐标逐渐增大时,四边形OAPB 的面积将会( )A . 逐渐增大B . 不变C . 逐渐减小D . 先增大后减小考点: 反比例函数系数k 的几何意义..分析:由双曲线y=x3(x >0)设出点P 的坐标,运用坐标表示出四边形OAPB 的面积函数关系式即可判定. 解答: 解:设点P 的坐标为(x ,),∵PB ⊥y 轴于点B ,点A 是x 轴正半轴上的一个定点, ∴四边形OAPB 是个直角梯形,∴四边形OAPB 的面积=21(PB+AO )•BO=21(x+AO )•x3=+=+•x3,来源学|科|网Z|X|X|K]∵AO 是定值,∴四边形OAPB 的面积是个减函数,即点P 的横坐标逐渐增大时四边形OAPB 的面积逐渐减小. 故选:C .点评: 本题主要考查了反比例函数系数k 的几何意义,解题的关键是运用点的坐标求出四边形OAPB 的面积的函数关系式. 10.(3分)(2014•抚顺)如图,将足够大的等腰直角三角板PCD 的锐角顶点P 放在另一个等腰直角三角板PAB 的直角顶点处,三角板PCD 绕点P 在平面内转动,且∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,设AB=2,AN=x ,BM=y ,则能反映y 与x 的函数关系的图象大致是( )A .B .C .D .考点: 动点问题的函数图象..分析: 作PH ⊥AB 于H ,根据等腰直角三角形的性质得∠A=∠B=45°,AH=BH=AB=1,则可判断△PAH 和△PBH 都是等腰直角三角形,得到PA=PB=AH=,∠HPB=45°,由于∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,而∠CPD=45°,所以1≤x≤2,再证明∠2=∠BPM ,这样可判断△ANP ∽△BPM ,利用相似比得=,则y=x2,所以得到y 与x 的函数关系的图象为反比例函数图象,且自变量为1≤x≤2. 解答: 解:作PH ⊥AB 于H ,如图, ∵△PAB 为等腰直角三角形, ∴∠A=∠B=45°,AH=BH=AB=1,∴△PAH 和△PBH 都是等腰直角三角形, ∴PA=PB=AH=,∠HPB=45°,∵∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N 来源:]而∠CPD=45°,∴1≤AN≤2,即1≤x≤2,∵∠2=∠1+∠B=∠1+45°,∠BPM=∠1+∠CPD=∠1+45°, ∴∠2=∠BPM , 而∠A=∠B ,∴△ANP ∽△BPM ,∴=,即=,∴y=x2, ∴y 与x 的函数关系的图象为反比例函数图象,且自变量为1≤x≤2. 故选A .点评: 本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围. 二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•抚顺)函数y=中,自变量x 的取值范围是 x≠2 .考点: 函数自变量的取值范围;分式有意义的条件..专题: 计算题. 分析: 求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0. 解答: 解:要使分式有意义,即:x ﹣2≠0, 解得:x≠2. 故答案为:x≠2.点评: 本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0. 12.(3分)(2014•抚顺)一组数据3,5,7,8,4,7的中位数是 6 . 考点: 中位数.. 分析: 找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 解答: 解:先对这组数据按从小到大的顺序重新排序:3,4,5,7,7,8. 位于中间的两个数是5,7,所以这组数据的中位数是(5+7)÷2=6. 故答案为:6. 点评: 本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.(3分)(2014•抚顺)把标号分别为a ,b ,c 的三个小球(除标号外,其余均相同)放在一个不透明的口袋中,充分混合后,随机地摸出一个小球,记下标号后放回,充分混合后,再随机地摸出一个小球,两次摸出的小球的标号相同的概率是 31.考点: 列表法与树状图法.. 专题: 计算题. 分析: 列表得出所有等可能的情况数,找出两次摸出的小球的标号相同的情况数,即可求出所求的概率. 解答: 解:列表如下:a bca (a ,a ) (b ,a ) (c ,a ) b (a ,b )(b ,b ) (c ,b ) c(a ,c )(b ,c ) (c ,c )所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种, 则P=93=31.1故答案为:3点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)(2014•抚顺)将抛物线y=(x﹣3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为y═(x﹣2)2+3.考点:二次函数图象与几何变换..分析:根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.解答:解:抛物线y=(x﹣3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为y=(x﹣3+1)2+1+2=(x﹣2)2+3,即:y=(x﹣2)2+3.故答案为:y=(x﹣2)2+3.点评:此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.15.(3分)(2014•抚顺)如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF的值是1.考点:切线的性质;正方形的性质;圆周角定理;锐角三角函数的定义..分析:连接HF,EG,FG,根据切线的性质和正方形的性质可知:FH⊥EG,再由圆周角定理可得:∠EPF=∠OGF,而∠OGF=45°,问题得解.解答:解:连接HF,EG,FG,∵⊙O与正方形ABCD的各边分别相切于点E、F、G、H,∴FH⊥EG,∵OG=OF,∴∠OGF=45°,∵∠EPF=∠OGF,∴tan∠EPF=tan45°=1,故答案为:1.点评:本题考查了正方形的性质、切线的性质、圆周角定理以及锐角三角函数的定义,题目的综合性较强,解题的关键是正确添加辅助线,构造直角三角形.16.(3分)(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为米.考点:解直角三角形的应用..分析:过点P作PE⊥AB于点E,先求出∠APE及∠BPE的度数,由锐角三角函数的定义即可得出结论.解答:解:过点P作PE⊥AB于点E,∵∠APC=75°,∠BPD=30°,∴∠APE=15°,∠BPE=60°,∴AE=PE•tan15°,BE=PE•tan60°,∴AB=AE+BE=PE•tan15°+PE•tan60°=300,即PE(tan15°+)=300,解得PE=(米).故答案为:.点评:本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.17.(3分)(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.考点:三角形内角和定理;多边形内角与外角..分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.18.(3分)(2014•抚顺)如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作OE2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,O n和点E4,E5,…,E n.则O n E n=AC.(用含n的代数式表示)考点:相似三角形的判定与性质;三角形中位线定理..专题:规律型.分析:由CO1是△ABC的中线,O1E1∥AC,可证得=,,以此类推得到答案.解答:解:∵O1E1∥AC,∴△BO1E1∽△BAC,∴,∵CO 1是△ABC 的中线, ∴=21, ∵O 1E 1∥AC ,∴△O 2O 1E 1∽△ACO 2, ∴,由O 2E 2∥AC , 可得:, …可得:O n E n =AC . 故答案为:.点评: 本题主要考查平行线分线段成比例定理,相似三角形的性质和判定的理解和掌握,能得出规律是解此题的关键.三、解答题(第19题10分,第20题12分,共22分) 19.(10分)(2014•抚顺)先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°. 考点: 分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.专题: 计算题. 分析: 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用零指数幂、负指数幂法则以及特殊角的三角函数值求出x 的值,代入计算即可求出值. 解答:解:原式=•=•=x+1,∵x=(+1)0+()﹣1•tan60°=1+2,∴当x=1+2时,原式=2+2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(12分)(2014•抚顺)居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.考点:条形统计图;用样本估计总体;扇形统计图..分析:(1)由A层次的人数除以所占的百分比求出调查的学生总数即可;(2)由D层次人数除以总人数求出D所占的百分比,再求出B所占的百分比,再乘以总人数可得B层次人数,用总人数乘以C层次所占的百分比可得C层次的人数不全图形即可;(3)用360°乘以C层次的人数所占的百分比即可得“C”层次所在扇形的圆心角的度数;(4)求出样本中A层次与B层次的百分比之和,乘以4000即可得到结果.解答:解:(1)90÷30%=300(人),答:本次被抽查的居民有300人;(2)D所占的百分比:30÷300=10%B所占的百分比:1﹣20%﹣30%﹣10%=40%,B对应的人数:300×40%=120(人),C对应的人数:300×20%=60(人),补全统计图,如图所示:(3)360°×20%=72°,答:“C”层次所在扇形的圆心角的度数为72°;(4)4000×(30%+40%)=2800(人),答:估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有2800人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.四、解答题(第21题12分,第22题12分,共24分)21.(12分)(2014•抚顺)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.考点:作图-旋转变换;待定系数法求一次函数解析式;作图-平移变换..专题:作图题.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点D、E、F绕点O按顺时针方向旋转90°后的对应点D1、E1、F1的位置,然后顺次连接即可;(3)根据轴对称的性质确定出对称轴的位置,然后写出直线解析式即可.解答:解:(1)△A1B1C1如图所示;(2)△D1E1F1如图所示;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,对称轴为直线y=x.点评:本题考查了利用旋转变换作图,利用平移变换作图,轴对称的性质,熟练掌握网格结构准确找出对应点的位置.22.(12分)(2014•抚顺)近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.解答:解:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30﹣z)≤30,解得:z≥15,答:至少购买A种设备15台.点评:此题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.五、解答题(满分12分)23.(12分)(2014•抚顺)如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、A D长为半径作⊙A交AB于点M,过点B作⊙A的切线BF,切点为F.(1)请判断直线BE与⊙A的位置关系,并说明理由;(2)如果AB=10,BC=5,求图中阴影部分的面积.考点:矩形的性质;切线的判定与性质;扇形面积的计算..分析:(1)直线BE与⊙A的位置关系是相切,连接AE,过A作AH⊥BE,过E作EG⊥AB,再证明AH=AD即可;(2)连接AF,则图中阴影部分的面积=直角三角形ABF的面积﹣扇形MAF的面积.解答:解:(1)直线BE与⊙A的位置关系是相切,理由如下:连接AE,过A作AH⊥BE,过E作EG⊥AB,∵S△ABE=BE•AH=AB•EG,AB=BE,∴AH=EG,∵四边形ADEG是矩形,∴AD=EG,∴AH=AD,∴BE是圆的切线;(2)连接AF,∵BF是⊙A的切线,∴∠BFA=90°∵BC=5,∴AF=5,∵AB=10,∴∠ABF=30°,∴∠BAF=60°,∴BF=AF=5,∴图中阴影部分的面积=直角三角形ABF的面积﹣扇形MAF的面积=×5×5﹣=.点评:本题考查了矩形的性质、切线的判定和性质、三角形和扇形面积公式的运用以及特殊角的锐角三角函数值,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.六、解答题(满分12分)24.(12分)(2014•抚顺)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?考点:二次函数的应用..分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.解答:解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是192元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合。

辽宁省抚顺市2015年中考数学真题试题(含参考答案)

辽宁省抚顺市2015年中考数学真题试题(含参考答案)

辽宁省抚顺市2015年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1..6的绝对值是( ) A.6B.﹣6C.D.﹣2..下列图形是中心对称图形的是( ) A.B.C.D.3..下列运算正确的是( ) A.3a2•a3=3a6B.5x4﹣x2=4x2 C.(2a2)3•(﹣ab)=﹣8a7b D.2x2÷2x2=04..下列一元二次方程有两个相等实数根的是( ) A.x2﹣2x+1=0B.2x2﹣x+1=0C.4x2﹣2x﹣3=0D.x2﹣6x=05..一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A.﹣1<x≤2B.﹣1≤x<2C.﹣1<x<2D.无解6..图中几何体的左视图是( ) A.B.C.D.7..直线y=x+b(b>0)与直线y=kx(k<0)的交点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限8..学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:捐款金额(元)5102050人数(人)10131215则学生捐款金额的中位数是( ) A.13人B.12人C.10元D.20元9..如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为( ) A.B.C.D.10..如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为( ) A.3B.1.5C.2D.二、填空题(共8小题,每小题3分,满分24分)11..2014年抚顺市城区植树造林约为2030000株,将2030000这个数用科学记数法表示为 .12..分解因式:ab3﹣ab= .13..已知数据:﹣1,4,2,﹣2,x的众数是2,那么这组数据的平均数为 .14..如图,分别过等边△ABC的顶点A、B作直线a,b,使a∥b.若∠1=40°,则∠2的度数为 .15..如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为 .16..如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为 米.17..如图,过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为 .18..如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为 .三、解答题(共2小题,第19题10分,第20题12分,满分22分)19.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.20.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A1B1C1.(1)△ABC与△A1B1C1的位似比等于 ;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A1B1C1是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为 .四、解答题(共2小题,第21题12分,第22题12分,满分24分)21.某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?22.(12分)(2015•抚顺)电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有 人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是 .五、解答题(共1小题,满分12分)23.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?六、解答题(共1小题,满分12分)24.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.(1)求证:CF与⊙O相切;(2)若AD=2,F为AE的中点,求AB的长.七、解答题(共1小题,满分12)25.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)八、解答题(共1小题,满分14分)26.已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.2015年辽宁省抚顺市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1..6的绝对值是( ) A.6B.﹣6C.D.﹣考点:绝对值..分析:根据绝对值的定义求解.解答:解:6是正数,绝对值是它本身6.故选A点评:本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2..下列图形是中心对称图形的是( ) A.B.C.D.考点:中心对称图形..分析:根据中心对称图形的概念求解.解答:解:根据中心对称图形的概念,绕旋转中心旋转180°与原图形重合,可知A、C、D都不是中心对称图形,故是中心对称图形的是B.故选B.点评:本题主要考查中心对称图形的概念,掌握掌握中心对称图形的概念是解题的关键,注意中心对称图形是要寻找对称中心,旋转180度后两部分重合.【链接】中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点3..下列运算正确的是( ) A.3a2•a3=3a6B.5x4﹣x2=4x2 C.(2a2)3•(﹣ab)=﹣8a7b D.2x2÷2x2=0考点:单项式乘单项式;合并同类项;整式的除法..分析:根据整式的各种运算法则逐项分析即可.解答:解:A、3a2•a3=3a5≠3a6,故该选项错误;B、5x4﹣x2不是同类项,所以不能合并,故该选项错误;C、(2a2)3•(﹣ab)=﹣8a7b,计算正确,故该选项正确;D、2x2÷2x2=1≠0,计算错误,故该选项正确;故选C.点评:本题考查了和整式有关的各种运算,解题的关键是熟记整式的各种运算法则.4..下列一元二次方程有两个相等实数根的是( ) A.x2﹣2x+1=0B.2x2﹣x+1=0C.4x2﹣2x﹣3=0D.x2﹣6x=0考点:根的判别式..分析:根据一元二次方程根的判别式判断即可.解答:解:A、∵△=4﹣4=0,∴方程x2﹣2x+1=0有两个相等实数根;B、∵△=1﹣4×2<0,∴方程2x2﹣x+1=0无实数根;C、∵△=4+4×4×3=52>0,∴方程4x2﹣2x﹣3=0有两个不相等实数根;D、∵△=36>0,∴方程x2﹣6x=0有两个不相等实数根;故选A.点评:本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5..一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A.﹣1<x≤2B.﹣1≤x<2C.﹣1<x<2D.无解考点:在数轴上表示不等式的解集..分析:根据数轴上的表示可得﹣1<x≤2,即可得解.解答:解:由图可得,这个不等式组的解集为﹣1<x≤2.故选A.点评:本题考查了在数轴上表示不等式的解集,表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6..图中几何体的左视图是( ) A.B.C.D.考点:简单组合体的三视图..分析:从左面看到3列正方形的个数依次为1,2,1;由此选择答案即可.解答:解:图中几何体的左视图是.故选:B.点评:本题考查了几何体的三视图;得到从各个方向看得到的每列正方形的个数是解决本题的关键. 7..直线y=x+b(b>0)与直线y=kx(k<0)的交点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限考点:两条直线相交或平行问题..分析:根据直线方程作出大致函数图象,根据图象可以直接作出选择.解答:解:直线y=x+b(b>0)与直线y=kx(k<0)的大致图象如图所示:.所以交点A位于第二象限.故选:B.点评:本题考查了两条直线相交或平行问题.解答该题时,需要掌握一次函数y=kx+b的图象与系数的关系.8..学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:捐款金额(元)5102050人数(人)10131215则学生捐款金额的中位数是( ) A.13人B.12人C.10元D.20元考点:中位数..分析:根据题意得出按照从小到大顺序排列的第25个和第26个数据都是20(元),它们的平均数即为中位数.解答:解:∵10+13+12+15=50,按照从小到大顺序排列的第25个和第26个数据都是20(元),∴它们的平均数即为中位数,=20(元),∴学生捐款金额的中位数是20元;故选:D.点评:本题考查了中位数的定义、平均数的计算;熟练掌握中位数的定义,正确求出中位数是解决问题的关键.9..如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为( ) A.B.C.D.考点:几何概率;平行四边形的性质..专题:计算题.分析:根据平行四边形的性质易得S△OEH=S△OFG,则S阴影部分=S△AOB=S平行四边形ABCD,然后根据几何概率的意义求解.解答:解:∵四边形ABCD为平行四边形,∴△OEH和△OFG关于点O中心对称,∴S△OEH=S△OFG,∴S阴影部分=S△AOB=S平行四边形ABCD,∴飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率==.故选C.点评:本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.也考查了平行四边形的性质.10..如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD 于点E.若AB=3,则△AEC的面积为( ) A.3B.1.5C.2D.考点:旋转的性质..专题:计算题.分析:根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.解答:解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠B′AD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=,根据勾股定理得:x2=(3﹣x)2+()2,解得:x=2,∴EC=2,则S△AEC=EC•AD=,故选D点评:此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.二、填空题(共8小题,每小题3分,满分24分)11..2014年抚顺市城区植树造林约为2030000株,将2030000这个数用科学记数法表示为 2.03×106 .考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2030000用科学记数法表示为:2.03×106.故答案为:2.03×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12..分解因式:ab3﹣ab= ab(b+1)(b﹣1) .考点:提公因式法与公式法的综合运用..分析:先提取公因式ab,再对余下的多项式利用平方差公式继续分解.解答:解:ab3﹣ab,=ab(b2﹣1),=ab(b+1)(b﹣1).点评:本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13..已知数据:﹣1,4,2,﹣2,x的众数是2,那么这组数据的平均数为 1 .考点:众数;算术平均数..分析:先根据众数的定义求出x的值,然后再求这组数据的平均数.解答:解:数据:﹣1,4,2,﹣2,x的众数是2,即的2次数最多;即x=2.则其平均数为:(﹣1+4+2﹣2+2)÷5=1.故答案是:1.点评:本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.14..如图,分别过等边△ABC的顶点A、B作直线a,b,使a∥b.若∠1=40°,则∠2的度数为 80° .考点:平行线的性质;等边三角形的性质..分析:先根据△ABC是等边三角形得出∠BAC=60°,故可得出∠BAC+∠1的度数,再由平行线的性质即可得出结论.解答:解:∵△ABC是等边三角形,∴∠BAC=60°.∵∠1=40°,∴∠BAC+∠1=100°.∵a∥b,∴∠2=180°﹣(∠BAC+∠1)=180°﹣100°=80°.故答案为:80°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.15..如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为 2π﹣3 .考点:扇形面积的计算;正多边形和圆..分析:此题是考查圆与正多边形结合的基本运算,空白正六边形为六个边长为2的正三角形,利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积﹣正六边形的面积)×.解答:解:∵圆的半径为2,∴面积为12π,∵空白正六边形为六个边长为2的正三角形,∴每个三角形面积为×2××sin60°=3,∴正六边形面积为18,∴阴影面积为(12π﹣18)×=2,故答案为:2.点评:本题主要考查了正多边形和圆的面积公式,注意到阴影面积=(圆的面积﹣正六边形的面积)×是解答此题的关键.16..如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为 7 米.考点:解直角三角形的应用-仰角俯角问题..分析:根据∠DBC=45°,得到BC=CD,根据tanα=0.7和正切的概念列出算式,解出算式得到答案.解答:解:∵∠DBC=45°,∴BC=CD,tanα==,则=,解得CD=7.故答案为:7.点评:本题考查的是解直角三角形的知识,掌握锐角三角函数的概念是解题的关键,注意仰角和俯角的概念.17..如图,过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为 6 .考点:反比例函数与一次函数的交点问题;线段垂直平分线的性质..分析:根据题意得到A、B两点关于原点对称,得到点A坐标为(2,﹣m),求得AC=2,由于DE垂直平分AO,得到AD=OD,根据△ACD的周长为5,求出OC=AD+CD=3,得到A(2,3),即可得到结果.解答:解:∵过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,∴A、B两点关于原点对称,∵点B坐标为(﹣2,m),∴点A坐标为(2,﹣m),∵AC⊥y轴于点C,∴AC=2,∵DE垂直平分AO,∴AD=OD,∵△ACD的周长为5,∴AD+CD=5﹣AC=3,∴OC=AD+CD=3,∴A(2,3),∵点A在反比例函数y=(k>0)的图象上,∴k=2×3=6,故答案为:6.点评:本题考查了一次函数与反比例函数的交点问题,线段的垂直平分线的性质,三角形的周长,得出OC=AD+CD是解题的关键.18..如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为 .考点:正方形的性质..专题:规律型.分析:首先在Rt△A1BB1中,由勾股定理可求得正方形A1B1C1D1的面积=,然后再在Rt△A2B1B2中,由勾股定理求得正方形A2B2C2D2的面积=,然后找出其中的规律根据发现的规律即可得出结论.解答:解:在Rt△A1BB1中,由勾股定理可知;==,即正方形A1B1C1D1的面积=;在Rt△A2B1B2中,由勾股定理可知:==;即正方形A2B2C2D2的面积=…∴正方形A n B n C n D n的面积=.点评:本题主要考查的是正方形的性质和勾股定理的应用,通过计算发现其中的规律是解题的关键.三、解答题(共2小题,第19题10分,第20题12分,满分22分)19.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.考点:分式的化简求值..分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解答:解:原式=•=,当x=3时,原式==3.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A1B1C1.(1)△ABC与△A1B1C1的位似比等于 ;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A1B1C1是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为 (﹣2x﹣2,2y+2) .考点:作图-位似变换;作图-轴对称变换;作图-平移变换..分析:(1)根据位似图形可得位似比即可;(2)根据轴对称图形的画法画出图形即可;(3)根据△A1B1C1与△A2B2C2的关系过程其变化过程即可;(4)根据三次变换规律得出坐标即可.解答:解:(1))△ABC与△A1B1C1的位似比等于=;(2)如图所示:(3)△A1B1C1是由△A2B2C2沿x轴向左平移2个单位,再沿y轴向上平移2个单位得到;(4)点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为(﹣2x﹣2,2y+2).故答案为:;(﹣2x﹣2,2y+2).点评:此题考查作图问题,关键是根据轴对称图形的画法和位似图形的性质分析.四、解答题(共2小题,第21题12分,第22题12分,满分24分)21某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?考点:分式方程的应用;一元一次不等式的应用..分析:(1)设购买一个乙礼品需要x元,根据“花费600元购买甲礼品和花费360元购买乙礼品的数量相等”列分式方程求解即可;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意列不等式求解即可.解答:解:(1)设购买一个乙礼品需要x元,根据题意得:=,解得:x=60,经检验x=60是原方程的根,∴x+40=100.答:甲礼品100元,乙礼品60元;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意得:100m+60(30﹣m)≤2000,解得:m≤5.答:最多可购买5个甲礼品.点评:此题主要考查了分式方程和不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程和不等式.22.电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有 200 人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是 .考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图..专题:计算题.分析:(1)由喜欢“陈赫”的人数除以占的百分比得出被调查学生总数即可;(2)求出喜欢“李晨”的人数,找出喜欢“Angelababy”与喜欢“黄晓明”占的百分比,补全统计图即可;(3)由喜欢“Angelababy”的百分比乘以2000即可得到结果;(4)列表得出所有等可能的情况数,找出两人都是喜欢“李晨”的情况数,即可求出所求的概率.解答:解:(1)根据题意得:40÷20%=200(人),则本次被调查的学生有200人;(2)喜欢“李晨”的人数为200﹣(40+20+60+30)=50(人),喜欢“Angelababy”的百分比为×100%=10%,喜欢其他的百分比为×100%=30%,补全统计图,如图所示:(3)根据题意得:2000×30%=600(人),则全校喜欢“Angelababy”的人数为600人;(4)列表如下:(B表示喜欢“李晨”,D表示喜欢“Angelababy”)B B B D DB﹣﹣﹣(B,B)(B,B)(D,B)(D,B)B(B,B)﹣﹣﹣(B,B)(D,B)(D,B)B(B,B)(B,B)﹣﹣﹣(D,B)(D,B)D(B,D)(B,D)(B,D)﹣﹣﹣(D,D)D(B,D)(B,D)(B,D)(D,D)﹣﹣﹣所有等可能的情况有20种,其中两人都是喜欢“李晨”的学生有6种,则P==.故答案为:(1)200;(4).点评:此题考查了列表法与树状图法,用样本估计总体,条形统计图,以及扇形统计图,熟练掌握运算法则是解本题的关键.五、解答题(共1小题,满分12分)23.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?考点:二次函数的应用..分析:(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值.解答:解:(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得.故y与x的函数关系式为y=﹣x+150;(2)根据题意得(﹣x+150)(x﹣20)=4000,解得x1=70,x2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w与x的函数关系式为:w=(﹣x+150)(x﹣20)=﹣x2+170x﹣3000=﹣(x﹣85)2+4225,∵﹣1<0,∴当x=85时,w值最大,w最大值是4225.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元.点评:本题考查二次函数的应用,难度较大,解答本题的关键是根据题意列出方程,另外要注意掌握二次函数的最值的求法.六、解答题(共1小题,满分12分)24.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.(1)求证:CF与⊙O相切;(2)若AD=2,F为AE的中点,求AB的长.考点:切线的判定;勾股定理;矩形的性质..分析:(1)利用平行四边形的判定方法得出四边形OAEC是平行四边形,进而得出△ODC≌△OFC(SAS),求出OF⊥CF,进而得出答案;(2)利用勾股定理得出DC的长,即可得出AB的长,解答:(1)证明:如图所示:连接OF、OC,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ADC=90°,∵E为BC边中点,AO=DO,∴AO=AD,EC=BC,∴AO=EC,AO∥EC,∴四边形OAEC是平行四边形,∴AE∥OC,∴∠DOC=∠OAF,∠FOC=∠OFA,∵OA=OF,∴∠OAF=∠OFA,∴∠DOC=∠FOC,∵在△ODC和△OFC中,∴△ODC≌△OFC(SAS),∴∠OFC=∠ODC=90°,∴OF⊥CF,∴CF与⊙O相切;(2)解:如图所示:连接DE,∵AO=DO,AF=EF,AD=2,∴DE=20F=2,∵E是BC的中点,∴EC=1,在Rt△DCE中,由勾股定理得:DC===,∴AB=CD=.点评:此题主要考查了全等三角形的判定与性质以及勾股定理和平行四边形的判定、切线的判定等知识,得出△ODC≌△OFC是解题关键.七、解答题(共1小题,满分12)25.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)考点:相似三角形的判定与性质;全等三角形的判定与性质..分析:(1)首先过点D作DF⊥BC,交AB于点F,得出∠BDE=∠ADF,以及∠EBD=∠AFD,再得出△BDE≌△FDA(ASA),求出即可;(2)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案;(3)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案.解答:(1)证明:如图1,过点D作DF⊥BC,交AB于点F,则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∴△BDE≌△FDA(ASA),∴AD=DE;(2)解:DE=AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴=,在Rt△BDG中,=tan30°=,∴DE=AD;(3)AD=DE•tanα;理由:如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴=,在Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα.点评:此题主要考查了全等三角形的判定与性质以及相似三角形的判定与性质,得出△EBD∽△AGD是解题关键.八、解答题(共1小题,满分14分)26.(14分)(2015•抚顺)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.考点:二次函数综合题..分析:(1)根据抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),应用待定系数法,求出抛物线的解析式即可.(2)首先作DM⊥抛物线的对称轴于点M,设G点的坐标为(﹣1,n),根据翻折的性质,可得BD=DG;然后分别求出点D、点M的坐标各是多少,以及BC、BD的值各是多少;最后在Rt△GDM中,根据勾股定理,求出n的值,即可求出G点的坐标.(3)根据题意,分三种情况:①当CD∥EF,且点E在x轴的正半轴时;②当CD∥EF,且点E在x轴的负半轴时;③当CE∥DF时;然后根据平行四边形的性质,求出点F的坐标各是多少即可.解答:解:(1)∵抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),。

2013年辽宁省抚顺市中考数学试卷及答案(Word解析版)

2013年辽宁省抚顺市中考数学试卷及答案(Word解析版)

辽宁省抚顺市2013年中考数学试卷一、选择题1.(2013•抚顺)﹣4的绝对值是()A.B.C.4D.﹣4考点:绝对值分析:根据一个负数的绝对值是它的相反数即可求解.解答:解:﹣4的绝对值是4.故选C.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2013•抚顺)如果分式有意义,则x的取值范围是()A.全体实数B.x=1 C.x≠1 D.x=0考点:分式有意义的条件分析:分式有意义,分母x﹣1≠0,据此可以求得x的取值范围.解答:解:当分母x﹣1≠0,即x≠1时,分式有意义.故选C.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.(2013•抚顺)下列图形中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的概念结合选项所给的图形即可得出答案.解答:解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选A .点评:本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.4.(2013•抚顺)如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图分析:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有2列,从左到右分别是3,2个正方形.解答:解:由俯视图中的数字可得:左视图有2列,从左到右分别是3,2个正方形.故选D.点评:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(2013•抚顺)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠5=∠4 C.∠5+∠3=180°D.∠4+∠2=180°考点:平行线的判定分析:依据平行线的判定定理即可判断.解答:解:A、已知∠1=∠3,根据内错角相等,两直线平行可以判断,故命题正确;B、不能判断;C、根据内错角相等,两直线平行,可以判断,故命题正确;D、根据内错角相等,两直线平行,可以判断,故命题正确.故选B.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.(2013•抚顺)下列计算正确的是()A.(2a)3÷a=8a2B.C.(a﹣b)2=a2﹣b2D.考点:整式的除法;去括号与添括号;单项式乘单项式;完全平方公式分析:根据整式的乘除,单项式乘单项式,完全平方公式分别进行计算,即可得出答案.解答:解:A、(2a)3÷a=8a2,故本选项正确;B、(﹣2ab)(﹣a2)=a3b,故本选项错误;C、(a﹣b)2=a2﹣2b+b2,故本选项错误;D、﹣4(a﹣1)=﹣a+4,故本选项错误;故选A.点评:此题考查了整式的乘除,单项式乘单项式,完全平方公式,解题时要细心,注意结果的符号.7.(2013•抚顺)已知圆锥底面圆的半径为2,母线长是4,则它的全面积为()A.4πB.8πC.12πD.16π考点:圆锥的计算分析:首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.解答:解:底面周长是:2×2π=4π,则侧面积是:×4π×4=8π,底面积是:π×22=4π,则全面积是:8π+4π=12π.故选C.点评:本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(2013•抚顺)小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是()A.B.C.D.考点:由实际问题抽象出二元一次方程组分析:根据关键语句“到学校共用时20分钟”可得方程:x+y=20,根据“骑自行车的平均速度是200米/分,步行的平均速度是70米/分.他家离学校的距离是3350米”可得方程:200x+70y=3350,两个方程组合可得方程组.解答:解:设他骑自行车和步行的时间分别为x、y分钟,由题意得:.故选:D.点评:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.9.(2013•抚顺)在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A.B.C.D.考点:概率公式分析:根据摸出一个球是绿球的概率是,得出蓝球的个数,进而得出小球总数,即可得出随机摸出一个球是蓝球的概率.解答:解:∵在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,随机摸出一个球是绿球的概率是,设蓝球x个,∴=,解得:x=9,∴随机摸出一个球是蓝球的概率是:.故选:D.点评:此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.10.(2013•抚顺)如图,等边△OAB的边OB在x轴的负半轴上,双曲线过OA的中点,已知等边三角形的边长是4,则该双曲线的表达式为()A.B.C.D.考点:待定系数法求反比例函数解析式;等边三角形的性质分析:如图,过点C作CD⊥OB于点D.根据等边三角形的性质、中点的定义可以求得点C 的坐标,然后把点C的坐标代入双曲线方程,列出关于系数k的方程,通过解该方程即可求得k的值.解答:解:如图,过点C作CD⊥OB于点D.∵△OAB是等边三角形,该等边三角形的边长是4,∴OA=4,∠COD=60°,又∵点C是边OA的中点,∴OC=2,∴OD=OC•cos60°=2×=1,CD=OC•sin60°=2×=.∴C(﹣1,).则=,解得,k=﹣,∴该双曲线的表达式为.故选B.点评:本题考查了待定系数法求反比例函数解析式,等边三角形的性质.解题的关键是求得点C的坐标.二、填空题11.(2013•抚顺)人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m,将0.000 000 156用科学记数法表示为 1.56×10﹣7.考点:科学记数法—表示较小的数分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 156=1.56×10﹣7,故答案为:1.56×10﹣7.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(2013•抚顺)在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,,则甲、乙两名同学成绩更稳定的是乙.考点:方差分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵,,∴S甲2>S乙2,则成绩较稳定的同学是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(2013•抚顺)计算:=3.考点:实数的运算;零指数幂;负整数指数幂分析:分别根据有理数乘方的法则、负整数指数幂及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=1×4﹣1=3.故答案为:3.点评:本题考查的是实数的运算,熟知有理数乘方的法则、负整数指数幂及0指数幂的计算法则是解答此题的关键.14.(2013•抚顺)已知a、b为两个连续整数,且a<<b,则a+b=9.考点:估算无理数的大小分析:由于4<<5,由此即可找到所求的无理数在哪两个和它接近的整数之间,然后即可求解.解答:解:∵4<<5,∴a=4,b=5,∴a+b=9.故答案为9.点评:此题主要考查了无理数的大小的比较.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.15.(2013•抚顺)从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.考点:列表法与树状图法专题:图表型.分析:画出树状图,然后根据概率公式列式计算即可得解.解答:解:根据题意画出树状图如下:一共有6种情况,积是正数的有2种情况,所以,P(积为正数)==.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.(2013•抚顺)把直线y=2x﹣1向上平移2个单位,所得直线的解析式是y=2x+1.考点:一次函数图象与几何变换分析:直接根据“上加下减”的原则进行解答即可.解答:解:由“上加下减”的原则可知,直线y=2x﹣1向上平移2个单位,所得直线解析式是:y=2x﹣1+2,即y=2x+1.故答案为:y=2x+1.点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.17.(2013•抚顺)若矩形ABCD的对角线长为10,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长是20.考点:中点四边形分析:根据三角形的中位线定理可以得到四边形EFGH的四边分别是对角线的一半,然后根据矩形的对角线相等即可求解.解答:解:∵矩形ABCD的对角线长为10,∴AC=BD=10∵点E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=HG=AC=×10=5EH=GF=BD=×10=5∴四边形EFGH的周长为EF+FG+GH+HE=5+5+5+5=20.故答案为:20点评:本题考查了中点四边形的知识,解题的关键是根据三角形的中位线定理求得其边长等于对角线长的一半.18.(2013•抚顺)如图,在平面直角坐标系中,点A、B、C的坐标分别是(﹣1,﹣1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,﹣2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2013的坐标、是(2,﹣4).考点:规律型:点的坐标专题:规律型.分析:根据对称依次作出对称点,便不难发现,点P6与点P重合,也就是每6次对称为一个循环组循环,用2013除以6,根据商和余数的情况确定点P2013的位置,然后写出坐标即可.解答:解:如图所示,点P6与点P重合,∵2013÷6=335…3,∴点P2013是第336循环组的第3个点,与点P3重合,∴点P2013的坐标为(2,﹣4).故答案为:(2,﹣4).点评:本题是对点的变化规律的考查,作出图形,观察出每6次对称为一个循环组循环是解题的关键,也是本题的难点.三、解答题19.(2013•抚顺)先化简,再求值:,其中a=﹣1.考点:分式的化简求值专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=•=•=,当a=﹣1时,原式==.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.20.(2013•抚顺)某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这四个班共植树200棵;(2)请你在答题卡上不全两幅统计图;(3)求图1中“甲”班级所对应的扇形圆心角的度数;(4)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵?考点:条形统计图;用样本估计总体;扇形统计图分析:(1)根据乙班植树40棵,所占比为20%,即可求出这四个班种树总棵数;(2)根据丁班植树70棵,总棵数是200,即可求出丁所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以总棵数,即可得出丙植树的棵数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)用总棵数×平均成活率即可得到成活的树的棵数.解答:解:(1)四个班共植树的棵数是:40÷20%=200(棵);(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙植树的棵数是:200×15%=30(棵);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×95%=1900(棵).答:全校种植的树中成活的树有1900棵.故答案为:200.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题21.(2013•抚顺)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)考点:切线的判定;弧长的计算分析:(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可;(2)求出∠BOD=∠GOB,求出∠BOD的度数,根据弧长公式求出即可.解答:(1)证明:连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°,∴BD⊥AC,∵AB=BC,∴AD=DC,∵AO=OB,∴DO∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为半径,∴DE是⊙O切线;(2)解:∵DG⊥AB,OB过圆心O,∴弧BG=弧BD,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠BOG=∠BOD=70°,∴∠GOD=140°,∴劣弧DG的长是=π.点评:本题考查了弧长公式,切线的判定,平行线性质和判定,圆周角定理,等腰三角形的性质和判定,三角形的中位线等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.22.(2013•抚顺)2013年第十二届全国运动会将在辽宁召开,某市掀起了全民健身运动的热潮.某体育用品商店预测某种品牌的运动鞋会畅销,就用4800元购进了一批这种运动鞋,上市后很快脱销,该商店又用10800元购进第二批这种运动鞋,所购数量是第一批购进数量的2倍,但每双鞋进价多用了20元.(1)求该商店第二次购进这种运动鞋多少双?(2)如果这两批运动鞋每双的售价相同,且全部售完后总利润率不低于20%,那么每双鞋售价至少是多少元?考点:分式方程的应用;一元一次不等式的应用分析:(1)设该商场第一次购进这种运动鞋x双,则第二次购进数量为2x双,根据关键语句“每双进价多了20元”可得等量关系:第一次购进运动鞋的单价+20=第二次购进运动鞋的单价,根据等量关系列出方程,求出方程的解,再进行检验即可得出答案;(2)设每双售价是y元,根据数量关系:(总售价﹣总进价)÷总进价≥20%,列出不等式,解出不等式的解即可.解答:解(1)设该商场第一次购进这种运动鞋x双,由题意得:+20=,解得:x=30经检验,x=30是原方程的解,符合题意,则第二次购进这种运动鞋是30×2=60(双);答:该商场第二次购进这种运动鞋60双.(2)设每双售价是y元,由题意得:×100%≥21%,解这个不等式,得y≥208,答:每双运动鞋的售价至少是208元.点评:本题考查分式方程的应用和一元一次不等式的应用,读懂题意,找到关键描述语,找到合适的等量关系或不等关系是解决问题的关键.用到的公式是:利润率=×100%.五、解答题23.(2013•抚顺)在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高().考点:解直角三角形的应用-坡度坡角问题专题:几何图形问题.分析:延长BD交AE于点F,作FG⊥ED于点G,Rt△FGD中利用锐角三角函数求得FD 的长,从而求得FB的长,然后在直角三角形ABF中利用锐角三角函数求得AB的长即可.解答:解:延长BD交AE于点F,作FG⊥ED于点G,∵斜坡的顶部CD是水平的,斜坡与地面的夹角为30°,∴∠FDE=∠AED=30°,∴FD=FE,∵DE=18米,∴EG=GD=ED=9米,在Rt△FGD中,DF===6,∴FB=(6+6)米,在Rt△AFB中,AB=FB•tan60°=(6+6)×=(18+6)≈28.2米,所以古塔的高约为28.2米.点评:此题主要考查了解直角三角形的应用,解决本题的难点是把塔高的影长分为在平地和斜坡上两部分.六、解答题24.(2013•抚顺)某服装店以每件40元的价格购进一批衬衫,在试销过程中发现:每月销售量y(件)与销售单价x(x为正整数)(元)之间符合一次函数关系,当销售单价为55元时,月销售量为140件;当销售单价为70元时,月销售量为80件.(1)求y与x的函数关系式;(2)如果每销售一件衬衫需支出各种费用1元,设服装店每月销售该种衬衫获利为w元,求w与x之间的函数关系式,并求出销售单价定为多少元时,商场获利最大,最大利润是多少元?考点:二次函数的应用分析:(1)设y与x的函数关系式y=kx+b,根据售价与销量之间的数量关系建立方程组,求出其解即可;(2)根据利润=(售价﹣进价)×数量就可以表示出W,解答:解:(1)设y与x的函数关系式y=kx+b,由题意,得,解得:,∴y与x的函数关系式为:y=﹣4x+360;(2)由题意,得W=y(x﹣40)﹣y=(﹣4x+360)(x﹣40)﹣(﹣4x+360)=﹣4x2+160x+360x﹣14400+4x﹣360=﹣4x2+524x﹣14760,∴w与x之间的函数关系式为:W=﹣4x2+524x﹣14760,∴W=﹣4(x2﹣131x)﹣14760=﹣4(x﹣65.5)2+2401,当x=65.5时,最大利润为2401元,∵x为整数,∴x=66或65时,W=2400元.∴x=65或66时,W最大=2400元.点评:本题考查了待定系数法求一次函数和二次函数的解析式的运用,二次函数的顶点式的运用,解答时求出函数的解析式是关键.七、解答题25.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.考点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP=DE.解答:解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.故答案为DE=BC.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.八、解答题26.(2013•抚顺)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.考点:二次函数综合题分析:(1)先由直线AB的解析式为y=x+3,求出它与x轴的交点A、与y轴的交点B的坐标,再将A、B两点的坐标代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)设第三象限内的点F的坐标为(m,﹣m2﹣2m+3),运用配方法求出抛物线的对称轴及顶点D的坐标,再设抛物线的对称轴与x轴交于点G,连接FG,根据S△AEF=S△AEG+S△AFG﹣S△EFG=3,列出关于m的方程,解方程求出m的值,进而得出点F的坐标;(3)设P点坐标为(﹣1,n).先由B、C两点坐标,运用勾股定理求出BC2=10,再分三种情况进行讨论:①∠PBC=90°,先由勾股定理得出PB2+BC2=PC2,据此列出关于n的方程,求出n的值,再计算出PD的长度,然后根据时间=路程÷速度,即可求出此时对应的t值;②∠BPC=90°,同①可求出对应的t值;③∠BCP=90°,同①可求出对应的t值.解答:解:(1)∵y=x+3与x轴交于点A,与y轴交于点B,∴当y=0时,x=﹣3,即A点坐标为(﹣3,0),当x=0时,y=3,即B点坐标为(0,3),将A(﹣3,0),B(0,3)代入y=﹣x2+bx+c,得,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)如图1,设第三象限内的点F的坐标为(m,﹣m2﹣2m+3),则m<0,﹣m2﹣2m+3<0.∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴对称轴为直线x=﹣1,顶点D的坐标为(﹣1,4),设抛物线的对称轴与x轴交于点G,连接FG,则G(﹣1,0),AG=2.∵直线AB的解析式为y=x+3,∴当x=﹣1时,y=﹣1+3=2,∴E点坐标为(﹣1,2).∵S△AEF=S△AEG+S△AFG﹣S△EFG=×2×2+×2×(m2+2m﹣3)﹣×2×(﹣1﹣m)=m2+3m,∴以A、E、F为顶点的三角形面积为3时,m2+3m=3,解得m1=,m2=(舍去),当m=时,﹣m2﹣2m+3=﹣m2﹣3m+m+3=﹣3+m+3=m=,∴点F的坐标为(,);(3)设P点坐标为(﹣1,n).∵B(0,3),C(1,0),∴BC2=12+32=10.分三种情况:①如图2,如果∠PBC=90°,那么PB2+BC2=PC2,即(0+1)2+(n﹣3)2+10=(1+1)2+(n﹣0)2,化简整理得6n=16,解得n=,∴P点坐标为(﹣1,),∵顶点D的坐标为(﹣1,4),∴PD=4﹣=,∵点P的速度为每秒1个单位长度,∴t1=;②如图3,如果∠BPC=90°,那么PB2+PC2=BC2,即(0+1)2+(n﹣3)2+(1+1)2+(n﹣0)2=10,化简整理得n2﹣3n+2=0,解得n=2或1,∴P点坐标为(﹣1,2)或(﹣1,1),∵顶点D的坐标为(﹣1,4),∴PD=4﹣2=2或PD=4﹣1=3,∵点P的速度为每秒1个单位长度,∴t2=2,t3=3;③如图4,如果∠BCP=90°,那么BC2+PC2=PB2,即10+(1+1)2+(n﹣0)2=(0+1)2+(n﹣3)2,化简整理得6n=﹣4,解得n=﹣,∴P点坐标为(﹣1,﹣),∵顶点D的坐标为(﹣1,4),∴PD=4+=,∵点P的速度为每秒1个单位长度,∴t4=;综上可知,当t为秒或2秒或3秒或秒时,以P、B、C为顶点的三角形是直角三角形.点评:本题考查了二次函数的综合题型,其中涉及到的知识点有运用待定系数法求抛物线的解析式,函数图象上点的坐标特征,抛物线的顶点坐标和三角形的面积求法,直角三角形的性质,勾股定理.综合性较强,难度适中.(2)中将△AEF的面积表示成S△AEG+S△AFG﹣S△EFG,是解题的关键;(3)中由于没有明确哪一个角是直角,所以每一个点都可能是直角顶点,进行分类讨论是解题的关键.。

2014年中考数学试题(副卷)参考答案及评分标准

2014年中考数学试题(副卷)参考答案及评分标准

2014年中考数学试题(副卷)参考答案及评分标准2014年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使⽤. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分.⼀、选择题(每⼩题3分,共30分)1.A2.C3.B4.B5.D6.D7.C8.A9.C 10.D ⼆、填空题(每⼩题3分,共24分)11.x ≥-2且x ≠0 12.0.8 13. (2)(2)x x x +- 14.6060322x x -= 15.(4,1)16.217.50°18.222n -或2224n a或24n -三、解答题(19、20每⼩题9分,共18分)19.解:2213(2)242x x x x x -÷-+++ =(1)(1)(2)(2)32(2)22x x x x x x x x +--+??÷+??+++??…………………………2分 =2(1)(1)432(2)22x x x x x x x ??+--÷+??+++??…………………………3分 =2(1)(1)432(2)2x x x x x x +--+÷++ ……………………………4分 =(1)(1)22(2)(1)(1)x x x x x x x +-+?++- …………………………5分=12x…………………………6分当x = tan45°+2cos60°=1+1=2 时, …………………………8分原式=12x =14…………………………10分 20. 解:由树形图可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=4116= ………………10分次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=41164= ………………………10分四、解答题(本题14分) 21.解:(1)a=28%,b=200(2)设⾝体状况 “良好”的学⽣有x ⼈, “及格”的学⽣有y ⼈.3463%200200x y xy -=??+= ………2分解得:8046x y =??=? ……………4分 ………………………6分(3)……………………9分(4)200÷10%=2000(⼈)……………………10分 2000×=560(⼈) ……………………12分五、解答题(22⼩题10分,23⼩题14,共24分)22.解:(1)连结OF∵AC=BC ∠C=∠C CF=CE ,∴△ACF ≌△BCE …………………………3分 (2)证明:∵△ACF ≌△BCE∴∠B=∠A …………………………4分∵∠C=90°∴∠A+∠AFC=90° …………………………5分∵OB=OF∴∠B=∠OFB …………………………6分∴∠OFB+∠AFC=90° …………………………7分第22题图E∴∠OFA=90° …………………………8分∴ AF ⊥OF ………………………………9分∴AF 是⊙O 的切线 ………………………………10分 23. 解:过点B 作BF ⊥CD,垂⾜为F. ∵∠ABC=120°∴∠FBC=30° ……………1分在Rt △BCF 中,设BF=x ,则AD=x∴ CF=BFtan30°x ………3分在Rt △ABE 中,∠AEB=45°,∴AB=AE=8 ( ……4分)∴DF=AB=8 ………5分∴x +8 …………………6分在Rt △CDE 中,∠CED=60°ED=8-x∵ tan ∠CED =CDED∴CD=ED tan ∠…7分第23题图即3x 8-x ) …………………8分解得x=6-………………9分-=2..................10分 DC=CF+DF=6+≈9.5(⽶) ..................11分答:路灯C 到地⾯的距离约为9.5⽶ (12)分六、解答题(本题12分) 24.解:(1)∵10×1=10,10010330-=……………1分∴甲⾛完全程需4⼩时,∵甲出发3⼩时后⼄开车追赶甲,两⼈同时到达⽬的地∴⼄⾛完全程需1⼩时,∴⼄的速度是60601=(千⽶/时)………………2分(2)设AB 的解析式为y=kx+b. ∵10×1=10,∴点A 的坐标是(1,10) …………………3分由(1)得点B 的坐标是(4,100)第24题图∴104100k b k b +=??+=? …………………4分C解得3020 kb==-?∴AB的解析式为y=30x-20. …………………6分当y=40时,30x-20=40 …………………5分∴X=2 …………………7分∴甲出发2⼩时后两⼈第⼀次相遇…………………8分(3)设OA的解析式为y=kx∵点A的坐标是(1,10)∴k=10,∴OA的解析式为y=10x, …………………9分设DB的解析式为y=mx+n.∵点D的坐标是(3,40),点B的坐标是(4,100)∴3404100m nm n+=+=…………………10分解得60140 mn==-∴DB的解析式为y=60x-140. …………………11分①40-(30x-20)=12,解得x=1.6; …………………12分②30x-20-40=12,解得x=2.4; …………………13分③30x-20-(60x-140)=12;解得x=3.6 ……………14分∴甲出发1.6⼩时,2.4⼩时或3.6⼩时后两⼈相距12千⽶.七、解答题(本题14分)25. (1)如图1①证明:∵△ABC是等边三⾓形∴AB=AC,∠B=∠CAF=60°⼜∵AF=BE ……………2分∴△ABE≌△CAF ……………3分∴AE=CF ……………4分②证明:∵△ABE≌△CAF∴∠BAE=∠ACF ………………5分⼜∵∠BAC=∠FCG=60°即∴∠BAE+∠EAC=∠ACF+∠ACG∴∠EAC=∠ACG ……………6分第25题图1 ∴AE∥CG ……………7分⼜∵AE=CF=CG∴四边形AECG是平⾏四边形. ……………8分(2)四边形AECG是平⾏四边形………… 9分证明:如图2∵△ABC是等边三⾓形B∴AB=AC ,∠ABC=∠CAB=60°∴∠AEB=∠CAF=120°⼜∵AF=BE ∴△ABE ≌△CAF∴AE=CF ,∠BAE=∠ACF ……………11分⼜∵∠BAC=∠FCG=60°∴∠BAE+∠BAC=∠ACF+∠即∠EAC=∠ACG ……………12分∴AE ∥CG ……………13分第25题图2 ⼜∵AE=CG∴四边形AECG 是平⾏四边形. ……………14分⼋、解答题(本题14分)26. (1)解:∵抛物线的对称轴是2x =∴2122b-=-∴b=2. …………………2分(2)解:延长DC 交x 轴于点H ,∵∠CAB=90°∴∠CAH+∠HAB=90°∵MN ⊥AF ∴∠FAB+∠ABF=90° ∴∠CAH=∠ABF∵∠AFB=∠AHC=90°,AC=AB∴△ACH ≌△ABF ………………4分∴CH=AF=32,AH=BF=-m ∴C (12-m ,32) …………………6分(3)解:如图1,当点D 在点C 上⽅时∵CD ∥y 轴,∵点D 在抛物线上,横坐标是12-m ,将x=12-m 代⼊21y =-得 2111()2()3222y m m =--+-+ ……………7分化简得:21331228y m m =--+∴D (12-m ,21331228m m --+)……………8分∴CD=21331228m m --+-32=21319228m m --+…9分∵四边形OEDC 是平⾏四边形∴OE=CD=3,第26题图1E∴21319228m m --+=3 ……………9分解得152m =-,212m =- ……………10分∴B(2, 12-)或B(2, 5 2-) …………………11分当点D 在点C 下⽅时∵C (12-m ,32),D (12-m ,21331228m m --+ 32-(21331228m m --+)=3 …………………12分解得1m =2m =∴B(2,32--)或B(2,32-+)………13分第26题图2 综上,当四边形OEDC 是平⾏四边形时,点B 的坐标是(2, 12-),(2, 52-), (2,32--),(2,32-+) …………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省抚顺市2014年中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
解:﹣
2.(3分)(2014•抚顺)若一粒米的质量约是0.000012kg,将数据0.000012用科学记数法
3.(3分)(2014•抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD 的度数是()
4.(3分)(2014•抚顺)如图放置的几何体的左视图是()
B C
6.(3分)(2014•抚顺)函数y=x﹣1的图象是()
B C
8.(3分)(2014•抚顺)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来
+=2 B
﹣=2
C
+= ﹣=
由题意得,﹣=2
9.(3分)(2014•抚顺)如图,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点P 是双曲线y=(
x >0)上的一个动点,PB ⊥y 轴于点B ,当点P 的横坐标逐渐增大时,四边形OAPB 的面积将会( )
•=+=+•10.(3分)(2014•抚顺)如图,将足够大的等腰直角三角板PCD 的锐角顶点P 放在另一个等腰直角三角板PAB 的直角顶点处,三角板PCD 绕点P 在平面内转动,且∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,设AB=2,AN=x ,BM=y ,则能反映y 与x 的函数关系的图象大致是( )
B
C
AH=,
,利用相似比得= PA=PB=AH=
=,即=,
二、填空题(本大题共8小题,每小题3分,共24分)
11.(3分)(2014•抚顺)函数y=中,自变量x的取值范围是x≠2.
12.(3分)(2014•抚顺)一组数据3,5,7,8,4,7的中位数是6.
13.(3分)(2014•抚顺)把标号分别为a,b,c的三个小球(除标号外,其余均相同)放在一个不透明的口袋中,充分混合后,随机地摸出一个小球,记下标号后放回,充分混合后,再随机地摸出一个小球,两次摸出的小球的标号相同的概率是.
14.(3分)(2014•抚顺)将抛物线y=(x﹣3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为y═(x﹣2)2+3.
15.(3分)(2014•抚顺)如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF的值是1.
16.(3分)(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得
∠APC=75°,∠BPD=30°,则河流的宽度约为米.
+
PE=
故答案为:
17.(3分)(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.
18.(3分)(2014•抚顺)如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,
On和点E4,E5,…,En.则OnEn=AC.(用含n的代数式表示)
,可证得,

=
可得:
AC
故答案为:.
三、解答题(第19题10分,第20题12分,共22分)
19.(10分)(2014•抚顺)先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°.
••
()﹣1•tan60°=1+2
x=1+2时,
=2
20.(12分)(2014•抚顺)居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.
请你根据图中提供的信息解答下列问题:
(1)求本次被抽查的居民有多少人?
(2)将图1和图2补充完整;
(3)求图2中“C”层次所在扇形的圆心角的度数;
(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.
四、解答题(第21题12分,第22题12分,共24分)
21.(12分)(2014•抚顺)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;
(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;
(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.
22.(12分)(2014•抚顺)近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.
(1)求每台A种、B种设备各多少万元?
(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?
解得:
五、解答题(满分12分)
23.(12分)(2014•抚顺)如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、AD长为半径作⊙A交AB于点M,过点B作⊙A的切线BF,切点为F.
(1)请判断直线BE与⊙A的位置关系,并说明理由;
(2)如果AB=10,BC=5,求图中阴影部分的面积.
BF=AF=5,

六、解答题(满分12分)
24.(12分)(2014•抚顺)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?

七、解答题(满分12分)
25.(12分)(2014•抚顺)已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;
(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.
=.
,.
26.(14分)(2014•抚顺)如图,抛物线y=ax2+x+c与x轴交于点A(4,0)、B(﹣1,0),与y轴交于点C,连接AC,点M是线段OA上的一个动点(不与点O、A重合),过点M作MN∥AC,交OC于点N,将△OMN沿直线MN折叠,点O的对应点O′落在第一象限内,设OM=t,△O′MN与梯形AMNC重合部分面积为S.
(1)求抛物线的解析式;
(2)①当点O′落在AC上时,请直接写出此时t的值;
②求S与t的函数关系式;
(3)在点M运动的过程中,请直接写出以O、B、C、O′为顶点的四边形分别是等腰梯形和平行四边形时所对应的t值.
OM=AM==
S=t2
N=t
y=ax2+

﹣x+2
t==
﹣x2+
ON=OM=
S===
N=ON=
﹣(
t=m
m2=,
)或(,)
t=,)时,以t=.。

相关文档
最新文档