风机动平衡及静平衡

合集下载

什么是动平衡? 什么是静平衡?

什么是动平衡? 什么是静平衡?

什么是动平衡?什么是静平衡?发布日期:2010-5-25 13:13:46常用机械中包含着大量的作旋转运动的零部件,例如各种传动轴、主轴、电动机和汽轮机的转子等,统称为回转体。

在理想的情况下回转体旋转时与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。

但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。

为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。

1、定义:转子动平衡和静平衡的区别1)静平衡在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。

2)动平衡(Dynamic Balancing )在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。

2、转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。

其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。

原因很简单,静平衡要比动平衡容易做,省时、省力、省费用。

现代,各类机器所使用的平衡方法较多,例如单面平衡(亦称静平衡[1])常使用平衡架,双面平衡(亦称动平衡)使用各类动平衡试验机。

静平衡精度太低,平衡效果差;动平衡试验机虽能较好地对转子本身进行平衡,但是对于转子尺寸相差较大时,往往需要不同规格尺寸的动平衡机,而且试验时仍需将转子从机器上拆下来,这样明显是既不经济,也十分费工(如大修后的汽轮机转子)。

特别是动平衡机无法消除由于装配或其它随动元件引发的系统振动。

风机静平衡的操作方法

风机静平衡的操作方法

风机静平衡的操作方法风机静平衡是指在设备制造或安装后,通过调整设备上的配重,使风机在正常工作时旋转平稳、振动小,达到静态平衡的状态。

风机静平衡不仅可以提高风机的工作效率和稳定性,还能减少噪音和振动,延长设备的使用寿命。

一、风机静平衡的原理风机静平衡的原理是通过调整风机上的配重,使其质心与旋转轴线重合,达到静态平衡,从而减小风机的振动和不平衡力矩。

风机静平衡主要包括两个方面的工作:一是确定风机的不平衡质量和位置,二是确定配重的大小和位置。

二、风机静平衡的操作步骤1.准备工作:确定静平衡的标准和要求,准备平衡设备和工具,如配重板、支架、测振仪等。

2.安装风机:将风机安装在支架上,并使其旋转自由。

3.调整风机位置:检查风机的转动是否畅顺,如果有轻微阻力,可以调整风机的位置,使其运行自由。

4.测量振动:使用测振仪测量风机的振动情况,记录振动数据,包括振动的幅值和频率。

5.确定不平衡质量和位置:根据振动数据,计算风机的不平衡质量和位置,确定需要添加配重的位置。

6.添加配重:根据计算结果,在风机上添加配重,并固定在相应位置。

配重的大小和位置可以根据振动数据进行试错调整,直到达到静态平衡为止。

7.重新测量振动:在添加完配重后,再次使用测振仪测量风机的振动情况,确认振动是否减小,是否已达到静态平衡。

8.调整配重:根据再次测量的振动数据,进一步调整配重的大小和位置,直到达到最佳的静态平衡效果。

9.固定配重:确定最佳的配重大小和位置后,使用固定装置将配重固定在风机上,以防止在运行中发生松动。

10.再次验证:重复测量振动,确认风机的振动是否满足静态平衡的要求,如不满足,则进行进一步调整和优化。

11.记录和报告:记录风机静平衡的操作过程和结果,制作报告,并保存在相应的档案中,以备后续参考和维护。

以上是风机静平衡的操作步骤,根据实际情况可能会有所不同,操作时应注意安全,遵循相关的操作规程和要求。

同时,需要注意的是,风机静平衡只能减小振动和不平衡力矩,而不能完全消除振动,因此在实际运行中还需进行动平衡调整,以进一步提高风机的工作效率和稳定性。

风机叶轮动平衡标准

风机叶轮动平衡标准

风机叶轮动平衡标准风机叶轮动平衡是指在风机叶轮旋转时,通过调整叶片的质量分布,使得叶轮在高速运转时能够保持稳定、平衡的状态。

风机叶轮动平衡的目的是减少振动和噪音,提高风机的运行效率和使用寿命。

下面将介绍风机叶轮动平衡的标准。

风机叶轮动平衡标准是根据国家相关标准制定的,主要包括静平衡和动平衡两个方面。

首先是静平衡,静平衡是指叶轮在静止状态下的平衡。

根据标准规定,风机叶轮的静平衡误差应符合一定的范围。

一般来说,对于小型风机,静平衡误差应控制在0.2g.mm/kg以内;对于大型风机,静平衡误差应控制在0.1g.mm/kg以内。

静平衡的实现需要使用专门的静平衡设备,通过在叶轮上加入适量的配重物,使得叶轮在静止状态下能够平衡。

静平衡过程中,需对叶轮进行多次试重,以逐步调整叶片上的配重物,直至达到静平衡要求。

除了静平衡,风机叶轮还需要进行动平衡。

动平衡是指叶轮在旋转状态下的平衡。

与静平衡不同,动平衡需要考虑到叶轮在高速旋转时的离心力和离心力矩。

风机叶轮的动平衡误差应符合一定的范围。

根据标准规定,对于小型风机,动平衡误差应控制在1.5g.mm/kg以内;对于大型风机,动平衡误差应控制在1.0g.mm/kg以内。

动平衡的实现同样需要使用专门的动平衡设备。

在动平衡过程中,需将风机叶轮安装在动平衡设备上,通过在叶片上加入适量的配重物,使得叶轮在旋转状态下能够平衡。

动平衡过程中,需进行多次试重,逐步调整叶片上的配重物,直至达到动平衡要求。

风机叶轮的动平衡标准是为了保证风机的稳定运行和安全使用而制定的。

如果风机叶轮的动平衡不符合标准要求,将会导致风机振动、噪音大,甚至影响风机的正常运行。

因此,对于风机叶轮的动平衡,必须严格按照标准进行检测和调整。

总结起来,风机叶轮动平衡标准包括静平衡和动平衡两个方面。

静平衡是指叶轮在静止状态下的平衡,动平衡是指叶轮在旋转状态下的平衡。

根据标准规定,风机叶轮的静平衡误差和动平衡误差都有一定的范围要求。

动平衡与静平衡

动平衡与静平衡

什么是动平衡‎?什么是静平衡‎?常用机械中包‎含着大量的作‎旋转运动的零‎部件,例如各种传动‎轴、主轴、电动机和汽轮‎机的转子等,统称为回转体‎。

在理想的情况‎下回转体旋转‎时与不旋转时‎,对轴承产生的‎压力是一样的‎,这样的回转体‎是平衡的回转‎体。

但工程中的各‎种回转体,由于材质不均‎匀或毛坯缺陷‎、加工及装配中‎产生的误差,甚至设计时就‎具有非对称的‎几何形状等多‎种因素,使得回转体在‎旋转时,其上每个微小‎质点产生的离‎心惯性力不能‎相互抵消,离心惯性力通‎过轴承作用到‎机械及其基础‎上,引起振动,产生了噪音,加速轴承磨损‎,缩短了机械寿‎命,严重时能造成‎破坏性事故。

为此,必须对转子进‎行平衡,使其达到允许‎的平衡精度等‎级,或使因此产生‎的机械振动幅‎度降在允许的‎范围内。

1、定义:转子动平衡和‎静平衡的区别‎1)静平衡在转子一个校‎正面上进行校‎正平衡,校正后的剩余‎不平衡量,以保证转子在‎静态时是在许‎用不平衡量的‎规定范围内,为静平衡又称‎单面平衡。

2)动平衡(Dynami‎c Balanc‎i ng )在转子两个校‎正面上同时进‎行校正平衡,校正后的剩余‎不平衡量,以保证转子在‎动态时是在许‎用不平衡量的‎规定范围内,为动平衡又称‎双面平衡。

2、转子平衡的选‎择与确定如何选择转子‎的平衡方式,是一个关键问‎题。

其选择有这样‎一个原则:只要满足于转‎子平衡后用途‎需要的前提下‎,能做静平衡的‎,则不要做动平‎衡,能做动平衡的‎,则不要做静动‎平衡。

原因很简单,静平衡要比动‎平衡容易做,省时、省力、省费用。

现代,各类机器所使‎用的平衡方法‎较多,例如单面平衡‎(亦称静平衡[1])常使用平衡架‎,双面平衡(亦称动平衡)使用各类动平‎衡试验机。

静平衡精度太‎低,平衡效果差;动平衡试验机‎虽能较好地对‎转子本身进行‎平衡,但是对于转子‎尺寸相差较大‎时,往往需要不同‎规格尺寸的动‎平衡机,而且试验时仍‎需将转子从机‎器上拆下来,这样明显是既‎不经济,也十分费工(如大修后的汽‎轮机转子)。

风机动平衡及静平衡【共49张PPT】

风机动平衡及静平衡【共49张PPT】
3)、停止运行设备,在轴上找出各段弧线的中心,连接成一条线 A-A,这条线表示了在这个方向上轴心偏移值为最大。
弧线(间距5-6mm)
轴承

图九
4)、做转子动平衡的记录图。在画弧线一侧的叶轮处画一配 重圆,在圆周上标出A点的位置。 A点位置的确定:延长A-A线与
配重圆相交,该交点即为A点,并将测得的振动值Soa按一定比例 沿OA向作出振动向量oa ,如图10所示:
按7)拆(除向原下试加箭重头量),将键求切出换的平输衡入块的重数量加位到;应加的位置上;
趋势,这种不平衡现象也称为静不平衡。 当根转据子转的子重质量量小分于布73的58不N时同,,转b=子10不m平m;衡情况可分为三种:
按并把(试向转子下开箭始头转子)开键始失切去换平输衡的入重的量数计下位来;。
在10画)弧拆线除一侧原的来叶的轮处试画加一重配重量圆;,将在1圆2周0g上的标平出A衡点重的位块置固。 定在230°的位置上.
8第)第二次三实次际启加动重转:机Q,=此1.时测得振幅应小到转机允许的范围内. 四这、就闪是光找法显测相著找静动不平平衡 衡所要加的平衡重量。
按按我计F们算F1(3用 加保返仪重存回器2)Q可测到=保A出测0存干/K有量扰=关0界力.的的面振最动。值大,振该幅值(作振为动加值重)后振及动相值位,(可角直度接)用变于平化衡,计就算可。以平衡它。 77))由由作作图法图求法出求的试出加的重试块所加产重生的块振所动产值O生A3的为振0. 动值OA3为0.
E——导轨材料的弹性模数,对于淬火钢 E=0.2*106Mpa;
[σ]——导轨和转轴材料的许用挤压应力,淬火钢可 采取700~800 Mpa;
d——转轴轴颈的直径,cm。
在实际应用中,导轨的平面宽度,常按转子 的重量近似的确定:当转子的重量小于4905N时, b=6~8mm;当转子的重量小于7358N时,b=10mm;当转 子的重量小于19620N时,b=30mm。

风机叶轮动平衡方法

风机叶轮动平衡方法

风机叶轮动平衡方法
风机叶轮动平衡是指对风机叶轮进行调整,使其在运转过程中达到平衡状态,避免振动和噪音的产生,提高风机的工作效率和使用寿命。

常用的风机叶轮动平衡方法有以下几种:
1. 静平衡:静平衡是在叶轮未安装在风机上时进行的平衡调整。

通过在叶轮上加装或削减一定质量的块体,使叶轮的重心与叶轮轴线重合,从而达到静平衡状态。

2. 动平衡:动平衡是在叶轮安装在风机上并运转时进行的平衡调整。

首先使用动态平衡仪测试叶轮的不平衡情况,然后在叶轮上加装或削减一定质量的块体,以消除或减小叶轮的不平衡。

3. 双面动平衡:双面动平衡是指对风机叶轮两侧进行动平衡调整。

即在叶轮两侧分别加装或削减一定质量的块体,以使叶轮两侧的不平衡量减小或归零。

4. 动平衡校正:对于动平衡调整效果不理想的情况,可以使用动平衡校正方法。

该方法主要通过切削、加工或重调叶轮的鼻部、叶片或轮毂,使叶轮达到平衡状态。

5. 振动监测和调整:在风机运行过程中,可以使用振动监测仪器进行振动检测,根据检测结果进行调整。

通过调整叶轮的平衡状况,减小风机的振动和噪音。

需要注意的是,风机叶轮动平衡的方法选择要根据具体情况和要求,有时可能需要结合不同的方法进行调整。

同时,在进行叶轮动平衡调整时,要保证操作安全,并严格按照相关标准和规范进行操作。

静平衡和动平衡理论和方法和区别

静平衡和动平衡理论和方法和区别

ij
加试重后的振动矢量 原始振动矢量 j平面上加的试重
式中:下标 i 1,2,, P(轴承号即测取振动讯号位置) 下标 j 1,2,, q(加试重旳径向平面号)
在零刻度位置加一单位质量后对某轴承引起旳振动
(振幅及相位)旳变化称为幅相影响系数(记为 ij 或
Kij)。影响系数是一矢量,表达为 。 2. 影响系数计算
(2) A0 、B0 之间夹角很大(≈180º),且振幅值相接近 (图3-13)。应加(或减)反对称平衡质量。
(3) A0 、B0 之间夹角接近90º,振幅值相差不大
(4)(图3-14)。应在两侧加对称和反对称平衡质量。
振动初步分析
(4) A0 、B0 之间夹角不大,但振幅相差很大(图 3-15)。在A端加平衡质量(动.静) (5) A0 、B0 之间夹角很大(≈180º),振幅相
足机组平稳运转旳要求。对于挠性转子有时也要 先进行低速动平衡。 现场广泛使用动平衡台来进行转子低速旳平衡。 它利用机械共振放大来拟定不平衡重量旳数值和 位置。
三、高速动平衡 低速平衡校正后旳转子,高速时,可能平衡
状态不佳,故还需进 行高速动平衡。
(一) 相对相位法 利用相对相位变化
找平衡旳措施称为相对 相位法。利用闪光灯或 光电头等均可到达测相 找平衡旳目旳。
去重),使转子取得平衡
(二)动不平衡 假设有一种具有两个平 面旳转子旳重心位于同一转轴 平面旳两侧,且m1r1=m2r2, 整个转子旳质心Mc仍恰好位于 轴线上(图3-3),显然,此 时转子是静平衡旳。但当转子 旋转时,二离心力大小相等、 方向相反,构成一对力偶,此 力偶矩将引起二端轴承产生周 期性变化旳动反力,其数值为:
(一)根据经验公式求得试加重量大小

风机叶轮动平衡标准

风机叶轮动平衡标准

风机叶轮动平衡标准风机叶轮动平衡是指在风机运行过程中,为了保证风机叶轮的正常运转,需要对其进行动平衡处理。

风机叶轮的动平衡是风机正常运行的基础,也是确保风机性能稳定和延长使用寿命的重要措施。

风机叶轮动平衡的标准通常要求在风机设计和制造过程中,叶轮的几何形状、质量分布和转动精度等方面都要符合一定的要求。

这些要求主要包括以下几个方面:1. 静平衡:在风机叶轮安装之前,需要进行静平衡处理。

静平衡是指在叶轮停止转动的情况下,通过调整叶轮上的质量分布,使叶轮在任何位置都能保持平衡。

静平衡的目的是消除叶轮的静不平衡力矩,确保叶轮在运行时不会出现振动和共振现象。

2. 动平衡:在风机叶轮安装之后,还需要进行动平衡处理。

动平衡是指在叶轮运转的情况下,通过调整叶轮上的质量分布,使叶轮在高速旋转时能够保持平衡。

动平衡的目的是消除叶轮的动不平衡力矩,减小叶轮的振动和噪声,提高风机的运行稳定性和可靠性。

3. 平衡质量标准:风机叶轮动平衡的质量标准通常采用国际标准ISO1940《旋转机械-平衡品质的规定》。

该标准规定了不同类型旋转机械的动平衡质量等级和振动速度限值。

根据风机的使用环境和要求,可以选择不同的动平衡质量等级和振动速度限值。

4. 动平衡方法:风机叶轮的动平衡通常采用静态平衡法、半静平衡法和动平衡法。

静态平衡法是通过在叶轮上加上固定的校正质量来达到平衡;半静平衡法是在叶轮上加上可调校的校正质量来达到平衡;动平衡法是通过在叶轮上加上可调校的校正质量和转动校正质量来达到平衡。

根据不同的叶轮结构和平衡要求,可以选择不同的动平衡方法。

5. 动平衡设备:风机叶轮的动平衡通常需要使用专用的动平衡设备。

动平衡设备主要包括平衡机、加速度传感器、转速传感器等。

平衡机可以测量和分析叶轮的动平衡状态,根据平衡结果进行校正调整。

风机叶轮的动平衡是保证风机正常运行的重要环节,符合动平衡标准可以提高风机的运行稳定性和可靠性,减小振动和噪声,延长使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E——导轨材料的弹性模数,对于淬火钢 E=0.2*106Mpa;
[σ]——导轨和转轴材料的许用挤压应力, 淬火钢可采取700~800 Mpa;
d——转轴轴颈的直径,cm。
在实际应用中,导轨的平面宽度,常按转 子的重量近似的确定:当转子的重量小于4905N时, b=6~8mm;当转子的重量小于7358N时,b=10mm;当 转子的重量小于19620N时,b=30mm。
12
(2)在偏重的对侧(即停止时正好朝上方的半径上)试加 重块,试加重块的重量根据反复试验确定。直到转子能 够在任何位置停住。
(3)称出试加重块的重量,选取等重量的铁块焊在所确定 的位置上。这就是找显著静不平衡所要加的平衡重量。 上述所加的重量和位置不一定准确,只能说是消除 了转子的显著静不平衡,但转子还有一部分剩余静不平 衡。
M2既不在通过轴心线的同一平面上,也不 在轴线的同一侧,将动不平衡重量分解后 即属同时存在上述两种不平衡,这种情况 最多,称为动静混合不平衡。
M1
图五
M2
6
转子不平衡对机械设备的影响
• 运转噪音及振动大
• 轴承易高温、损坏 • 机械轴封寿命减短 • 联轴器寿命减短 • 基础易松动变形 • 设备结构强制损坏 • 润滑油泄漏
7
三、转子找静平衡 以风机转子找静平衡方法为例。新制造的风
机转子,或者在检修时补焊过的转子,必须在 安装前先找静平衡。 1、找静平衡的工具
如果风机是单吸式悬臂转子,在找静平衡前 应按叶轮孔径车一根假轴,轴的长度应使其每 端露出叶轮300mm左右。对双吸式风机转子,就 不需要制假轴了,可以利用本身的轴.转子找静 平衡是在平衡架上进行的。它是由两根截面相 同的平行导轨和可调整高度的支架组成的,如 图6所示。
导轨由高碳钢制成,导轨表面的光洁度应不低 于▽8。支架上的导轨应在同一水平面上,水平面 允许误差为0.05mm/m,两导轨应保持平行,允许 误差为2 mm/m,导轨长度不应小于7d(d为轴颈的 直径或假轴的直径)。
10
导轨工作面的宽度b可按下式计算
b =0.36 G*E/[σ]2*d cm
式中
G——1/2转子重量,N;
14
试加重量
剩余静不平衡曲线
50 40 30 20 10 0
123456781 33 42 50 40 30 20 10 22 33
2
3
4
1
5
8
6
7
图八
15
(4)从曲线上找出最大配重W最大和最小配重W最小,从而计 算出转子的剩余静不平衡重量W余 W余=(W最大-W最小)/2,
M1*r1=M2*r2--------------------------(1-2) 式中 M2------找静平衡时加上的重量,
r2------- M2所在位置偏离轴心的距离; 根据转子质量分布的不同,转子不平衡情况可分为三种:
2
1、静不平衡
图一所示为一根很窄的转子(如排粉机转子、轴加 风机转子)。静止时转子的不不平衡重量M1所在位置总是 转到最低位置的现象,称为静不平衡。
一、概述:
理想转机的转子,其轴延长度每一段的重心均于轴 的几何中心重合。但实际上,制造加工不可能完全精确。 材料的质量分布也不是绝对均匀,在装配过程中也有一 定程度的误差,再如检修过的转子,对磨损的叶轮可能 进行过焊补等。均会造成转子不平衡,因此转子往往是 不平衡的。转动机械运转是否正常,一般可以从转机轴 承的振动大小来判断。引起转机振动的原因很多,转子 不平蘅,常常是转机振动的原因之一。不平衡的转子在 转动时会产生离心力,此力周期性地冲击着轴承,迫使 轴承振动。
1
二、转子不平衡产生的离心力计算公式
转子不平衡产生的离心力F按下式计算: F=M1*r1*ω2/g------------------------(1-1) 式中 M1-------仅仅是转子不平衡部分的重量
r1------- M1所在位置偏离轴心的距离; 方向转上子比找较静方平便衡的就位是置要上找加到一M块1所适在当的重方量向M,并2,并在使它:的反
r
M1
图一
3
图2所示为一很宽的转子(如多级离心式水泵 的转子), 它的不平衡重量可认为半个转子的不 平衡重量为M1,另半个转子的不平衡重量为M2, 且M1和 M2在同一平面和在轴心的同一侧,M1和 M2共同作用的结果也是当转子静止时它们所在的位 置有转向最低位置的趋势,这种不平衡法
1)找显著静平衡
将转子轻轻的放在预先校正好的导轨的平衡架上(之前 要检查两导轨在同一水平面且平行度在标准范围内),并延 导轨全长滚动转子,检查导轨是否有弯曲现象。转子的轴心 线应与导轨垂直,如不垂直,转子滚动时将跑偏。 (1) 将转子在平衡架的导轨上往复滚动数次,转子在滚动 时,不平衡重量所在的位置自然是垂直向下的。如果转子的 停止位置始终不变,也就是转子垂直向下这一半径位置几次 试验都一样。它就是偏重的一侧,可在转子上做上记号。
8
导轨常见的断面形状有圆形、圆缺形、菱 形、矩形和梯形等,如图7所示。
b
b
b
b
圆形 圆缺形 菱形 支架
矩形
梯形
图七
转子
导轨
图六
9
圆形断面的导轨精度最高,而且容易制作,但 刚度较低,易变形,所以只能用于重量较轻的转 子。矩形和梯形断面的导轨刚度较高,可用于重 量比较大的转子。菱形断面的导轨则可用于重量 中等的转子。
13
2)找剩余静平衡
1) 在叶轮上划一配重圆,将圆周分八等分,按顺 序在等份点上编号1、2……8。 (2) 先使1点和轴心共处于一条水平线上,并在1点试 加重量,逐渐增加,直到转子失去平衡,并在导轨上 开始滚动为止。并把试转子开始转子开始失去平衡的 重量计下来。其它各点都照样作一遍。 (3)把八个点所加重量的记录,用坐标表示出来,如 下图8所示;
M2 M1
图二
4
2、动不平衡
在图3中,加上平衡重块M3之后即静平衡了, 但如果M3没有加在M1所决定了的垂直轴心的平面内, 则在转动时,M1和 M3分别形成的离心力不但不能 互相抵消,反而形成不平衡力偶,将引起振动, 这就是动不平衡。如图4所示。
M1
M3
图三
r1
r3
M1
M3
图四
5
3、动静混合不平衡 如图5所示,当转子的不平衡重量M1和
相关文档
最新文档