中考数学分类汇编考点 正方形
2013年中考数学试卷分类汇编-四边形(正方形)

正方形1、(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()∴PE=EM=FP=FN=NP又∵PE=EM=PM FP=FN=NP ACO 48816t(s)S (2cm (B )(C )O488 16t(s)S (2cm (D )2、(2013年临沂)如图,正方形ABCD 中,AB=8cm,对角线AC,BD 相交于点O,点E,F 分别从B,C 两点同时出发,以1cm/s 的速度沿BC,CD 运动,到点C,D 时停止运动,设运动时间为t(s),△OE 的面积为s(2cm ),则s(2cm )与t(s)的函数关系可用图像表示为答案:B解析:经过t 秒后,BE =CF =t ,CE =DF =8-t ,1422BEC S t t ∆=⨯⨯=, 211(8)422ECF S t t t t ∆=⨯-⨯=-,1(8)41622ODF S t t ∆=⨯-⨯=-,(第12题图) BO所以,2211322(4)(162)41622OEF S t t t t t t ∆=-----=-+,是以(4,8)为顶点,开口向上的抛物线,故选B 。
3、(8-3矩形、菱形、正方形²2013东营中考)如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( )A. 4个B. 3个C. 2个D. 1个12.B.解析:在正方形ABCD 中,因为CE=DF ,所以AF=DE ,又因为AB=AD ,所以ABF DAE ∆≅∆,所以AE=BF ,AFB DEA ∠=∠,DAE ABF ∠=∠,因为90DAE DEA ∠+∠=︒,所以90DAE ABF ∠+∠=︒,即90AOF ∠=︒,所以AE ⊥BF ,因为AOBAOF AOFS S S ∆∆∆+=+S四边形DEOF,所以AOB S ∆= S 四边形DEOF ,故(1),(2),(4)正确.4、(2013凉山州)如图,菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .17考点:菱形的性质;等边三角形的判定与性质;正方形的性质.分析:根据菱形得出AB=BC ,得出等边三角形ABC ,求出AC ,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.解答:解:∵四边形ABCD 是菱形, ∴AB=BC, ∵∠B=60°,∴△ABC 是等边三角形, ∴AC=AB=4,∴正方形ACEF 的周长是AC+CE+EF+AF=4³4=16, 故选C .点评:本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC 的长. 5、(2013•资阳)如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )³AE³BE³6³86、(2013•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.7、(2013菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19考点:相似三角形的判定与性质;正方形的性质.专题:计算题.分析:由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.解答:解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3³3=9,∴S1+S2=8+9=17.故选B.点评:本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.8、(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()a=9、(2013台湾、30)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4考点:正方形的性质.分析:根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.解答:解:∵四边形ABCD、AEFG均为正方形,∴∠BAD=∠EAG=90°,∵∠BAD=∠1+∠DAE=90°,∠EAG=∠2+∠DAE=90°,∴∠1=∠2,在Rt△ABE中,AE>AB,∵四边形AEFG是正方形,∴AE=AG,∴AG>AB,∴∠3>∠4.故选D.点评:本题考查了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,要注意在同一个三角形中,较长的边所对的角大于较短的边所对的角的应用.10、(2013台湾、23)附图为正三角形ABC与正方形DEFG的重迭情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2 B.3 C.12﹣4 D.6﹣6考点:正方形的性质;等边三角形的性质.分析:过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.解答:解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18³﹣6³﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6.故选D.点评:本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.11、(2013年南京)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:。
2010年全国中考数学试题汇编专题三十四·矩形、菱形、正方形.doc

(第 10 题) 【答案】B 24. (2010 湖北襄樊)下列命题中,真命题有( ) (1)邻补角的平分线互相垂直 (2)对角线互相垂直平分的四边形是正方形 (3)四边形的外角和等于 360° (4)矩形的两条对角线相等 A .1 个 B.2 个 C.3 个 D.4 个 【答案】C 25. (2010 湖北襄樊)菱形的周长为 8cm,高为 1cm,则菱形两邻角度数比为( ) A .3:1 B.4:1 C.5:1 D.6:1 【答案】C 26. (2010 四川泸州)如图 1,四边形 ABCD 是正方形,E 是边 CD 上一点,若△AFB 经过 逆时针旋转角θ后与△AED 重合,则θ的取值可能为( )
= 90� ,如果添加
) .
31. (2010 四川自贡)边长为 1 的正方形 ABCD 绕点 A 逆时针旋转 30°得到正方形 AB ′C′D′,两图叠成一个“蝶形风筝” (如图所示阴影部分) ,则这个风筝的面积是( A.2- C.2- 3 3 3 4 B. 2 3 3 ) 。
D.2
【答案】A 32. (2010 山东荷泽)如图,矩形纸片 ABCD 中, AB=4,AD=3,折叠纸片使 AD 边与对 角线 BD 重合,折痕为 DG,记与点 A 重合点为 A ' ,则△A' BG 的面积与该矩形的面积 比为 1 1 1 1 A. B. C. D. 12 9 8 6
【答案】D 36. (2010 广东茂名)如图,边长为 1 的正方形 ABCD 绕点 A 逆时针旋转 45 度后得到正方
第 8 页 共 76 页
形 AB ' C ' D ' ,边 B ' C ' 与 DC 交于点 O,则四边形 AB 'OD 的周长 . .是 A. 2 2 B. 3 C.
中考数学考点28正方形总复习(解析版)

正方形【命题趋势】在中考中.正方形主要在选择题.填空题.解答题考查为主.并结合相似.锐角三角函数结合考查.;其中正方形常考4种模型是中考中的重难点。
【中考考查重点】一、正方形的性质及判定二、正方形常考模型考点:正方形性质及判定一、正方形的概念和性质1.概念:有一组邻边相等.并且有一个角是直角的平行四边形是正方形.2.性质:(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角.四条边都相等(3)正方形的两条对角线相等.并且互相垂直平分.每一条对角线平分一组对角(4)正方形是轴对称图形.有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形.两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
二、正方形的判定判定方法:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;(3)对角线互相垂直的矩形是正方形。
注意:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形.再证明它是菱形(或矩形).最后证明它是矩形(或菱形)。
1.(2020秋•法库县期末)平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【答案】A【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分.故本选项正确;B、只有矩形.正方形的对角线相等.故本选项错误;C、只有菱形.正方形的对角线互相垂直.故本选项错误;D、只有菱形.正方形的对角线互相垂直平分.故本选项错误.故选:A.2.(2020秋•武功县期末)如图.在正方形ABCD中.AB=2.P是AD边上的动点.PE⊥AC于点E.PF⊥BD于点F.则PE+PF的值为()A.4B.2C.D.2【答案】C【解答】解:在正方形ABCD中.OA⊥OB.∠OAD=45°.∵PE⊥AC.PF⊥BD.∴四边形OEPF为矩形.△AEP是等腰直角三角形.∴PF=OE.PE=AE.∴PE+PF=AE+OE=OA.∵正方形ABCD的边长为2.∴OA=AC==.故选:C.3.(2010秋•金口河区期末)如图.在正方形ABCD中.E是DC上一点.F为BC延长线上一点.∠BEC=70°.且△BCE≌△DCF.连接EF.则∠EFD的度数是()A.10°B.15°C.20°D.25°【答案】D【解答】解:∵四边形ABCD是正方形.∴∠BCE=∠DCF=90°;由旋转的性质知:CE=CF.∠BEC=∠DFC=70°;则△ECF是等腰直角三角形.得∠EFC=45°.∴∠EFD=∠DFC﹣∠EFC=25°.故选:D.4.(2020春•沙坪坝区期末)如图.正方形ABCD中.AB=.点E是对角线AC上一点.EF⊥AB于点F.连接DE.当∠ADE=22.5°时.EF的长是()A.1B.2﹣2C.﹣1D.【答案】C【解答】解:∵四边形ABCD是正方形.∴AB=CD=BC=.∠B=∠ADC=90°.∠BAC=∠CAD=45°.∴AC=AB=2.∵∠ADE=22.5°.∴∠CDE=90°﹣22.5°=67.5°.∵∠CED=∠CAD+∠ADE=45°+22.5°=67.5°.∴∠CDE=∠CED.∴CD=CE=.∴AE=2﹣.∵EF⊥AB.∴∠AFE=90°.∴△AFE是等腰直角三角形.∴EF==﹣1.故选:C.5.(2021•罗湖区校级模拟)如图.在平面直角坐标系xOy中.正方形ABCD的顶点D在y轴上且A(﹣3.0).B(2.b).则正方形ABCD的面积是()A.20B.16C.34D.25【答案】C【解答】解:作BM⊥x轴于M.∵四边形ABCD是正方形.∴AD=AB.∠DAB=90°.∴∠DAO+∠BAM=90°.∠BAM+∠ABM=90°.∴∠DAO=∠ABM.∵∠AOD=∠AMB=90°.∴在△DAO和△ABM中.∴△DAO≌△ABM(AAS).∴OA=BM.AM=OD.∵A(﹣3.0).B(2.b).∴OA=3.OM=2.∴OD=AM=5.∴AD==.∴正方形ABCD的面积=34.故选:C.6.(2020春•老城区校级月考)如图.点P是正方形ABCD的对角线BD上一点.PE⊥BC于点E.PF⊥CD于点F.连接EF给出下列四个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中正确结论个数是()A.1B.2C.3D.4【答案】C【解答】解:如图.连接PC.延长AP交EF于H.延长FP交AB于G.在正方形ABCD中.∠ABP=∠CBP=45°.AB=CB.∵在△ABP和△CBP中..∴△ABP≌△CBP(SAS).∴AP=PC.∠BAP=∠BCP.又∵PE⊥BC.PF⊥CD.∴四边形PECF是矩形.∴PC=EF.∠BCP=∠PFE.∴AP=EF.∠PFE=∠BAP.故①④正确;只有点P为BD的中点或PD=AD时.△APD是等腰三角形.故③错误;∵PF∥BC.∴∠AGF=∠ABC=90°.∵∠BAP=∠PFE.∠APG=∠FPH.∴∠AGP=∠AHF=90°.∴AP⊥EF.故②正确.故选:C.7.(2021秋•南海区月考)如图.点B在MN上.过AB的中点O作MN的平行线.分别交∠ABM的平分线和∠ABN的平分线于点C、D.(1)试判断四边形ACBD的形状.并证明你的结论.(2)当△CBD满足什么条件时.四边形ACBD是正方形?并给出证明.【答案】(1)四边形ACBD是矩形(2)△CBD满足CB=BD时.四边形ACBD是正方形【解答】解:(1)四边形ACBD是矩形.证明:∵CD平行MN.∴∠OCB=∠CBM.∵BC平分∠ABM.∴∠OBC=∠CBM.∴∠OCB=∠OBC.∴OC=OB.同理可证:OB=OD.∴OA=OB=OC=OD.∵CD=OC+OD.AB=OA+OB.∴AB=CD.∴四边形ACBD是矩形;(2)△CBD满足CB=BD时.四边形ACBD是正方形.证明:由(1)得四边形ACBD是矩形.∵CB=BD.∴四边形ACBD是正方形.1.(2021秋•武侯区期末)下列说法中.是正方形具有而矩形不具有的性质是()A.两组对边分别平行B.对角线互相垂直C.四个角都为直角D.对角线互相平分【答案】B【解答】解:因为正方形的对角相等.对角线相等、垂直、且互相平分.矩形的对角相等.对角线相等.互相平分.所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:B.2.(2017春•柳州期末)边长为4的正方形ABCD中.P是边AD上的动点.PE⊥AC于点E.PF⊥BD于点F.则PE+PF的值为()A.2B.4C.2D.6【答案】A【解答】解:如图.∵四边形ABCD为正方形.∴∠CAD=∠BDA=45°.∵PE⊥AC于点E.PF⊥BD于点F.∴△APE和△PDF为等腰直角三角形.∴PE=AP.PF=PD.∴PE+PF=(AP+PD)=×4=2.故选:A.3.(2021秋•普宁市期末)下列说法中正确的是()A.矩形的对角线平分每组对角B.菱形的对角线相等且互相垂直C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形【答案】C【解答】解:A、矩形的对角线平分每组对角.说法错误.故本选项不符合题意;B、菱形的对角线互相垂直.故本选项不符合题意;C、有一组邻边相等的矩形是正方形.正确.故本选项符合题意;D、对角线互相垂直的四边形不一定是菱形.故本选项不符合题意.故选:C.4.(2020•眉山)下列说法正确的是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直且相等的四边形是正方形【答案】B【解答】解:A、一组对边平行另一组对边相等的四边形可以是等腰梯形.可以是平行四边形.故选项A不合题意;B、对角线互相垂直平分的四边形是菱形.故选项B符合题意;C、对角线相等的平行四边形是矩形.故选项C不合题意;D、对角线互相垂直平分且相等的四边形是正方形.故选项D不合题意;故选:B.5.(2021秋•海州区期末)如图.在正方形ABCD中.点E在对角线AC上.EF⊥AB于点F.EG⊥BC于点G.连接DE.若AB=10.AE=3.则ED的长度为()A.7B.2C.D.【答案】C【解答】解:如图.连接BE.∵四边形ABCD是正方形.∴∠BAC=∠DAC=45°.AB=AD.∵AE=AE.∴△ABE≌△ADE(SAS).∴BE=DE.∵EF⊥AB于点F.AE=3.∴AF=EF=3.∵AB=10.∴BF=7.∴BE==.∴ED=.故选:C.6.(2021秋•铁锋区期末)如图.已知在正方形ABCD中.AB=BC=CD=AD=10厘米.∠A=∠B=∠C=∠D=90°.点E在边AB上.且AE=4厘米.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动.同时.点Q在线段CD上由C点向D点运动.设运动时间为t秒.当△BPE与△CQP全等时.t的值为()A.2B.2或1.5C.2.5D.2.5或2【答案】D【解答】解:当点Q的运动速度与点P的运动速度都是2厘米/秒.若△BPE≌△CQP.则BP=CQ.BE=CP.∵AB=BC=10厘米.AE=4厘米.∴BE=CP=6厘米.∴BP=10﹣6=4厘米.∴运动时间=4÷2=2(秒);当点Q的运动速度与点P的运动速度不相等.∴BP≠CQ.∵∠B=∠C=90°.∴要使△BPE与△OQP全等.只要BP=PC=5厘米.CQ=BE=6厘米.即可.∴点P.Q运动的时间t==(秒).故选:D.7.(2021春•海淀区校级期末)如图.点E是正方形ABCD对角线AC上一点.EF⊥AB.EG ⊥BC.垂足分别为F.G.若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时.四边形BFEG是正方形?【答案】(1)略(2)20cm (3)AF=5cm【解答】解:(1)证明:∵四边形ABCD为正方形.∴AB⊥BC.∠B=90°.∵EF⊥AB.EG⊥BC.∴∠BFE=90°.∠BGE=90°.又∵∠B=90°.∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm.∴AB=40÷4=10cm.∵四边形ABCD为正方形.∴△AEF为等腰直角三角形.∴AF=EF.∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形.只需EF=BF.∵AF=EF.AB=10cm.∴当AF=5cm时.四边形BFEG是正方形.1.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是()A.仅①B.仅③C.①②D.②③【答案】C【解答】解:①由a得到两组对边分别相等的四边形是平行四边形.添加c即一组邻边相等的平行四边形是菱形.再添加d即一个角是直角的菱形是正方形.故①正确;②由b得到一组对边平行且相等的四边形是平行四边形.添加d即有一个角是直角的平行四边形是矩形.再添加c即一组邻边相等的矩形是正方形.故②正确;③由a得到两组对边分别相等的四边形是平行四边形.添加b得到一组对边平行且相等的平行四边形仍是平行四边形.再添加c即一组邻边相等的平行四边形是菱形.不能得到四边形是正方形.故③不正确;故选:C.2.(2019•毕节市)如图.点E在正方形ABCD的边AB上.若EB=1.EC=2.那么正方形ABCD的面积为()A.B.3C.D.5【答案】B【解答】解:∵四边形ABCD是正方形.∴∠B=90°.∴BC2=EC2﹣EB2=22﹣12=3.∴正方形ABCD的面积=BC2=3.故选:B.3.(2021•重庆)如图.正方形ABCD的对角线AC.BD交于点O.M是边AD上一点.连接OM.过点O作ON⊥OM.交CD于点N.若四边形MOND的面积是1.则AB的长为()A.1B.C.2D.2【答案】C【解答】解:∵四边形ABCD是正方形.∴∠MDO=∠NCO=45°.OD=OC.∠DOC=90°.∴∠DON+∠CON=90°.∵ON⊥OM.∴∠MON=90°.∴∠DON+∠DOM=90°.∴∠DOM=∠CON.在△DOM和△CON中..∴△DOM≌△CON(ASA).∵四边形MOND的面积是1.四边形MOND的面积=△DOM的面积+△DON的面积.∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积.∴△DOC的面积是1.∴正方形ABCD的面积是4.∴AB2=4.∴AB=2.故选:C.4.(2021•湖北)如图.在正方形ABCD中.AB=4.E为对角线AC上与A.C不重合的一个动点.过点E作EF⊥AB于点F.EG⊥BC于点G.连接DE.FG.下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:①连接BE.交FG于点O.如图.∵EF⊥AB.EG⊥BC.∴∠EFB=∠EGB=90°.∵∠ABC=90°.∴四边形EFBG为矩形.∴FG=BE.OB=OF=OE=OG.∵四边形ABCD为正方形.∴AB=AD.∠BAC=∠DAC=45°.在△ABE和△ADE中..∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE.交FG于M.交FB于点H.∵△ABE≌△ADE.∴∠ABE=∠ADE.由①知:OB=OF.∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°.∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°.∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点.∴根据垂线段最短.当DE⊥AC时.DE最小.∵AD=CD=4.∠ADC=90°.∴AC=.∴DE=AC=2.由①知:FG=DE.∴FG的最小值为2.∴④错误.综上.正确的结论为:①②③.故选:C.5.(2020•陕西)如图.在矩形ABCD中.AB=4.BC=8.延长BA至E.使AE=AB.以AE为边向右侧作正方形AEFG.O为正方形AEFG的中心.若过点O的一条直线平分该组合图形的面积.并分别交EF、BC于点M、N.则线段MN的长为.【答案】4【解答】解:如图.连接AC.BD交于点H.过点O和点H的直线MN平分该组合图形的面积.交AD于S.取AE中点P.取AB中点Q.连接OP.HQ.过点O作OT⊥QH于T.∵四边形ABCD是矩形.∴AH=HC.又∵Q是AB中点.∴QH=BC=4.QH∥BC.AQ=BQ=2.同理可求PO=AG=2.PO∥AG.EP=AP=2.∴PO∥AD∥BC∥EF∥QH.EP=AP=AQ=BQ.∴MO=OS=SH=NH.∠OPQ=∠PQH=90°.∵OT⊥QH.∴四边形POTQ是矩形.∴PO=QT=2.OT=PQ=4.∴TH=2.∴OH===2.∴MN=2OH=4.故答案为:4.6.(2021•邵阳)如图.在正方形ABCD中.对角线AC.BD相交于点O.点E.F是对角线AC上的两点.且AE=CF.连接DE.DF.BE.BF.(1)证明:△ADE≌△CBF.(2)若AB=4.AE=2.求四边形BEDF的周长.【答案】(1)略(2)8【解答】(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°.在△ADE和△CBF中..∴△ADE≌△CBF(SAS).(2)解:∵AB=AD=.∴BD===8.由正方形对角线相等且互相垂直平分可得:AC=BD=8.DO=BO=4.OA=OC=4.又AE=CF=2.∴OA﹣AE=OC﹣CF.即OE=OF=4﹣2=2.故四边形BEDF为菱形.∵∠DOE=90°.∴DE===2.∴4DE=.故四边形BEDF的周长为8.1.(2021•云岩区模拟)数学老师用四根长度相等的木条首尾顺次相接制成一个图1所示的菱形教具.此时测得∠D=60°.对角线AC长为16cm.改变教具的形状成为图2所示的正方形.则正方形的边长为()A.8cm B.4cm C.16cm D.16cm【答案】C【解答】解:如图1.图2中.连接AC.图1中.∵四边形ABCD是菱形.∴AD=DC.∵∠D=60°.∴△ADC是等边三角形.∴AD=DC=AC=16cm.∴正方形ABCD的边长为16cm.故选:C.2.(2021•石家庄一模)将图1中两个三角形按图2所示的方式摆放.其中四边形ABCD 为矩形.连接PQ.MN.甲、乙两人有如下结论:甲:若四边形ABCD为正方形.则四边形PQMN必是正方形;乙:若四边形PQMN为正方形.则四边形ABCD必是正方形.下列判断正确的是()A.甲正确.乙不正确B.甲不正确.乙正确C.甲、乙都不正确D.甲、乙都正确【答案】B【解答】解:若ABCD是正方形.可设AB=BC=CD=AD=x.∴AQ=4﹣x.AP=3+x.∴PQ2=AQ2+AP2.即PQ===.x取值不同则PQ的长度不同.∴甲不正确.若四边形PQMN为正方形.则PQ=PN=MN=MQ=5.且∠QMD+∠MQD=∠QAP=∠AQP+∠QP A=90°.在△QMD和△PQA中..∴△QMD≌△PQA(ASA).∴QD=AP.同理QD=AP=MC=BN.又∵BP=MD=AQ.∴QD﹣AD=P A﹣AB.∴AB=AD.同理AB=CD=AD=BC.即四边形ABCD为菱形.∵∠DAB=180°﹣∠QAP=90°.则四边形ABCD为正方形.∴乙正确.故选:B.3.(2021•临沂模拟)如图.AD是△ABC的角平分线.DE.DF分别是△ABD和△ACD的高.得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时.四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A.②③B.②④C.①③④D.②③④【答案】D【解答】解:如果OA=OD.则四边形AEDF是矩形.没有说∠A=90°.不符合题意.故①错误;∵AD是△ABC的角平分线.∴∠EAD=∠F AD.在△AED和△AFD中..∴△AED≌△AFD(AAS).∴AE=AF.DE=DF.∴AE+DF=AF+DE.故④正确;∵在△AEO和△AFO中..∴△AEO≌△AFO(SAS).∴EO=FO.又∵AE=AF.∴AO是EF的中垂线.∴AD⊥EF.故②正确;∵当∠A=90°时.四边形AEDF的四个角都是直角.∴四边形AEDF是矩形.又∵DE=DF.∴四边形AEDF是正方形.故③正确.综上可得:正确的是:②③④.故选:D.4.(2020•宁津县一模)下列说法正确的是()A.对角线相等且相互平分的四边形是矩形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相互垂直的四边形是平行四边形【答案】A【解答】解:A、对角线相等且相互平分的四边形是矩形.故该选项正确;B、对角线相等且相互垂直的四边形不一定是菱形.故该选项错误;C、四条边相等的四边形是菱形.不是正方形.故该选项错误;D、对角线相互垂直的四边形不是平行四边形.故该选项错误.故选:A.5.(2021•南浔区模拟)如图.E.F是正方形ABCD的边BC上两个动点.BE=CF.连接AE.BD交于点G.连接CG.DF交于点M.若正方形的边长为1.则线段BM的最小值是()A.B.C.D.【答案】D【解答】解:如图.在正方形ABCD中.AB=AD=CB.∠EBA=∠FCD.∠ABG=∠CBG.在△ABE和△DCF中..∴△ABE≌△DCF(SAS).∴∠BAE=∠CDF.在△ABG和△CBG中..∴△ABG≌△CBG(SAS).∴∠BAG=∠BCG.∴∠CDF=∠BCG.∵∠DCM+∠BCG=∠FCD=90°.∴∠CDF+∠DCM=90°.∴∠DMC=180°﹣90°=90°.取CD的中点O.连接OB、OF.则OF=CO=CD=.在Rt△BOC中.OB===.根据三角形的三边关系.OM+BM>OB.∴当O、M、B三点共线时.BM的长度最小.∴BM的最小值=OB﹣OF==.故选:D.6.(2021•平凉模拟)如图.在矩形ABCD中.M、N分别是边AD、BC的中点.E、F分别是线段BM、CM的中点.(1)求证:BM=CM.(2)当AB:AD的值为多少时.四边形MENF是正方形?请说明理由.【答案】(1)略(2)当AB:AD=1:2时.四边形MENF是正方形【解答】(1)证明:∵四边形ABCD是矩形.∴AB=DC.∠A=∠D=90°.∵M为AD中点.∴AM=DM.在△ABM和△DCM中..∴△ABM≌△DCM(SAS).∴BM=CM;(2)解:当AB:AD=1:2时.四边形MENF是正方形.理由如下:∵N、E、F分别是BC、BM、CM的中点.∴NE∥CM.NE=CM.∵MF=CM.∴NE=FM.∵NE∥FM.∴四边形MENF是平行四边形.由(1)知△ABM≌△DCM.∴BM=CM.∵E、F分别是BM、CM的中点.∴ME=MF.∴平行四边形MENF是菱形;∵M为AD中点.∴AD=2AM.∵AB:AD=1:2.∴AD=2AB.∴AM=AB.∵∠A=90°.∴∠ABM=∠AMB=45°.同理∠DMC=45°.∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形.∴菱形MENF是正方形.7.(2021•沂水县二模)如图.四边形ABCD是正方形.△ABE是等边三角形.M为对角线BD(不含B点)上的点.(1)当点M是CE与BD的交点时.如图1.求∠DMC的度数;(2)若点M是BD上任意一点时.将BM绕点B逆时针旋转60°得到BN.连接EN.CM.求证:EN=CM;(3)当点M在何处时.BM+2CM的值最小.说明理由.【答案】(1)60°(2)略(3)当M点位于BD.CE交点时.BM+2CM的值最小【解答】(1)解:∵△AEB是等边三角形.∴EB=AB=AE.∠EBA=60°.∵四边形ABCD是正方形.∴AB=BC.∠ABC=90°.∴EB=CB.∠EBC=∠EBA+∠ABC=60°+90°=150°.∴∠BCE=(180°﹣∠EBC)=×(180°﹣150°)=15°.∵BD是正方形ABCD的对角线.∴∠DBC=45°.∵∠DMC是△BMC的外角.∴∠DMC=∠DBC+∠BCE=45°+15°=60°;(2)证明:由旋转可知.BM=BN.∠MBN=60°.∵∠MBA=45°.∴∠ABN=∠MBN﹣∠MBA=15°.∵∠ABE=60°.∴∠NBE=∠ABE﹣∠ABN=45°.在△BMC和△BNE中..∴△BMC≌△BNE(SAS).∴CM=EN;(3)当M点位于BD.CE交点时.BM+2CM的值最小.理由如下:在△ADM和△CDM中..∴△ADM≌△CDM(SAS).∴AM=CM.将BM绕点B旋转60°.得到BN.∵∠EBN+∠NBA=60°.∠NBA+∠ABM=60°.∴∠EBN=∠ABM.在△ENB和△AMB中..∴△ENB≌△AMB(SAS).∴AM=EN.∵BM=BN.∠NBM=60°.∴△BMN是等边三角形.∴BM=NM.∴BM+2CM=BM+AM+CM=MN+EN+CM=EN+MN+CM.即E.N.M.C四点共线时.有最小值.8.(2022•南昌模拟)已知正方形ABCD与正方形AEFG.正方形AEFG绕点A旋转一周.(1)如图1.连接BG、CF.①求的值;②求∠BHC的度数.(2)当正方形AEFG旋转至图2位置时.连接CF、BE.分别取CF、BE的中点M、N.连接MN.猜想MN与BE的数量关系与位置关系.并说明理由.【答案】(1)①=②45°(2)BE=2MN.MN⊥BE【解答】解:(1)①如图1.连接AF.AC.∵四边形ABCD和四边形AEFG都是正方形.∴AC=AB.AF=AG.∠CAB=∠GAF=45°.∠BAD=90°.∴∠CAF=∠BAG..∴△CAF∽△BAG.∴=;②∵AC是正方形BCD的对角线.∴∠ABC=90°.∠ACB=45°.在△BCH中.∠BHC=180°﹣(∠HBC+∠HCB)=180°﹣(∠HBC+∠ACB+∠ACF)=180°﹣(∠HBC+∠ACB+∠ABG)=180°﹣(∠ABC+∠ACB)=45°;(2)BE=2MN.MN⊥BE.理由如下:如图2.连接ME.过点C作CQ∥EF.交直线ME于Q.连接BH.设CF与AD 交点为P.CF与AG交点为R.∵CQ∥EF.∴∠FCQ=∠CFE.∵点M是CF的中点.∴CM=MF.又∵∠CMQ=∠FME.∴△CMQ≌△FME(ASA).∴CQ=EF.ME=QM.∴AE=CQ.∵CQ∥EF.AG∥EF.∴CQ∥AG.∴∠QCF=∠CRA.∵AD∥BC.∴∠BCF=∠APR.∴∠BCQ=∠BCF+∠QCF=∠APR+∠ARC.∵∠DAG+∠APR+∠ARC=180°.∠BAE+∠DAG=180°.∴∠BAE=∠BCQ.又∵BC=AB.CQ=AE.∴△BCQ≌△BAE(SAS).∴BQ=BE.∠CBQ=∠ABE.∴∠QBE=∠CBA=90°.∵MQ=ME.点N是BE中点.∴BQ=2MN.MN∥BQ.∴BE=2MN.MN⊥BE.。
2020年中考数学必考高分考点:正方形(学生版)

专题22 正方形1.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2.正方形的性质:(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3.正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
即有一组邻边相等的矩形是正方形先证它是菱形,再证有一个角是直角。
即有一个角是直角的菱形是正方形。
4.正方形的面积:设正方形边长为a,对角线长为b ,S正方形=222ba【例题1】(2019湖南郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.√2B.2C.√3D.4专题知识回顾专题典型题考法及解析【例题2】(2019•四川省凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接E B.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.一、选择题1.(2019内蒙古包头)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1D.2.(2019湖南张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)3.(2019•四川省广安市)把边长分别为1和2的两个正方形按图的方式放置.则图中阴影部分的面积为()专题典型训练题()A61()B31()C51()D414.(2019•贵州省铜仁市)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是()A.2B.3C.4D.5\5.(2019黑龙江省绥化)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<42﹣2时,P点最多有9个③当P点有8个时,x=22﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③二、填空题6.(2019湖南邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.127.(2019湖南张家界)如图:正方形ABCD的边长为1,点E,F分别为BC,CD边的中点,连接AE,BF交于点P,连接PD,则tan∠APD=.8.(2019•湖北省随州市)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则DE=(-1)a;⑤BG•DE+AF•GE=a2.其中正确的是______.(写出所有正确判断的序号)9.(2019福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)10.(2019•四川省凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.11. (2019•广东广州)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是.(填写所有正确结论的序号)12.(2019·广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE 绕点A顺时针旋转90°得△ABG,则CF的长为.13.(2019•山东青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(2019江苏镇江)将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD= .(结果保留根号)15.(2019辽宁抚顺)如图,在2×6的网格中,每个小正方形的边长都是1个单位长度,网格中小正方形的顶点叫格点,点A ,B ,C 在格点上,连接AB ,BC ,则tan ∠ABC = .三、解答题16.(2019湖南湘西州)如图,在正方形ABCD 中,点E ,F 分别在边CD ,AD 上,且AF =CE .(1)求证:△ABF ≌△CBE ;(2)若AB =4,AF =1,求四边形BEDF 的面积.17. (2019海南)如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A,D 不重合),射线PE 与BC 的延长线交于点Q.第10题图HGFEDCBA(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连接AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.18.(2019湖南株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.19.(2019•湖北省仙桃市)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG ∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.20.(2019•山东泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG ⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.21.(2019湖北襄阳)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.①求证:DQ=AE;②推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC 边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.。
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。
2011年中考数学试题精选汇编《矩形、菱形、正方形》

2011年中考数学试题精选汇编《矩形、菱形、正方形》一、选择题1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )12n + (D )22n +【答案】C3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19图1图2 图3……(第10题) FA B C D H E① ②③ ④ ⑤4. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE 折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为A.23B. 332C. 3D.6【答案】A5. (2011浙江杭州,10,3)在矩形ABCD中,有一个菱形B F D E(点E,F分别在线段AB,CD上),记它们的面积分别为ABCD BFDES S和.现给出下列命题:()①若ABCDBFDESStan EDF∠=.②若2,DE BD EF=∙则2DF AD=.则:A.①是真命题,②是真命题 B.①是真命题,②是假命题C.①是假命题,②是真命题 D,①是假命题,②是假命题【答案】A6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF AG、分别架在墙体的点B、点C处,且AB AC=,侧面四边形BDEC为矩形,若测得100FAG∠=︒,则FBD∠=( )A. 35°B. 40°C. 55°D. 70°【答案】C7. (2011浙江温州,6,4分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( )A.2条B.4条C.5条D.6条8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 10.(2011台湾台北,29)如图(十二),长方形ABCD 中,E 为BC 中点,作AEC 的角平分线交AD 于F 点。
2020年中考数学考点总动员第20讲 矩形、菱形和正方形(含答案解析)

第20讲矩形、菱形和正方形1.矩形、菱形、正方形的性质2.矩形、菱形、正方形的判定矩形:①有一个角是直角的平行四边形;②对角线相等的平行四边形;③有三个角是直角四边形;菱形:①有一组邻边_相等_的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等的四边形;正方形:①一组邻边相等的矩形;②有一个角是直角的菱形;③对角线互相垂直且相等的平行四边形。
3.平行四边形、矩形、菱形、正方形之间的关系考点1:矩形性质与判定【例题1】(2019湖北咸宁市)((7分)在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).【分析】(1)首先证明四边形DEFC是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接EC,DF交于点O,作射线BO即可.【解答】(1)证明:∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连接EC,DF交于点O,作射线BO,射线BO即为所求.归纳:与矩形有关的计算:(1)若题目中涉及矩形的折叠,要注意折叠前后对应线段相等、对应角相等,即被折叠的角折叠之后在任何位置依旧是直角;(2)因为矩形四个角都是直角,则想到将所求或涉及的线段放在直角三角形中,常用到勾股定理,特殊角三角函数的计算;(3)常结合矩形对角线相等且互相平分的性质,故可根据矩形对角线的关系应用全等三角形的判定和性质或等腰三角形的性质进行求解. 考点2:菱形的性质与判定【例题2】在菱形ABCD 中,对角线AC 与BD 相交于点O.(1)如图1,若点E ,F 分别为边AB ,AD 的中点,连接EF ,OE ,OF ,求证:四边形AEOF 是菱形;图1 图2(2)如图2,若E ,F 分别在射线DB 和射线BD 上,且BE =DF. ①求证:四边形AECF 是菱形;②若∠AEC =60°,AE =6,AB =BE ,求AB 的长.【点拨】(1)利用直角三角形斜边上中线等于斜边的一半,结合四条边相等的四边形是菱形证明;(2)对于①可利用对角线互相垂直且平分的四边形是菱形进行证明,对于②可利用菱形的性质,转化到Rt △ABO 中进行求解. 【解答】解:(1)证明:∵点E ,F 分别为AB ,AD 的中点, ∴AE =12AB ,AF =12AD.又∵四边形ABCD 是菱形,∴AB =AD ,AC ⊥BD. ∵E ,F 是AB ,AD 的中点,∴AE =AF =OF =OE. ∴四边形AEOF 是菱形.(2)①证明:∵四边形ABCD 是菱形,∴OD =OB ,OA =OC ,BD ⊥AC. ∵BE =DF ,∴OB +BE =OD +DF ,即OE =OF. ∴四边形AECF 是菱形.②∵四边形AECF 是菱形,∴AE =CE ,AO ⊥EF ,∠AEO =∠CEO. ∵∠AEC =60°,∴∠AEO =30°. ∵AE =6,∴AO =3.∵AB =BE ,∴∠BAE =∠AEB =30°.∴∠ABO =∠AEB +∠BAE =60°. ∴在Rt △AOB 中,AB =AO sin ∠ABO =3sin60°=2 3.归纳:1.菱形判定的一般思路:首先判定四边形是平行四边形,然后根据平行四边形的邻边相等判定是菱形,这是判定菱形的最基本思路,同时也可以考虑其他判定方法,例如若能判定平行四边形对角线垂直即可判定为菱形等; 2.应用菱形性质计算的一般思路:菱形四边相等;菱形对角线相互垂直:常借助勾股定理和锐角三角函数来求线段的长,有一个角为60°的菱形,60°所对的对角线将菱形分成两个全等的等边三角形.也可以根据菱形既是轴对称图形,又是中心对称图形,结合它的对称性得出的一些结论. 考点3: 正方形的性质与判定【例题3】(2018·遵义)如图,正方形ABCD 的对角线相交于点O ,点E ,F 分别在AB ,BC 上(AE <BE),且∠EOF =90°,OE ,DA 的延长线交于点M ,OF ,AB 的延长线交于点N ,连接MN. (1)求证:OM =ON ;(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长.【解析】:(1)证明:∵四边形ABCD 是正方形, ∴OA =OB ,∠DAO =∠OBA =45°. ∴∠OAM =∠OBN =135°. ∵∠EOF =∠AOB =90°, ∴∠AOM =∠BON. ∴△OAM ≌△OBN(ASA). ∴OM =ON.(2)过点O 作OH ⊥AD 于点H. ∵正方形ABCD 的边长为4, ∴OH =HA =2. ∵E 为OM 的中点, ∴A 为HM 的中点. ∴HM =4.∴OM=22+42=2 5.∴MN=2OM=210.归纳: 1.证明一个四边形是正方形的方法是先证明它是矩形,再证明它是菱形;或先证明它是菱形,再证明它是矩形,其证明过程往往需要借助全等三角形.2.在正方形中求解策略是:利用正方形四个角都是直角或对角线互相垂直且平分相等,通过勾股定理求解.注:正方形可以看作两个全等的等腰直角三角形以斜边为重合边拼接在一起.一、选择题:1. (2019•南京•2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【答案】B【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.2. (2019•浙江绍兴•4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变【答案】D【解答】解:∵正方形ABCD和矩形ECFG中,∠DCB=∠FCE=90°,∠F=∠B=90°,∴∠DCF=∠ECB,∴△BCE∽△FCD,∴,∴CF•CE=CB•CD,∴矩形ECFG与正方形ABCD的面积相等.故选:D.3. (2018·新疆生产建设兵团·5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【答案】D【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.4. (2018广西贵港)如图,在菱形ABCD中,,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B. C.2 D.4.5【答案】C【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P 、M 即为使PE+PM 取得最小值, 其PE+PM=PE′+PM=E′M, ∵四边形ABCD 是菱形, ∴点E′在CD 上,∵AC=6 ,BD=6,∴AB=3,由S 菱形ABCD =12AC•BD=AB•E′M 得12××6=3 •E′M,解得:E′M=2,即PE+PM 的最小值是2 ,故选:C .5. (2018广西南宁)如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP=OF ,则cos∠ADF 的值为( )A .1113 B .1315 C .1517D .1719【答案】C【解答】根据折叠,可知:△DCP≌△DEP, ∴DC=DE=4,CP=EP .在△OEF 和△OBP 中,,∴△OEF≌△OBP(AAS ), ∴OE=OB,EF=BP .设EF=x ,则BP=x ,DF=DE ﹣EF=4﹣x ,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC ﹣BP=3﹣x ,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=35,∴DF=4﹣x=175,∴cos∠ADF=ADDF=1517.故选:C.二、填空题:6. 已知正方形ABCD边长为2,E是BC边上一点,将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,则BE的长等于.【答案】4﹣2.【解答】解:∵四边形ABCD是正方形,∴CD=2,BD=2,∠EBD=45°,∵将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,∴DC′=DC=2,∠DC′E=∠C=90°,∴BC′=2﹣2,∠BC′E=90°,∴BE=BC′=4﹣2,故答案为:4﹣2.7. (2019•四川省凉山州•5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为 4 .【答案】4【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.8. (2018广西贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.【答案】70°.【解答】解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.9. (2019•湖北省咸宁市•3分)如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是②③(把正确结论的序号都填上).【答案】②③【解答】解:如图1,∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC=,∴,∴,∴MN=2QN=2.故③正确;当MN过点D时,如图3,此时,CN最短,四边形CMPN的面积最小,则S最小为S=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=,∴4≤S≤5,故④错误.故答案为:②③.三、解答题:10. (2019•浙江宁波•10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【分析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E 为AD 中点, ∴AE=ED , ∵BG=DE , ∴AE=BG ,AE∥BG,∴四边形ABGE 是平行四边形, ∴AB=EG , ∵EG=FH =2, ∴AB=2,∴菱形ABCD 的周长=8.11. 如图,O 是矩形ABCD 的对角线的交点,E ,F ,G ,H 分别是OA ,OB ,OC ,OD 上的点. (1)若AE =BF =CG =DH.求证:四边形EFGH 是矩形;(2)若E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点,且DG ⊥AC ,OF =2,求矩形ABCD 的面积.【点拨】(1)在矩形ABCD 对角线上有条件,同时还在四边形EFGH 对角线上有条件,所以可通过对角线判定矩形;(2)求矩形ABCD 的面积可转化成求AC 与DG 的积或转化成AD 与CD 的积. 【解答】解:(1)证明:∵四边形ABCD 是矩形, ∴OA =OB =OC =OD.∵AE =BF =CG =DH ,∴OE =OF =OG =OH. ∴四边形EFGH 是矩形.(2)∵四边形ABCD 是矩形,∴OA =OB =OC =OD.∵OE =12OA ,OF =12OB ,OG =12OC ,OH =12OD ,∴OE =OF =OG =OH.∴四边形EFGH 是矩形.∵DG ⊥AC ,OG =2,∴OD =4.∴DG =2 3.又∵AC =4OF =8,∴S △ADC =12AC ·DG =8 3.∴S 矩形ABCD =2S △ADC =16 3.12. (2019•山东省滨州市 •13分)如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG . (1)求证:四边形CEFG 是菱形;(2)若AB =6,AD =10,求四边形CEFG 的面积.【分析】(1)根据题意和翻着的性质,可以得到△BCE ≌△BFE ,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF 的长,进而求得EF 和DF 的值,从而可以得到四边形CEFG 的面积. 【解答】(1)证明:由题意可得, △BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE , ∵FG ∥CE , ∴∠FGE =∠CEB , ∴∠FGE =∠FEG , ∴FG =FE , ∴FG =EC ,∴四边形CEFG 是平行四边形, 又∵CE =FE ,∴四边形CEFG 是菱形;(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF , ∴∠BAF =90°,AD =BC =BF =10, ∴AF =8, ∴DF =2,设EF =x ,则CE =x ,DE =6﹣x , ∵FDE =90°, ∴22+(6﹣x )2=x 2,解得,x =,∴CE =,∴四边形CEFG 的面积是:CE •DF =×2=.13. 已知:在边长为8的正方形ABCD 的各边上截取AE =BF =CG =DH.(1)如图1,连接AF ,BG ,CH ,DE ,依次相交于点N ,P ,Q ,M ,求证:四边形MNPQ 是正方形; (2)如图2,若连接EF ,FG ,GH ,HE. ①求证:四边形EFGH 是正方形;②当四边形EFGH 的面积为50 cm 2时,求tan ∠FEB 的值.图1 图2【点拨】(1)先证明四边形MNPQ 是矩形,再证明一组邻边相等;(2)①先证明四边形EFGH 是菱形,再证明它是矩形;②利用勾股定理,求BE ,BF ,再利用正切三角函数定义求值. 【解答】解:(1)证明:∵四边形ABCD 是正方形, ∴AB =BC =CD =DA ,∠BAD =∠ABC =∠BCD =∠CDA =90°. 在△ABF 和△BCG 中,⎩⎪⎨⎪⎧AB =BC ,∠ABC =∠BCD ,BF =CG ,∴△ABF ≌△BCG(SAS). ∴∠BAF =∠GBC.∵∠BAF +∠AFB =90°,∴∠GBC +∠AFB =90°. ∴∠BNF =90°.∴∠MNP =∠BNF =90°.∴同理可得∠NPQ =∠PQM =90°.∴四边形MNPQ 是矩形. 在△ABN 和△BCP 中,⎩⎪⎨⎪⎧∠BAF =∠CBG ,∠ANB =∠BPC ,AB =BC ,∴△ABN ≌△BCP(AAS). ∴AN =BP.在△AME 和△BNF 中,⎩⎪⎨⎪⎧∠BAF =∠GBC ,∠AME =∠BNF ,AE =BF ,∴△AME ≌△BNF(AAS).∴AM =BN.∴MN =NP.∴四边形MNPQ 是正方形. (2)①证明:∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =BC =CD =DA. 又∵AE =BF =CG =DH ,∴AH =BE =CF =DG. ∴△AEH ≌△BFE ≌△CGF ≌△DHG(SAS). ∴EH =FE =GF =GH ,∠AEH =∠BFE. ∴四边形EFGH 是菱形.∵∠BEF +∠BFE =90°,∴∠BEF +∠AEH =90°.∴∠HEF =90°. ∴四边形EFGH 是正方形.②∵四边形EFGH 的面积为50 cm 2,∴EF 2=50 cm 2. 设BE =CF =x cm ,则BF =(8-x)cm.在Rt △BEF 中,由勾股定理,得BE 2+BF 2=EF 2,即x 2+(8-x)2=50. 解得x 1=1,x 2=7.当BE =1 cm 时,BF =7 cm ,tan ∠FEB =BFBE =7;当BE =7 cm 时,BF =1 cm ,tan ∠FEB =BF BE =17.∴tan ∠FEB 的值为17或7.14. (2019•湖南株洲•8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC.BD 的交点,连接CE.DG . (1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM =,求正方形OEFG 的边长.【分析】(1)由正方形ABCD与正方形OEFG,对角线AC.BD,可得∠DOA=∠DOC=90°,∠GOE=90°,即可证得∠GOD=∠COE,因DO=OC,GO=EO,则可利用“边角边”即可证两三角形全等(2)过点M作MH⊥DO交DO于点H,由于∠MDB=45°,由可得DH,MH 长,从而求得HO,即可求得MO,再通过MH ∥DG,易证得△OHM∽△ODG,则有=,求得GO即为正方形OEFG的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC.BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为2。
人教版中考数学复习《第21讲:矩形、菱形、正方形》课件

x=
10
,所以
5
3 10
,即
5
3x=
BF=
3 10
.
5
18
考点梳理自清
考法1
考法2
考题体验感悟
考法互动研析
考法3
3.(2017·江苏徐州)如图,在平行四边形ABCD中,点O是边BC的中点,
连接DO并延长,交AB延长线于点E连接EC.
一半
5
考点梳理自清
考点一
考点二
考点三
考题体验感悟
考法互动研析
考点四
考点三正方形(高频)
正方形
的定义
正方形
的性质
正方形
的判定
有一组邻边相等,且有一个角是直角的平行四边形叫
做正方形
(1)正方形的对边平行
(2)正方形的四条边相等
(3)正方形的四个角都是直角
(4)正方形的对角线相等,互相垂直平分 ,每条对角线
( C )
A.2 5
B.3 5
C.5
D.6
10
考点梳理自清
命题点1
命题点2
考题体验感悟
考法互动研析
命题点3
解析 如图,连接EF交AC于点O,根据菱形性质有FE⊥AC,OG=OH,
易证OA=OC.由四边形ABCD是矩形,得∠B=90°,根据勾股定理得
AC=
4 5
42
+
82 =4
5,OA=2 5,易证△AOE∽△ABC,则
考法3
考法1矩形的相关证明与计算
例1(2017·山东潍坊)如图,将一张矩形纸片ABCD的边BC斜着向
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学试题分类汇编:考点26 正方形一.选择题(共4小题)1.(2018?无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG===.故选:A.2.(2018?宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,S正方形ABCD=,∴S阴=故选:B.3.(2018?湘西州)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个 B.2个 C.3个 D.4个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.4.(2018?张家界)下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质逐个判断即可.【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C、相等的角不一定是对顶角,错误,故本选项不符合题意;D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;故选:D.二.填空题(共7小题)5.(2018?武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.6.(2018?呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为①②③.【分析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,进而得出DM=HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt △ADM中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点(不与点A重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.【解答】解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.7.(2018?青岛)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC 上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.8.(2018?咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(﹣1,5).【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).9.(2018?江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为2或2或﹣.【分析】根据正方形的性质得出AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=90°,根据勾股定理求出AC、BD、求出OA、OB、OC、OD,画出符合的三种情况,根据勾股定理求出即可.【解答】解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有三种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;故答案为:2或2或﹣.10.(2018?潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y 轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为(﹣1,).【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答】解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).11.(2018?台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为+3.【分析】根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG 的面积以及勾股定理,得出BG+CG的长,进而得出其周长.【解答】解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故答案为: +3.三.解答题(共6小题)12.(2018?盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.13.(2018?吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.14.(2018?白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.15.(2018?潍坊)如图,点M是正方形ABCD边CD上一点,连接AM,作DE ⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.【分析】(1)通过证明△ABF≌△DEA得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到?x?x+?x?2=24,解方程求出x得到AE=BF=6,则EF=x ﹣2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.【解答】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴?x?x+?x?2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.16.(2018?湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.17.(2018?遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.。