电场磁场例题及练习题

电场磁场例题及练习题
电场磁场例题及练习题

一、电场

电场问题:

例1、如图1所示,一个质量为m ,电量为-q 的小物体,可在水平轨道x 上运动,O 端有一与轨道垂

直的固定墙,轨道处在场强大小为E ,方向沿Ox 轴正向的匀强磁场中,小物体以初速度v 0从点x 0沿Ox 轨道运动,运动中受到大小不变的摩擦力f 作用,且f

程?(f

mv qEx s 222

0+=∴)

例2、如图2所示,半径为r 的绝缘细圆环的环面固定在水平面上,场强为E 的匀强电场与环面平行。一电量为+q 、质量为m 的小球穿在环上,可沿环作无摩擦的圆周运动,若小球经A 点时,速度v A 的方向

恰与电场垂直,且圆环与小球间沿水平方向无力的作用,试计算: (1)速度v A 的大小;(m

qEr

v A =

) (2)小球运动到与A 点对称的B 点时,对环在水平方向的作用力。 (qE N B 6=)

类平抛运动:

例1、如图所示,质量为m 、电量为q 的带电微粒,以初速度V 0从A 点竖直向上射入水平方向、电场强度为E 的匀强电场中。当微粒经过B 点时速率为V B =2V 0,而方向与E 同向。下列判断中正确的是( )。

A 、A 、

B 两点间电势差为2mV 02/q B 、A 、B 两点间的高度差为V 02/2g

C 、微粒在B 点的电势能大于在A 点的电势能

D 、从A 到B 微粒作匀变速运动

例2、如图所示,地面上某区域存在着竖直向下的匀强电场,一个质量为m 的带负电的小球以水平方向的初速度v 0由O 点射入该区域,刚好通过竖直平面中的P 点,已知连线OP 与初速

度方向的夹角为450,则此带电小球通过P 点时的动能为 ( ) A. 2

0mv B. 2

0mv /2 C. 22

0mv D.52

0mv /2

例3、如图所示,真空中水平放置的两个相同极板Y 和Y'长为L ,相距d ,足够大的竖直屏与两板右侧相距b .在两板间加上可调偏转电压U ,一束质量为m 、带电量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出. (1)求两板间所加偏转电压U 的范围;

(2)求粒子可能到达屏上区域的长度. (-mv 02d 2/ql 2≤u ≤ mv 02d 2/ql 2;2d(l/2+b)/l )

加速电场+类平抛运动

例1、如图所示,电子在电势差为U 1的加速电场中由静止开始运动,然后射入电势差为U 2的两块平行极板间的电场中,入射方向跟极板平行,整个装置处在真空中,重力可忽略,在满足电子能射出平行板区的条件下,下属四种情况中,一定能使电子偏转角变大的是 A . U 1变大,U 2变大 B . U 1变小,U 2变大 C . U 1变大,U 2变小 D . U 1变小,U 2变小

例2、如图所示,A 板发出的电子经加速后,水平射入水平放置的两平行金属板间,金属板间所加的电压为U ,电子最终打在光屏P 上,关于电子的运动,则下列说法中正确的是 ( )

A .滑动触头向右移动时,其他不变,则电子打在荧光屏上的位置上升

B .滑动触头向左移动时,其他不变,则电子打在荧光屏上的位置上升

C .电压U 增大时,其他不变,则电子打在荧光屏上的速度大小不变

D .电压U 增大时,其他不变,则电子从发出到打在荧光屏上的时间不变

二、磁场

匀速圆周运动:

例1(单边界)、如图所示,在x 轴上方存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带电粒子从坐标原点O 处以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成120°角,若粒子穿过y 轴正半轴后在磁场中到x 轴的最大距离为a ,则该粒子的比荷和所带电荷的正负是

A.aB v 23,正电荷

B. aB v 2,正电荷 C . aB v 23,负电荷 D. aB

v 2,负电荷 例2(圆边界)、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。

(1)请判断该粒子带何种电荷,并求出其荷质比q/m ;(

q v m

Br

=

(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B’多大?此次粒子在磁场中运动所用时间t 是多少?

(3

B B '=

、v

r

t 33π=

回旋加速器问题:

例1、回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D 形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示。设D 形盒半径为R 。若用回旋加速器加速质子时,匀强磁场的磁感应强度为B ,高频交流电频率为f 。则下列说法正确的是

A .质子被加速后的最大速度不可能超过2πfR

B .质子被加速后的最大速度与加速电场的电压大小无关

C .只要R 足够大,质子的速度可以被加速到任意值

D .不改变B 和f ,该回旋加速器也能用于加速α粒子

例2、如图甲所示是回旋加速器的示意图,其核心部分是两个D 形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,并分别与高频电源相连.带电粒子在磁场中运动的动能E k 随时间t 的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列判断中正

确的是( )

A .在E k —t 图中应有t 4-t 3=t 3-t 2=t 2-t 1

B .高频电源的变化周期应该等于t n -t n-1

C .粒子加速次数越多,粒子最大动能一定越大

D .要想粒子获得的最大动能越大,则要求D 形盒的面积也越大

三、复合场

(一)电场+磁场

1、两场混合:速度选择器(磁流体发电机、电磁流量计、霍尔效应)

例1、如图所示,两平行、正对金属板水平放置,使上面金属板带上一定量正电荷,下面金属板带上等量的负电荷,再在它们之间加上垂直纸面向里的匀强磁场,一个带电粒子以初速度v 0沿垂直于电场和磁场的方向从两金属板左端中央射入后向上偏转.若带电粒子所受重力可忽略不计,仍按上述方式将带电粒

子射入两板间,为使其向下偏转,下列措施中一定不可行的是( )

A .仅增大带电粒子射入时的速度

B .仅增大两金属板所带的电荷量

C .仅减小粒子所带电荷量

D .仅改变粒子的电性

例2、如图所示为测定带电粒子比荷(q

m )的装置,粒子以一定的初速度进入并沿直线通过速度选择器,

速度选择器内有相互正交的匀强磁场和匀强电场,磁感应强度和电场强度

速度选分别为B 和E 。然后粒子通过平板S 上的狭缝P ,进入另一匀强磁场,最终打在能记录粒子位置的胶片A l A 2上。下列表述正确的是( ) A .速度选择器中的磁场方向垂直纸面向里 B .能通过狭缝P 的带电粒子的速率等于E

B

C .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小

D .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越大

2、两场搭界

例1、在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标

平面向外的匀强磁场,磁感应强度为B 。一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示。不计粒子重力,求 (1)M 、N 两点间的电势差U MN ; (2)粒子在磁场中运动的轨道半径r ; (3)粒子从M 点运动到P 点的总时间t 。

(U MN =q m v 2320

、r =qB

mv 02 、t =t 1+t 2=qB m 3)233(π+)

(二)电场、磁场、重力场同时存在 1、匀速直线运动

在某地上空同时存在着匀强的电场与磁场,一质量为m 的带正电小球,在该区域内沿水平方向向右做直线运动,如图所示,关于场的分布情况可能的是( )

A .电场水平向右,磁场垂直纸面向里

v

B .电场竖直向上,磁场垂直纸面向里

C .该处电场方向和磁场方向重合

D .电场斜向里侧上方,磁场斜向外侧上方,均与v 垂直 2、匀速圆周运动

例1、如图5所示,在水平正交的匀强电场和匀强磁场中,半径为R 的光滑绝缘竖直圆环上,套有一个带正电的小球,已知小球所受电场力与重力相等,小球在环顶端A 点由静止释放,当小球运动的圆弧为

周长的几分之几时,所受磁场力最大?(周长的8

3)

例2、如图所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy 平面向里,电场线平行于y 轴。一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,MN 之间的距离为L,小球过M 点时的速度方向与x 轴的方向夹角为θ.不计空气阻力,重力加速度为g,求

(1) 电场强度E 的大小和方向;

(2) 小球从A 点抛出时初速度v 0的大小; (3) A 点到x 轴的高度h.

(q m g E =,电场方向向上、θcot 20m

qBL v =、g m L B q h 22228=

针对训练

1. 如图6所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。将线圈以向右的速度v 匀速拉出磁场,求:①拉力F 大小;②拉力的功率P ;③拉力做的功W ;④线圈中产生的电热Q ;⑤通过线圈某一截面的电荷量q 。

2.如图7所示,水平的平行虚线间距为d =50cm ,其间有B=1.0T 的匀强磁场。一个正方形线圈边长为l =10cm ,线圈质量m=100g ,电阻为R =0.020Ω。开始时,线圈的下边缘到磁场上边缘的距离为h =80cm 。将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时的速度相等。取g =10m/s 2,求:⑴线圈进入磁场过程中产生的电热Q 。⑵线圈下边缘穿越磁场过程中的最小速度v 。⑶线圈下边缘穿越磁场过程中加速度的最小值a 。

3.(2001年上海卷)如图8所示,有两根和水平方向成。角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为及一根质量为m 的金属杆从轨道上由静止滑下。经过足够长的时间后,金属杆的速度会趋近于一个最大速度几,则

(A )如果B 增大,v m 将变大 (B )如果α变大,v m 将变大 (C )如果R 变大,v m 将变大 (D )如果m 变小,v m 将变大

4.(2001年上海卷)半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计

(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ′ 的瞬时(如图9所示)MN 中的电动势和流过灯L 1的电流。

(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′ 以OO ′ 为轴向上翻转90o,若此时磁场随时间均匀变化,其变化率为ΔB /Δt =4T/s ,求L 1的功率。

7

8

图9

图 6

5.如图10所示,电动机牵引一根原来静止的、长L为1m、质量m为0.1kg的导体棒MN上升,导体棒的电阻R为1Ω,架在竖直放置的框架上,它们处于磁感应强度B为1T的匀强磁场中,磁场方向与框架平面垂直。当导体棒上升h=3.8m时,获得稳定的速度,导体棒上产生的热量为2J,电动机牵引棒时,电压表、电流表的读数分别为7V、1A,电动机内阻r为1Ω,不计框架电阻及一切摩擦,求:(1)棒能达到的稳定速度;

(2)棒从静止至达到稳定速度所需要的时间。

高中物理力学、电场、磁场综合复习题.

图1 物理力学、电场、磁场综合复习题 一.单项选择题 1.物理学中研究问题有多种方法,有关研究问题的方法叙述错误.. 的是 A .在现实生活中不存在真正的质点,将实际的物体抽象为质点是物理学中一种重要的科学研究方法 B .探究加速度a 与力F 、质量m 之间的关系时,保持m 恒定的情况下,探究a 与F 的关系, 采用的是控制变量法 C .电场强度的定义式,采用的是比值法 D .伽利略比萨斜塔上的落体实验,采用的是理想实验法 2.如图1所示,2008北京奥运会上中国选手曹磊毫无悬念地 以总成绩282kg 轻取金牌。 赛前曹磊在一次训练中举起125kg 的杠铃时,两臂成120°,此时曹磊沿手臂向上撑的力F 及曹磊 对地面的压力N 的大小分别是(假设她的体重为75kg ,g 取10m/s 2 ) A .F =1250N N =2000N B .F =1250N N =3250N C .F =325N N =2000N D .F =722N N =2194N 3.如图2所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一时刻速度分别为v 1和v 2,绳子对物体的拉力为T,物体所受重力为G,则下面说法正确的是 A .物体做匀速运动,且v 1=v 2 B .物体做加速运动,且v 2>v 1 C .物体做加速运动,且T>G D .物体做匀速运动,且T=G 4.在如图3所示的电路中,R 1、R 2、R 3和R 4为定 值电阻,R 5为可变电阻,电源的电动势为E ,内 阻为r ,设电流表A 的读数为I ,电压表V 的读数为U ,当R 5的滑动触点向图中a 端移动时,则 A .I 变大,U 变小 B .I 变大,U 变大 C .I 变小,U 变大 D .I 变小,U 变小 5.某同学通过对电学的学习后得出如下结论,则其中正确的是 A .计算真空中两个点电荷之间的相互作用力,应使用公式F=kQq/r 2 B .形状相同的两个绝缘金属小球若一个带电,另一个不带电,接触后每个小球所带电量各为总电量的一半 C .电容器放电时,其储存的电场能增大 D .白炽灯泡的灯丝越粗,电阻越大,功率越大 6.总质量为80kg 的跳伞运动员从离地500m 高的直升机上跳下,经过2 s 拉开绳索开启降落伞,如图所示是跳伞过程中的v-t 图,试根据图像可知:(g 取10m/s 2) A .在t=1s 时运动员的加速度约为8m/s 2 B .14s 内运动员下落高度约为300m C .运动员落地前飞行时间为24s D .运动员在下降过程中空气阻力一直在增大 2 图2 图3

高三物理专题突破电场与磁场

2010届高三物理专题突破 电场与磁场 一.选择题 1.如图9-1所示,平行板电容器的两极板A、B接于电池两极,一个带正电 的小球悬挂在电容器内部.闭合电键S,电容器充电,这时悬线偏离竖直方向的 夹角为θ.下列说法中正确的是() A.保持电键S闭合,若带正电的A板向B板靠近,则θ增大 B.保持电键S闭合,若带正电的A板向B板靠近,则θ不变 C.电键S断开,若带正电的A板向B板靠近,则θ增大 D.电键S断开,若带正电的A板向B板靠近,则θ不变 2.宇航员在探测某星球时,发现该星球均匀带电,且电性为负,电荷量为Q.在一次实验时,宇航员将一带负电q(q<<Q)的粉尘置于离该星球表面h高处,该粉尘恰好处于悬浮状态.宇航员又将此粉尘带至距该星球表面的2h高处,无初速释放,则此带电粉尘将() A.仍处于悬浮状态 B.背向该星球球心方向飞向太空 C.向该星球球心方向下落 D.沿该星球自转的线速度方向飞向太空 3.有一电量为2ξ10-6C的负电荷,从O点移动到a点,电场力做功6ξ10-4J;从a点移动到b点,电场力做功-4ξ10-4J;从b点移动到c点,电场力做功8ξ10-4J;从c点移动到d点,电场力做功-10ξ10-4J.根据以上做功情况可以判断电势最高的点是()A.a B.b C.c D.d 4.质量为m的通电细杆ab置于倾角为θ的导轨上,导轨宽度为d,杆ab与导轨间的动摩擦因数为μ.有电流时,ab恰好在导轨上静止,如图9-3所示;下图是它的四个侧视图,图中已标出四种可能的匀强磁场方向,其中杆ab与导轨之间的摩擦力可能为零的图是() 5如图9-4所示,天然放射性元素放出α、β、γ三种射线,同时射入互相垂直的匀强电场和匀强磁场中,射入时速度方向与电场强度及磁感应强度方向都垂直,进入场后,发现β、γ射线都沿原方向直线前进,则α射线将()A.向右偏转B.向左偏转 C.沿原方向直线前进D.是否偏转,无法确定

电磁场综合计算题

电磁场综合计算题 1、(磁场与运动学综合)如图18所示,质量m=0.1g的小物块,带有 5×10-4C的电荷,放在倾角为30°的光滑绝缘斜面上,整个斜面置于 B=0.5T的匀强磁场中,磁场方向垂直纸面指向纸里,物块由静止开始下滑,滑到某一位置时,开始离开斜面,求:(中等) 图18 (1)物块带什么电? (2)物块离开斜面时速度多大? (3)斜面至少有多长? 2.(电磁场与运动学综合)一个质量为m,电量为+q的金属球套在绝缘长杆上,球与杆间的动摩擦因数为μ,整个装置放在匀强电场与匀强磁场互相垂直的复合场中,如图19所示。若已知电场强度为E,磁感应强度为B,由静止开始释放小球,求:(中等) (1)小球最大加速度是多少? (2)小球最大速度是多少? 图19 3、(电磁场与运动学综合)电磁炮是一种理想的兵 器,它的主要原理如图所示。1982年澳大利亚国立大 学制成了能把m=2.2g的弹体(包括金属杆EF的质 量)加速到v=10km/s的电磁炮(常规炮弹的速度约为 2km/s),若轨道宽L=2m,长为x=100m,通过的电流为I=10A,试问轨道间所加匀强磁场的磁感应强度和磁场的最大功率P m有多大(轨道摩擦不计)?(中等) 4、(电磁场与运动学综合)如图所示,某区域有正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直纸面向里.场强E=10N/C.磁

感应强度B=1T.现有一个质量m=2×10-6kg,带电量q=+2×10-6C的液滴以某一速度进入该区域恰能作匀速直线运动,求这个速度的大小和方向.(g取10m/s2) (简单) 5.(回旋加速器)有一回旋加速器,加在D形盒内两极的 交变电压的频率为1.5×107Hz,D形盒的半径为0.56m,求:(中等)(1)加速α粒子所需的磁感应强度B。 (2)α粒子所达到的最大速率。(α粒子质量为质子质量的4倍,质子质量为1.67×10-27Kg) 6.(磁场与运动学综合)有一匀强磁场,磁感应强度为1.0T,放一根与磁场方向垂直、长度为0.6m的通电直导线,导线中的电流为1.2A。这根导线在与磁场方向垂直的平面内沿安培力的方向移动了0.3m,求安培力对导线所做的功。(简单) 7.(磁场与运动学综合)在竖直向下的匀强磁场中,两根相距L的平行金属导轨与水平方向的夹角为θ,如图所示,电池、滑线可变电阻、电流表按图示方法与两导轨相连,当质量为m的直导线ab横跨于两根导轨之上时,电路闭合,有电流由a到b通过直导线,在导轨光滑的情况下,调节可变电阻,当电流表示数为I0时,ab恰好沿水平方向静止在导轨上,求匀强磁场的磁感强度B多大?(中等) )θ A )θ B a b

电场磁场典型例题

电场磁场典型问题 1.绝缘光滑斜面与水平面成角,质量为m、带电荷量为-q(q>0)的小 球从斜面上的h高度处释放,初速度为(>0),方向与斜面底边MN 平行,如图所示,整个装置处在匀强磁场B中,磁场方向平行斜面向上。 如果斜面足够大,且小球能够沿斜面到达底边MN。则下列判断正确的是 A.小球运动过程对斜面压力越来越小 B.小球在斜面做变加速曲线运动 C.匀强磁场磁感应强度的取值范围为 D.小球达到底边MN的时间 【答案】CD 2.质量为m、带电量为+q的小金属块A以初速度从光滑水平高台(足够高)上飞出。已知在高台边缘的右面空间中存在水平向左的匀强电场,场强大小E=2mg/q,则 A.金属块在做平抛运动 B.经过足够长的时间金属块一定会与高台右侧边缘相碰 C.金属块运动过程中距高台边缘的最大水平距离为 D.金属块运动过程的最小速度为 【答案】BCD 3.如图倒“V”导轨,两侧导轨倾角为,间距为。分别平行底边放置一根导体棒,其中棒质量为,电阻为,cd棒质量为,电阻为 ,两棒与导轨的动摩擦因数均为,导轨顶端MN间连接内阻为的电源,两棒通过一根绕过顶端光滑定滑轮的绝缘轻线连接,细线平行于左右导轨平面,左右空

间磁场均垂直于斜面向上,左右两斜面磁感应强度均为,为了使两棒保持静止,电源电动势的取值满足什么条件。 【答案】4.5V E13.5V 【解析】本题考查了电磁感应与电路的综合问题,意在考查考生的综合分析和解决能力。设流过ab,cd的电流分别为, 由电路结构得:=① E=()r+② 通过比较得知,当电动势最小时 g sinθ=B L++B L++g sinθ③ =μg sinθ=μg sinθ④ 得:=4.5V 当电动势最大时 g sinθ++=B L+ B L+g sinθ⑤ 得:=13.5V 故:4.5V E13.5V 4.如图,A、C两点分别位于x轴和y轴上,∠OCA=30°,OA的长度为L。在区域内有垂直于xOy平面向里的匀强磁场。质量为m、电荷量为q的带正电粒子,以平行于y轴的方向从OA边射入磁场。已知粒子从某点射入时,恰好垂直于OC边射出磁场,且粒子在磁场中运动的时间为t0。不计重力。 (1)求磁场的磁感应强度的大小;

高中物理引力场电场磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导 【考点透视】 一万有引力定律 万有引力定律的数学表达式:2 21r m m G F =,适用条件是:两个质点间的万有引力的计算。 在高考试题中,应用万有引力定律解题常集中于三点:①在地球表面处地球对物体的万有引力近似等于物体的重力,即mg R Mm G =2,从而得出2gR GM =,它在物理量间的代换时非常有用。②天体作圆周运动需要的向心力来源于天体之间的万有引力,即r mv r Mm G 22=;③圆周运动的有关公式:T πω2=,r v ω=。 二电场 库仑定律:221r Q kQ F =,(适用条件:真空中两点电荷间的相互作用力) 电场强度的定义式:q F E = (实用任何电场),其方向为正电荷受力的方向。电场强度是矢量。 真空中点电荷的场强:2r kQ E =,匀强电场中的场强:d U E =。 电势、电势差:q W U AB B A AB = -=??。 电容的定义式:U Q C =,平行板电容器的决定式kd S C πε4=。 电场对带电粒子的作用:直线加速 221mv Uq = 。偏转:带电粒子垂直进入平行板间的 匀强电场将作类平抛运动。 提醒注意:应熟悉点电荷、等量同种、等量异种、平行金属板等几种常见电场的电场线

和等势面,理解沿电场线电势降低,电场线垂直于等势面。 三磁场 磁体、电流和运动电荷的周围存在着磁场,其基本性质是对放入其中的磁体、电流、运动电荷有力的作用。 熟悉几种常见的磁场磁感线的分布。 通电导线垂直于匀强磁场放置,所受安培力的大小:BIL F =,方向:用左手定则判定。 带电粒子垂直进入匀强磁场时所受洛伦兹力的大小: qvB F =,方向:用左手定则判定。若不计带电粒子的重力粒子将做匀速圆周运动,有qB mv R =,qB m T π2=。 【例题解析】 一万有引力 例1地球(看作质量均匀分布的球体)上空有许多同步卫星,同步卫星绕地球近似作匀速圆周运动,根据所学知识推断这些同步卫星的相关特点。 解析:同步卫星的周期与地球自转周期相同。因所需向心力由地球对它的万有引力提供,轨道平面只能在赤道上空。设地球的质量为M ,同步卫星的质量为m ,地球半径为R ,同步 卫星距离地面的高度为h ,由向万F F =,有 )(4)(22 2h R T m h R GmM ++π=,得R GMT h -=3224π;又由h R v m h R GmM +=+22)(得h R GM v +=;再由ma h R GmM =+2)(得2 )(h R GM a +=。由以分析可看出:地球同步卫星除质量可以不同外,其轨道平面、距地面高度、线速度、向心加速度、角速度、周期等都应是相同的。 点拨:同步卫星、近地卫星、双星问题是高考对万有引力定律中考查的落足点,对此应引起足够的重视,应注意准确理解相关概念。 例2某星球的质量为M ,在该星球表面某一倾角为θ的山坡上以初速度0v 平抛一个物体,经t 时间该物体落到山坡上。欲使该物体不再落回该星球的表面,至少应以多大的速度

高考物理总复习 电场与磁场计算题

2008高考物理总复习电场与磁场计算题 1.如图所示,A和B是两个相同的带电小球,可视为质点,质量均为m,电荷量均为q,A固定在绝缘地面上,B放在它的正上方很远距离的一块绝缘板上,现手持绝缘板使B从静止起以恒定的加速度a(a

3.内壁光滑的圆环状管子固定在竖直平面内,环的圆心位于坐标圆点,圆环的半径为R ,x 轴位于水平面内,匀强电场在竖直平面内方向竖直向下,y 轴左侧场强大小q m g E ,右侧场强大小为 2 E .质量为m 、电荷量为q 的带正电小球从A 点进入管中并沿逆时针方向运动,小球的直径略小于管子的内径,小球的初速度不计,求: (1)小球到达B 点时的加速度; (2)小球到达C 点时对圆环的压力; (3)通过进一步计算说明这种物理模型存在的问题及形成原因. 4.如图所示,一个质量为m =2.0×10-11kg ,电荷量q = +1.0×10-5C 的带电微粒(重力忽略不计),从静止开始经U 1=100V 电压加速后,水平进入两平行金属板间的偏转电场,偏转电场的电压U 2=100V 。金属板长L =20cm ,两板间距d =310cm 。求: (1)微粒进入偏转电场时的速度v 0大小; ( 2)微粒射出偏转电场时的偏转角θ; (3)若该匀强磁场的宽度为D =10cm ,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B 至少多大?

磁场及电磁场综合知识点

选修3—1知识点回顾 第一章:静电场 1、电荷及守恒定律,元电荷e= 。 2、库仑定律F= ,条件: 3、电场强度的定义E= ,是量。其方向与相同。 4、电场力做正功,电势能,电场力做负功,电势能。W AB= 。 5、电势的定义:Φ= ,判断电势高低的方法:①顺着电场线的方向电势, ②正电荷在电势能越高的地方电势越③利用电势差 6、电势差的定义:电势差是标量,但有之分。 7、等势面的特点:①等势面与电场线②沿同一等势面移动电荷电场力, ③等势面密的地方电场强度,④等势面不相交⑤电场线从电势指向电势的等势面。 8、匀强电场中电势差与电场强度的关系:E= ,沿电场强度的方向电势降落最快。 9、两个相互又彼此的导体就组成了一个电容器。电容反映了电容器的本领。 10、电容的定义:C= ,决定平行板电容器电容的公式是C= 。 第二章:恒定电流 1、电荷的定向移动形成电流,定义式:I= ,计算式:I= 或I= (含有电源)。 2、电阻的定义式R= ,计算式R= 。对金属导体,温度升高,电阻变。 3、电流做功W= = 。电功率P= ,电热Q= ,发热功率P= ,只有在中,电功才和电势相等。 4、电动势反映了电源通过做功,把其它形式的能转化为电能本能的物理量。外电阻越大,电路的电流越,内电压越,路端电压越。 5、电源的效率η= ,当外阻和相等时,电源的输出功率最大。此时η= 。 6、三个基本门电路:与门,和。只有所有的条件都发生时,事件才发生,是门。 7、用电流计与一个大电阻联,可改装成电压表,与一个小电阻时,改装为电流表。 8、实验:①描绘灯泡的伏安特性曲线(会画电路图)②伏安法测电阻(内接和外接的误差分析)③测电源的电动势和内阻(电路图、图像法求电动势和内阻)④利用多用表测电阻的

高中物理磁场经典计算题训练(有答案)

精心整理 高中物理磁场经典计算题训练(有答案) 1.弹性挡板围成边长为L =100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B =0.5T ,如图所示.质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2=1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 量为m ,(1(2(33.量为q 上的A 大小为v 4.度为B 粒子最后打在屏上E 点,求粒子从A 到E 所用时间. 5.如图所示,3条足够长的平行虚线a 、b 、c ,ab 间和ab 间和 bc q 的粒子沿垂直于界面a 的方向射入磁场区域,不计重力,粒子的初速度大小应满足什么条件? 6.如图所示宽度为d 的匀强磁场,现有一质量为m ,带电量为+q 的粒子在纸面内以速度v 边缘线成30°角,试求当v b c

7.在受控热核聚变反应的装置中温度极高,因而带电粒子没有通常意义上的容器可装,而是由磁场将带电粒子的运动束缚在某个区域内。现有一个环形区域,其截面内圆半径R 1= 3 3 m ,外圆半径R 2=1.0m ,区域内有垂直纸面向外的匀强磁场(如图所示)。已知磁感应强度B =1.0T ,被束缚带正电粒子的荷质比为 m q =4.0×107C/kg ,不计带电粒子的重力和它们之间的相互作用. ⑴若中空区域中的带电粒子由O 点沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度v 0。 ⑵若中空区域中的带电粒子以⑴中的最大速度v 0沿圆环半径方向射入磁场,求带电 粒子从刚进入磁场某点开始到第一次回到该点所需要的时间。 8.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P Q 子在P 点时的⑵ 1、(1 得v 1 (2 得R 小球从甲乙 2.(1)从S 点发射的粒子将在洛仑兹力作用下做圆周运动, 即R mv qvB 2 =①-------------------(2分) 因粒子圆周运动的圆心在DE 上,每经过半个园周打到DE 上一次,所以粒子要打到E 点应满足:() 3,2,1,22 1 =?=n R n L ②-------------------(2分) 由①②得打到E 点的速度为nm qBL v 4=,() 3,2,1=n ------------(2分)

高中物理专题:电场磁场与复合场

电场、磁场及复合场 【典型例题】 1.空间存在相互垂直的匀强电场E 和匀强磁场B ,其方向如图所示.一带电粒子+q 以初速度v 0垂直 于电场和磁场射入,则粒子在场中的运动情况可能是 ( ) A .沿初速度方向做匀速运动 B .在纸平面内沿逆时针方向做匀速圆周运动 C .在纸平面内做轨迹向下弯曲的匀变速曲线运动 D .初始一段在纸平面内做轨迹向下(向上)弯曲的非匀变速曲线运动 2.如图所示空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,一带电液滴从静止开始自A 沿曲线ACB 运动到B 点时,速度为零,C 是轨迹的最低点,以下说法中正确的是 ( ) A .液滴带负电 B .滴在C 点动能最大 C .若液滴所受空气阻力不计,则机械能守恒 D .液滴在C 点机械能最大 3.如图所示,一个带正电的滑环套在水平且足够长的粗糙绝缘杆上,整个装置处在与杆垂直的水平方向的匀强磁场中,现给滑环以水平向右的瞬时冲量,使滑环获得向右的初速,滑环在杆上的运动情况可能是 ( ) A .始终作匀速运动 B .先作加速运动,后作匀速运动 C .先作减速运动,后作匀速运动 D .先作减速运动,最后静止在杆上 4.如图所示,质量为m 、带电量为+q 的带电粒子,以初速度v 0垂直进入相互正交的匀强电场E 和匀 强磁场B 中,从P 点离开该区域,此时侧向位移为s (重力不计),则 ( ) A .粒子在P 点所受的磁场力可能比电场力大 B .粒子的加速度为(qE – qv 0B )/m C .粒子在P 点的速率为m qsE v 220 D .粒子在P 点的动能为mv 02 /2 – qsE 5.如图所示,质量为m ,电量为q 的正电物体,在磁感强度为B 、方向垂 直纸面向里的匀强磁场中,沿动摩擦因数为μ的水平面向左运动,物体运动初速度为v ,则 ( ) A .物体的运动由v 减小到零所用的时间等于mv /μ(mg+qvB ) B .物体的运动由v 减小到零所用的时间小于mv /μ(mg+qvB ) C .若另加一个电场强度为μ(mg+qvB )/q 、方向水平向左的匀强电场,物体做匀速运动 D .若另加一个电场强度为(mg+qvB )/q 、方向竖直向上的匀强电场,物体做匀速运动 6.如图所示,磁感强度为B 的匀强磁场,在竖直平面内匀速平移时,质量为m ,带电– q 的小球,用线悬挂着,静止在悬线与竖直方向成30°角的位置,则磁场的最小移动速度为 . 7.如图所示,质量为1g 的小环带4×10-4 C 正电,套在长直的绝缘杆上,两者间的动摩擦 因数μ = 0.2,将杆放入都是水平的互相垂直的匀强电场和匀强磁场中,杆所在的竖 直平面与磁场垂直,杆与电场夹角为37°,若E = 10N/C ,B = 0.5T ,小环从静止释放,求: ⑴ 当小环加速度最大时,环的速度和加速度; ⑵ 当小环速度最大时,环的速度和加速度. 8.如图所示,半径为R 的光滑绝缘竖直环上,套有一电量为q 的带正电的小球,在水平正交的匀强电场和匀强磁场中,已知小球所受的电场力与重力的大小相等.磁场的磁感强度为B ,求: ⑴ 在环顶端处无初速释放小球,小球运动过程中所受的最大磁场力; ⑵ 若要小球能在竖直圆环上做完整的圆周运动,在顶端释放时初速必须满足什么条件? 9.如图所示,匀强磁场沿水平方向,垂直纸面向里,磁感强度B =1T ,匀强电场方向水平向右,场强E = 103N/C .一带正电的微粒质量m = 2×10-6kg ,电量q = 2×10-6 C ,在此空间恰好作直线运动,问: ⑴ 带电微粒运动速度的大小和方向怎样? ⑵ 若微粒运动到P 点的时刻,突然将磁场撤去,那么经多少时间微粒到达Q 点?(设PQ 连线与电场方向平行) 10.如图所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里 的匀强磁场.一电子从两板左侧以速度v 0沿金属板方向射入,当两板间磁场的磁感强度为B 1时,电子从a 点射出两板,射出时的速度为2v 0.当两板间磁场的磁感强度为B 2时,电子从b 点射出时的侧移量仅为从a 点射出时侧移量的1/4,求电子从b 点射出的速率. 11.如图所示,在一个同时存在匀强磁场和匀强电场的空间,有一个质量为m 的带电微粒,系于长为 l 的细丝线的一端,细丝线另一端固定于O 点.带电微粒以角速度ω在水平面内作匀速圆周运动,此时细线与竖直方向成30°角,且细线中张力为零,电场强度为E ,方向竖直向上. ⑴ 求微粒所带电荷的种类和电量; ⑵ 问空间的磁场方向和磁感强度B 的大小多大? ⑶ 如突然撤去磁场,则带电粒子将作怎样的运动?线中的张力是多大?

2015高中物理磁场经典计算题-(一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b )

电场磁场计算题专项训练及答案

电场磁场计算题专项训练 【注】该专项涉及运动:电场中加速、抛物线运动、磁场中圆周 1、(2009浙江)如图所示,相距为d 的平行金属板A 、B 竖直放置,在两板之间水平放置一绝缘平板。有一质量m 、电荷量q (q >0)的小物块在与金属板A 相距l 处静止。若某一时刻在金属板A 、B 间加一电压U AB =- q mgd 23μ,小物块与金属板只发生了一次碰撞,碰撞后电荷量变为-q /2,并以与碰前大小相等的速度反方向弹回。已知小物块与绝缘平板间的动摩擦因数为μ,若不计小物块几何量对电场的影响和碰撞时间。则 (1)小物块与金属板A 碰撞前瞬间的速度大小是多少? (2)小物块碰撞后经过多长时间停止运动?停在何位置? 2、(2006天津)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度应大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界的交点C 处沿+y 方向飞出。 (1)判断该粒子带何种电荷,并求出其比荷q /m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B /,该粒子仍以A 处相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B /多大?此粒子在磁场中运动所用时间t 是多少? 3、(2010全国卷Ⅰ)如下图,在a x 30≤ ≤区域内存在与xy 平面垂直的匀强磁场,磁感 应强度的大小为B 。在t = 0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向夹角分布在0~180°范围内。已知 B

电磁场计算题专项练习

电磁场计算题专项练习 一、电场 1、(20分)如图所示,为一个实验室模拟货物传送的装置,A 是一个表面绝缘质量为1kg 的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q =1×10-2C 的绝缘货柜,现将一质量为0.9kg 的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E 1=3×102N/m 的电场,小车和货柜开始运动,作用时间2s 后,改变电场,电场大小变为E 2=1×102N/m ,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=,(小车不带电,货柜及货物体积大小不计,g 取10m/s 2)求: ⑴第二次电场作用的时间; ⑵小车的长度; ⑶小车右端到达目的地的距离. ] 16(8分)如图所示,水平轨道与直径为d=0.8m 的半圆轨道相接,半圆轨道的两端点A 、B 连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m 的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C 电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2, (1)若它运动的起点离A 为L ,它恰能到达轨道最高点B ,求小球在B 点的速度和L 的值. (2)若它运动起点离A 为L=2.6m ,且它运动到B 点时电场消失,它继续运动直到落地,求落地点与起点的距离. 、 A B

! 6如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A 板比B 板电势高300V ,即UAB =300V 。一带正电的粒子电量q =10-10C ,质量m =10-20kg ,从R 点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。已知两界面MN 、PS 相距为L =12cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。求(静电力常数k =9×109N ·m2/C2) (1)粒子穿过界面PS 时偏离中心线RO 的距离多远 (2)点电荷的电量。 ! 二、磁场 1、(19分)如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿x 轴正方向的匀强电场,电场强度大小为E ,y 轴为磁场和电场的理想边界。一个质量为m ,电荷量为e 的质子经过x 轴上A 点时速度大小为v o ,速度方向与x 轴负方向夹角θ=300。质子第一次到达y 轴时速度方向与y 轴垂直,第三次到达y 轴的位置用B 点表示,图中未画出。已知OA=L 。 (1) 求磁感应强度大小和方向; (2) " (3) 求质子从A 点运动至B 点时间 B A v 0 R M N L P S O E F l

高中物理磁场综合练习及答案.doc

高中物理磁场综合练习及答案 磁场相关的物理知识一直以来是学生在高中学习阶段较难掌握的部分,同学们需要加强相关练习,下面是我给大家带来的,希望对你有帮助。 一、选择题(本题10小题,每小题5分,共50分) 1.一个质子穿过某一空间而未发生偏转,则() A.可能存在电场和磁场,它们的方向与质子运动方向相同 B.此空间可能有磁场,方向与质子运动速度的方向平行 C.此空间可能只有磁场,方向与质子运动速度的方向垂直 D.此空间可能有正交的电场和磁场,它们的方向均与质子速度的方向垂直 答案ABD 解析带正电的质子穿过一空间未偏转,可能不受力,可能受力平衡,也可能受合外力方向与速度方向在同一直线上. 2. 两个绝缘导体环AA、BB大小相同,环面垂直,环中通有相同大小的恒定电流,如图1所示,则圆心O处磁感应强度的方向为(AA面水平,BB 面垂直纸面) A.指向左上方 B.指向右下方 C.竖直向上 D.水平向右

答案A 3.关于磁感应强度B,下列说法中正确的是() A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关 B.磁场中某点B的方向,跟该点处试探电流元所受磁场力的方向一致 C.在磁场中某点试探电流元不受磁场力作用时,该点B值大小为零 D.在磁场中磁感线越密集的地方,B值越大 答案D 解析磁场中某点的磁感应强度由磁场本身决定,与试探电流元无关.而磁感线可以描述磁感应强度,疏密程度表示大小. 4.关于带电粒子在匀强磁场中运动,不考虑其他场力(重力)作用,下列说法正确的是() A.可能做匀速直线运动 B.可能做匀变速直线运动 C.可能做匀变速曲线运动 D.只能做匀速圆周运动 答案A 解析带电粒子在匀强磁场中运动时所受的洛伦兹力跟速度方向与磁 场方向的夹角有关,当速度方向与磁场方向平行时,它不受洛伦兹力作用,又不受其他力作用,这时它将做匀速直线运动,故A项正确.因洛伦兹力的方向始终与速度方向垂直,改变速度方向,因而同时也改变洛伦兹力的方向,故洛伦兹力是变力,粒子不可能做匀变速运动,故B、C两项错误.只有当速度方向与磁场方向垂直时,带电粒子才做匀速圆周运动,故D项

电场、磁场综合练习题

2、关于电场中等势面的认识,下列说法中错误..的是[ D ] A .将电场中电势相等的各点连起来即构成等势面 B .在同一等势面上移动电荷电场力不做功 C .等势面一定跟电场线垂直 D .等势面有可能与电场线不垂直 19.图中虚线为一组间距相等的同心圆,圆心处固定一带正电的点电荷。一带电粒子以一定初速度射入电场,实线为粒子仅在电场力作用下的运动轨迹,a 、b 、c 三点是实线与虚线的交点。则该粒子 A .带负电 B .在c 点受力最大 C .在b 点的电势能大于在c 点的电势能 D .由a 点到b 点的动能变化大于有b 点到c 点的动能变化 20.某电场的电场线分布如图所示,以下说法正确的是 A .c 点场强大于b 点场强 B .a 点电势高于b 点电势 C .若将一试电荷+q 由a 点释放,它将沿电场线运动到b 点 D .若在d 点再固定一点电荷-Q ,将一试探电荷+q 由a 移至b 的过程中,电势能减小 15.如图所示,一带电粒子以某速度进入水平向右的匀强电场中,在电场力作用下形成图中所示的运动轨迹。M 和N 是轨迹上的两点,其中M 点在轨迹的最右点。不计重力,下列表述正确的是( C ) A .粒子在M 点的速率最大 B .粒子所受电场力沿电场方向 C .粒子在电场中的加速度不变 D .粒子在电场中的电势能始终在增加 1.质量为m 、带电量为q 的小球用细线系住,线的一端固定在o 点。若在空间加上匀强电场,平衡时线与竖直方向成60°角。则电场强度的最小值为( ) A .mg/2q B .3mg/2q C .2mg/q D .mg/q 1.一带电小球在从空中的a 点运动到b 点的过程中,重力做功3J ,电场力做功1J ,克服空气阻力做功0.5J ,则下列判断正确的是 ABC A .在a 点的动能比b 点小3.5J

电场磁场综合专题

电场磁场综合专题 章末网络构建 物理思想万注 如图所示,半径为/?的绝缘细圆环均匀带电,带电量为+ 0,圆环上 有一小缺口,缺口宽度为/, l?R,在圆环中心放一带电量为+ q的点 电荷,求点电荷q所受的库仑力的大小和方向. (由圆环中心指向缺口) (多选)如图所示,在水平向右的匀强电场中, 某带电粒子从A点运动到〃点,在A点时速度竖直向上,在〃点时速度 水平向右,在这一运动过程中粒子只受 V

电场力和重力,所受电场 力是重力的羽倍,并且克 服重力做的功为1 J,电场力做的正功为3 J, 则下列说法中正确的是 () A.粒子带正电 B.粒子在A点的动能比在〃点多 2 J C.粒子在A点的机械能比在3点少3 J D.粒子由A点到3点过程中速度最小时,速度的方向与水平方向的夹角为60。 .【即学即用】 1 (多选)如图6—4, M、7V是在真空中竖直放置的两块平行金属板,板间有匀强电场,质量为加、电荷量为一q的带电粒子,以初速度co由小孔进入电场,当N间电压为" 时,粒子刚好能到达N板,如果要使这个带电粒子能到达M、N两板间距的1/2处返回,则下述措施能满足要求的是() A.使初速度减为原来的1/2 B.使M、N间电压提高到原来的2倍 C.使M、N间电压提高到原来的4倍 D.使初速度和M、N间电压都减为原来的1/2 (2014-海淀一模)如图7所示,质量"7 = 2.0X10 ° kg、电荷量q = 1.0X 10'6C的带正电微粒静止在空间围足够大的电场 强度为E的匀强电场中.取g=10m/s2. (1)求匀强电场的电场强度E的大小和方向;⑵在f=0时刻,电场强度大小突然变为E0=4.0X103 N/C,方向不变.求在r=0.20 s时间电场力做的功; ⑶在f=0.20 s时刻突然撤掉电场,求带电微粒回到出发点时的动能

高考物理专题复习《电场与磁场》典型题精选

专题三 电场与磁场 第一讲电场的基本性质 考点一 电场强度的理解与计算 1.[考查点电荷的电场强度、电场的叠加] 如图所示,直角坐标系中x 轴上在x =-r 处固定有带电荷量为+9Q 的正点电荷,在x =r 处固定有带电荷量为-Q 的负点电荷,y 轴上a 、b 两点的坐标分别为y a =r 和y b =-r ,c 、d 、e 点都在x 轴上,d 点的坐标为x d =2r ,r E e B .a 、b 两点的电势相等 C .d 点场强为零 D .a 、b 两点的场强相同 解析:选D cd 点间距与de 点间距相等,根据电场线的分布情况知,c 处电场线密,场强大,故A 正确;由电场分布的对称性可知,a 、b 两点的电势相 等,故B 正确;+9Q 在d 点产生的场强大小E 1=k 9Q (3r )2=k Q r 2,方向水平向右,-Q 在d 点产生的场强大小E 2=k Q r 2,方向水平向左,所以由电场的叠加原理可 知,d 点场强为零,故C 正确;根据电场线分布的对称性可知,a 、b 两点场强的大小相等,但方向不同,则a 、b 两点的场强不相同,故D 错误。 2.[考查匀强电场的电场强度计算] 如图所示,梯形abdc 位于某匀强电场所在平面内,两 底角分别为60°、30°,cd =2ab =4 cm ,已知a 、b 两点的电 势分别为4 V 、0,将电荷量q =1.6×10-3 C 的正电荷由a 点移动到c 点,克服电场力做功6.4×10-3 J ,则下列关于电场强度的说法中正确的是( ) A .垂直ab 向上,大小为400 V/m

电磁场计算题专项练习

电磁场计算题专项练习 一、电场 1、(20分)如图所示,为一个实验室模拟货物传送的装置,A就是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车与货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达 目的地,货物到达小车的最右端,且小车与货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=0、1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求: ⑴第二次电场作用的时间; B ⑵小车的长度; A ⑶小车右端到达目的地的距离. 16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线就是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2, (1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度与L的值. (2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地, 求落地点与起点的距离.

6如图所示,两平行金属板A 、B 长l =8cm,两板间距离d =8cm,A 板比B 板电势高300V,即UAB =300V 。一带正电的粒子电量q =10-10C,质量m =10-20kg,从R 点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。已知两界面MN 、PS 相距为L =12cm,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。求(静电力常数k =9×109N ·m2/C2) (1)粒子穿过界面PS 时偏离中心线RO 的距离多远? (2)点电荷的电量。 二、磁场 1、(19分)如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿x 轴正方向的匀强电场,电场强度大小为E,y 轴为磁场与电场的理想边界。一个质量为m ,电荷量为e 的质子经过x 轴上A 点时速度大小为v o ,速度方向与x 轴负方向夹角θ=300。质子第一次到达y 轴时速度方向与y 轴垂直,第三次到达y 轴的位置用B 点表示,图中未画出。已知OA=L 。 (1)求磁感应强度大小与方向; (2)求质子从A 点运动至B 点时间 15.(20分)如图10所示,abcd 就是一个正方形的盒子,在cd 边的中点有一小孔 B A v 0 R M N L P S O E F l

电场和磁场知识点复习.

专 题 四 电 场 和 磁 场 知识回扣 (一) 静电场 一、电场力的性质 1、库仑定律 内容:在真空中两个点电荷的相互作用力跟它们的电荷量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上. 表达式:2 2 1r Q Q k F = [说明] (1)库仑定律适用在真空..中、点电荷...间的相互作用,点电荷在空气中的相互作用也可以应用该定律. ○1对于两个均匀带电绝缘球体,可以将其视为电荷集中于球心的点电荷,r 为两球心之间的距离. ○ 2对于两个带电金属球,要考虑金属表面电荷的重新分布. ○ 3库仑力是短程力,在r =10-15 ~10-9 m 的范围均有效.所以不能根据公式错误地推论:当r →0时,F →∞,其实,在这样的条件下,两个带电体也已经不能再看做点电荷. (2)在计算时,知物理量应采用国际单位制单位.此时静电力常量k =9×109N ·m 2/C 2 . (3)2 2 1r Q Q k F =,可采用两种方法计算: ○ 1采用绝对值计算.库仑力的方向由题意判断得出. ○ 2Q 1、Q 2带符号计算.此时库仑力F 的正、负符号不表示方向,只表示吸引力和排斥力. (4)库仑力具有力的共性 ○ 1两个点电荷之间相互作用的库仑力遵守牛顿第三定律. ○ 2库仑力可使带电体产生加速度.例如原子的核外电子绕核运动时,库仑力使核外电子产生向心加速度. ○ 3库仑力可以和其他力平衡. ○ 4某个点电荷同时受几个点电荷的作用时,要用平行四边形定则求合力. 2、电场强度

(1)电场强度的大小 ① 定义式: q F E = 适用于任何电场,E 与F 、q 无关 ② 点电荷的电场: 2r Q k E = Q 为场源电荷的电荷量 ③ 匀强电场: d U E = d 为电势差为U 的两点在电场方向上的距离 [说明] ①电场中某点的电场强度的大小与形成电场的电荷电量有关,而与场电荷的电性无关,而电场中各点场强方向由场电荷电性决定. ②如果空间几个电场叠加,则空间某点的电场强度为知电场在该点电场强度的矢量和,应据矢量合成法则——平行四边形定则合成;当各场强方向在同一直线上时,选定正方向后作代数运算合成. (2)电场强度的方向 与正电荷所受电场力的方向相同。 3、电场线 (1)电场线对电场的描述 ①电场线的疏密程度表示了电场的强弱,电场线越密集的地方,电场越强,即场强越大。 ②电场线上任一点的切线方向与电场方向相同。 (2)电场线的基本性质 ①静电场中电场线始于正电荷或无穷远,止于负电荷或无穷远.它不封闭,也不在无电荷处中断. ②任意两条电场线不会在无电荷处相交(包括相切) ③沿电场线方向电势逐渐降低 ④电场线总是垂直穿过等势面 (3)几种常见的电场线

相关文档
最新文档