高中数学选修2-3两个计数原理
高中数学人教A版选修2-3 基本计数原理例题和练习

基本计数原理(1)分类加法计数原理:做一件事情,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事情共有N=m1+m2 +……+m n种不同的方法。
(2)分步乘法计数原理:做一件事情,完成它需要n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法,那么完成这件事情共有N= m1 ×m2 ×……× m n种不同的方法。
计数问题是数学中的重要研究对象,解决计数问题,其基本方法是列举法、列表法、树形图法等:其中级方法是分类加法原理和分步乘法原理:其高级方法是排列组合,基本计数原理是连接初级方法和高级方法的“桥梁”,是核心的方法,是解决计数问题的最重要的方法,而排列组合问题的方法:①特殊元素、特殊位置优先法。
②间接法。
③相邻问题捆绑法。
④不相邻(相间)问题插空法。
⑤有序问题组合法。
⑥选取问题先选后排法。
⑦至多至少问题间接法。
⑧相同元素分组可采用隔板法。
⑨分组问题等。
[例1]用0, 1, ..9十个数字,可以组成有重复数字的三位数的个数为()。
A.243B.252C.261D.279[解析]0,1, 2,…,9共能组成9×10×10=900 (个)三位数,其中无重复数字的三位数有9×9×8=648 (个),∴有重复数字的三位数有900-648=252 (个)。
故选B。
[注意]三位数一定要保证最高位不为0.[例2] 6名同学排成一排照相,要求同学甲既不站在最左边又不站在最右边,共有()种不同站法。
[解析]法一: (位置分析法)先从其他5人中安排2人站在最左边和最右边,再安排余下4人的位置,分为两步:第1步,从除甲外的5人中选2人站在最左边和最右边,有25A 种站法:第2步,余下4人(含甲)站在剩下的4个位置上,有44A 种站法。
高二数学(选修2-3人教B版)-计数原理全章总结

例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式
(
Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).
人教a版数学【选修2-3】1.1《两个基本原理的应用》ppt课件

性和并列性,各类中的每个方法都能独立的将这件事情完成;
乘法 原理时,要注意“步”与“步”之间是连续的, 应用 _______ 做一件事需分成若干个互相联系的步骤,所有步骤依次相继完 成,这件事才算完成.
第一章
1.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
典例探究学案
第一章
1.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
数字问题
由 1、2、3、4 可以组成多少个自然数(数字可以 重复,最多只能是四位数)?
[分析]
第一章 1.1 第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
[ 方法规律总结 ] 步”的标准是什么.
1. 在同一题目中涉及到这两个定理时,
必须搞清是先“分类”,还是先“分步”,“分类”和“分 2 .数字问题要注意是否允许数字重复,各位上的数字是
否受到某些条件限制.
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
1.能根据具体问题特征,选择分类加法计数原理或分步乘 法计数原理解决一些简单的实际问题,从而发展学生的思维能 力,培养学生分析问题和解决问题的能力. 2.能正确区分分类加法计数原理和分步乘法计数原理.
第一章
1.1
第一章
1.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
2 .分类要做到 __________ 不重不漏 ,分类后再分别对每一类进行 分类加法计数原理 求和,得到总数. 计数,最后用___________________ 步骤完整 ,步与步之间要 __________ 相互独立 , 3 .分步要做到 __________ 根据分步乘法计数原理,把完成每一步的方法数相乘得到总
人教A版高中数学选修2-3讲义及题型归纳:分类加法计数原理和分步乘法原理

目录考点一:基本计数原理 (2)题型一、分布加法原理 (2)题型二、分布乘法原理 (4)题型三、基本计数原理的综合运用 (5)课后综合巩固练习 (6)考点一:基本计数原理加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12nN m m m =+++种不同的方法.又称加法原理. 乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.题型一、分布加法原理1.用10元、5元和1元来支付20元钱的书款,不同的支付方法有( ) A .3B .5C .9D .12【分析】用列举法求解.【解答】解:用10元、5元和1元来支付20元钱的书款,有以下几类办法: ①用2张10元钱支付;②用1张10元钱和2张5元钱支付;③用1张10元钱、1张5元钱5张1元钱支付; ④用1张10元钱和10张1元钱支付; ⑤用1张5元钱和15张1元钱支付; ⑥用2张5元钱和10张1元钱支付;⑦用3张5元钱和5张1元钱支付; ⑧用4张5元钱支付; ⑨用20张1元钱支付. 故共有9种方法. 故选:C .【点评】本题考查不同的付款方式共有多少种的求法,是基础题,解题时要认真审题,注意列举法的合理运用.2.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出一本,则不同的取法共有( ) A .3种B .1848种C .37种D .6种【分析】分情况讨论:选择拿语文书:有12种不同的拿法,数学书有14种不同的拿法,英语书有11种不同的拿法,然后把这三种情况的数量加在一起即可.【解答】解:由题意可知选择拿语文书:有12种不同的拿法,数学书有14种不同的拿法,英语书有11种不同的拿法, 共有:12141137++=. 故选:C .【点评】本题先确定拿哪种类型的书,考查分类计数原理的应用,考查两种原理的区别. 3.已知集合{1M=,2-,3},{4N =-,5,6,7}-,从两个集合中各选一个数作为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内多少个不同点( ) A .18个B .10个C .16个D .14个【分析】根据第三、四象限内点的坐标的性质,分2种情况讨论,①取M 中的数作横坐标,取N 中的数作纵坐标坐标,②取N 中的数作横坐标,取M 中的数作纵坐标坐标,易得每种情况下的数目,进而由加法原理可得答案.【解答】解:第三、四象限内点的纵坐标为负值,横坐标无限制;分2种情况讨论,①取M 中的数作横坐标,取N 中的数作纵坐标坐标,有326⨯=种情况, ②取N 中的数作横坐标,取M 中的数作纵坐标坐标,有414⨯=种情况; 共有6410+=种情况, 故选:B .【点评】本题考查分类计数原理的运用,解题的切入点为四个象限的点的坐标的性质.题型二、分布乘法原理1.设函数:f N N ++→满足:对于任意大于3的正整数n ,()3f n n =-,且当3n 时,2()3f n ,则不同的函数()f x 的个数为()A .1B .3C .6D .8【分析】通过()3f n n =-,结合映射的定义,根据2()3f n ,确定函数的个数.【解答】解:3n ,2()3f n ,f∴(1)2=或3,且f(2)2=或3 且f(3)2=或3.根据分步计数原理,可得共2228⨯⨯=个不同的函数. 故选:D .【点评】本题主要考查映射的定义,以及分步计数原理的应用,比较基础. 2.将一枚骰子向桌面先后抛掷2次,一共有( )种不同结果. A .6B .12C .36D .216【分析】由分步计数原理知有66⨯种结果,问题得以解决 【解答】解:由分步计数原理知有6636⨯=种结果 故选:C .【点评】本题考查了分步计数原理,属于基础题3.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有多少种(结果用数字表示).( ) A .5B .10C .20D .120【分析】由题意,可看作五个位置排列五种事物,由分步原理求解即可,本题需要考虑的因素:相克的两种物质不相邻,注意满足此规则,计算符合条件的排列方法种数【解答】解:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水, 第三步只能排上木,第四步只能排上火,第五步只能排上土, 故总的排列方法种数有5211110⨯⨯⨯⨯= 故选:B .【点评】本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详,本题以实际问题为背景,有着实际背景的题在现在的高考试卷上有逐步增多的趋势题型三、基本计数原理的综合运用1.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是( )A .420B .180C .64D .25【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A 有5种涂法,B 有4种涂法,讨论A ,D 同色和异色,根据乘法原理可得结论.【解答】解:由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行, 区域A 有5种涂法,B 有4种涂法,A ,D 不同色,D 有3种,C 有2种涂法,有5432120⨯⨯⨯=种, A ,D 同色,D 有4种涂法,C 有3种涂法,有54360⨯⨯=种,∴共有180种不同的涂色方案.故选:B .【点评】本题考查排列组合的应用,涉及分步计数原理的应用,注意分析图形中区域相邻的情况. 2.5名同学排成一列,某个同学不排排头的排法种数为 (用数字作答).【分析】先排不在排头的这个学生,方法有4种,其他学生任意排,有44A 种,根据分步计数原理,求得结果.【解答】解:先排不在排头的这个学生,方法有4种,其他学生任意排,有44A 种,根据分步计数原理,所有的排列方法共有44496A =种,故答案为:96.【点评】本题主要考查分步计数原理的应用,注意特殊元素优先排列,属于基础题.3.已知集合{1M ∈,2-,3},{4N ∈-,5,6,7}-,从两个集合中各取一个元素作为点的坐标,求这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数.【分析】本题首先分类在每一类中又分步,M中的元素作点的横坐标,N中的元素作点的纵坐标,N中的元素作点的横坐标,M中的元素作点的纵坐标,分别可以得到在第一和第二象限中点的个数,根据分类加法原理得到结果.【解答】解:由题意知本题是一个分类和分步的综合问题,⨯个,M中的元素作点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有22在第二象限的点共有12⨯个.⨯个,N中的元素作点的横坐标,M中的元素作点的纵坐标,在第一象限的点共有22在第二象限的点共有22⨯个.∴所求不同的点的个数是2212222214⨯+⨯+⨯+⨯=(个).【点评】本题考查分步计数原理和分类计数原理,是一个综合题目,首先分类,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.课后综合巩固练习1.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8B.15C.18D.30【分析】本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有358+=种结果.【解答】解:由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有358+=种结果,故选:A.【点评】本题看出分类计数问题,本题解题的关键是看清楚完成这个过程包含两种方法,看出每一种方法所包含的基本事件数,相加得到结果.2.将一张面值1元的人民币全部换成面值1角,2角和5角的硬币,则换法总数为.【分析】设1角硬币有x枚,2角硬币有y枚,5角硬币有z枚,构造三元一次方程,然后利用列举法得到所有可能的情况,可得答案.【解答】解:设1角硬币有x 枚,2角硬币有y 枚,5角硬币有z 枚 则2510x y z ++= 满足方程的解有:10x =,0y =,0z = 8x =,1y =,0z = 6x =,2y =,0z = 4x =,3y =,0z = 2x =,4y =,0z = 0x =,5y =,0z =5x =,0y =,1z = 0x =,0y =,2z = 3x =,1y =,1z = 1x =,2y =,1z =共十种不同情况 故答案为:10【点评】解决此类问题要用列举法,把所有的情况都一一排查,找出问题的答案. 3.乘积123123412345()()()a a a b b b b c c c c c +++++++++展开后共有 项.【分析】根据多项式的乘法法则,分析易得在123()a a a ++中取一项有3种取法,在1234()b b b b +++中取一项有4种取法,在12345()c c c c c ++++中取一项有5种取法,进而由分步计数原理计算可得答案.【解答】解:根据多项式的乘法法则,123123412345()()()a a a b b b b c c c c c +++++++++的结果中每一项都必须是在123()a a a ++、1234()b b b b +++、12345()c c c c c ++++三个式子中任取一项后相乘,得到的式子,而在123()a a a ++中有3种取法,在1234()b b b b +++中有4种取法,在12345()c c c c c ++++中有5种取法,由乘法原理,可得共有34560⨯⨯=种情况,则123123412345()()()a a a b b b b c c c c c +++++++++的展开式中有60项; 故答案为60.【点评】本题考查分步计数原理的运用,是常见的题目;平时要多加训练.4.在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行、每一列都只有一辆车,每辆车占一格,共有 种停放方法.(用数字作答)【分析】利用分步计数原理,第一步先选车,第二种再排列,问题得以解决【解答】解:第一步先选车有36C 种,第二步因为每一行、每一列都只有一辆车,每辆车占一格,从中选取一辆车后,把这辆车所在的行列全划掉,依次进行,则有11111166543216C C C C C C A =种,根据分步计数原理得;366614400C A =种.故答案为:14400.【点评】本题考查了分步计数原理的应用,关键是如何求出每辆车所在行列的可能性5.对于各数互不相等的正数数组1(i ,2i ,⋯,)(n i n 是不小于2的正整数),如果在p q <时有p q i i <,则称“p i 与q i ”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组(2,4,3,1)中有顺序“2,4”、“2,3”,其“顺序数”等于2.若各数互不相等的正数数组1(a ,2a ,3a ,4a ,5)a 的“顺序数”是4,则5(a ,4a ,3a ,2a ,1)a 的“顺序数”是 . 【分析】根据题意,假设出一种情况,倒序后输出顺序数即可.【解答】解:根据题意,各数互不相等的正数数组1(a ,2a ,3a ,4a ,5)a 的“顺序数”是4,假设12a a <,13a a <,14a a <,15a a <,且后一项都比前一项小,因此可以判断出23a a >,34a a >,45a a >, 则5(a ,4a ,3a ,2a ,1)a 的“顺序数”是6, 故填:6.【点评】本题考查了新定义,理解好定义是解题的先决条件,另外,要大胆假设.本题属基础题.。
高中选修2-3第一章计数原理知识点总结与训练

第一章:计数原理一、两个计数原理3、两个计数原理的区别二、排列与组合1、排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。
用符号 表示.3、排列数公式: 其中4、组合:一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
5、组合数:从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。
用符号 表示。
6、组合数公式:其中注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.7、性质:m n A mn A ()()()()!!121m n n m n n n n A mn -=+---= .,,*n m N m n ≤∈并且m n C ()()()()!!!!121m n m n m m n n n n C mn -=+---=.,,*n m N m n ≤∈并且m n n m n C C -=mn m n m n C C C 11+-=+三、二项式定理如果在二项式定理中,设a=1,b=x,则可以得到公式:2、性质:02413512nn n n n n nC C C C C C-=+++=+++=奇数项二项式系数和偶数项二项式系数和:注意事项:相邻问题,常用“捆绑法”不相邻问题,常用“插空法”巩固训练:1、有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间;(2)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;(4)三个女生两两都不相邻;2、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()3、(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?7、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配1 名医生和 2 名护士,不同的分配方法共有多少种?8、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?9、求值与化简:1055845635425215222221)1(⋅+⋅+⋅+⋅+⋅+CCCCC求值:。
人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
高二数学(选修2-3人教B版)-基本计数原理

原理初悟
2019年北京“世园会”举世瞩目,李华同学一家打
算去参观“世园会”,在计划出行的方案中有自驾出行,
乘坐“世园会”公交专线出行.自驾去“世园会”有2条
路线可以选择,乘坐“世园会”公交专线出行有4条路
线可以选择,请问李华一家去参观“世园会”共有多少
种出行方案?
2+4=6(种)
例1、书架的第1层放有4本不同的计算机书,第2层放有3
根据分类加法计数原理从甲地到丁地共有6+8=14
种不同的走法.
甲地
乙地
丙地
丁地
先分类、再分步
练习:某学校的一天的课程表要求如下,每天上午有4节课,
下午有2节课,安排5门不同的课程,其中安排某一门课两
节连在一起上,那么一天不同的课程表安排方案有多少种?
节数 课程
1
2
3
4
5
6
练习:某学校的一天的课程表要求如下,每天上午有4节课,
法……在第n类办法中,有 mn 种不同的方法,
则完成这件事共有N m1 m2 +mn 种不同的方法.
分步乘法计数原理:完成一件事,需要分成n个步骤,做
第1步有 m1 种不同的方法,做第2步有 m2 种不同的方
法……做第n步有 mn 种不同的方法,则完成这
件事共有 N m1 m2 mn 种不同的方法.
出公园.只考虑游玩路线的选择,该游客有多少种不同的走
法?
西门
景点A
东门
3×2=6(种)
情境创设
a1
西门
a1
1
a2
a3
b1
景点A
b2
a2
2
1
东门
新人教A版高二数学选修2-3第一章计数原理 1.1 第二课时 两个计数原理的综合应用

由分类加法计数原理知,有 3+4=7 种方法. 第四步:由分步乘法计数原理有 N=4×3×7=84 种不同的种植方法. 法二:(1)若 A,D 种植同种作物,则 A、D 有 4 种不同的种法,B 有 3 种种植方法,C 也有 3 种种植方法,由分步乘法计数原理,共有 4×3×3=36 种种植方法. (2)若 A,D 种植不同作物,则 A 有 4 种种植方法,D 有 3 种种植方法, B 有 2 种种植方法,C 有 2 种种植方法,由分步乘法计数原理,共有 4×3×2×2=48 种种植方法. 综上所述,由分类加法计数原理,共有 N=36+48=84 种种植方法.
• 去年高考延续了五年的总体要求并在创新上有较大的突破; • 难度把控趋于稳定,基本控制在0.55左右; • 充分体现国家意志“一核”、“四层”、 “四翼”, “一核”是总体框架
体现突 出传统文化及党的教育方针:“德智体美劳”五育并举; • 学科思维考察更加凸显,体现数学学科的理性思维特点;
(3)被 2 整除的数即偶数,末位数字可取 0,2,4,因此,可以分 两类,一类是末位数字是 0,则有 4×3=12(种)排法;一类是末 位数字不是 0,则末位有 2 种排法,即 2 或 4,再排首位,因 0 不能在首位,所以有 3 种排法,十位有 3 种排法,因此有 2×3×3 =18(种)排法.因而有 12+18=30(种)排法.即可以排成 30 个能 被 2 整除的无重复数字的三位数.
用计数原理解决涂色(种植)问题
[典例] 如图所示,要给“优”、 “化”、“指”、“导”四个区域分别涂上 3 种不同颜色中的某一种,允许同一种颜色 使用多次,但相邻区域必须涂不同的颜色, 有多少种不同的涂色方法?
[解] 优、化、指、导四个区域依次涂色,分四步. 第 1 步,涂“优”区域,有 3 种选择. 第 2 步,涂“化”区域,有 2 种选择.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高考导航】分类计数原理与分步计数原理又称加法原理和乘法原理,它不仅是推导排列数、组合数计算公式的依据,而且是最基本的思想方法,这种思想方法贯穿在解决本章应用问题的始终.在高考中,运用分类计数原理和分步计数原理结合排列组合知识解决排列组合相关的应用题,通常不单独命题.【学法点拨】对两个原理的掌握和运用,是学好本单元知识的一个关键.从思想角度看,分类计数原理的运用是将一个问题进行“分类”的思考,分步计数原理是将问题进行“分步”的思考,从而达到分析问题、解决问题的目的.从集合的角度看,两个基本原理的意义及区别就显得更加清楚了.完成一件事有A、B两类办法,即集合A、B互不相交,在A类办法中有m1种方法,B类办法中有m2种方法,即card(A)=m1,card(B)=m2,那么完成这件事的不同方法的种数是card(A∪B)=m1+m2.这就是n=2时的分类计数原理.若完成一件事需要分成A、B两个步骤,在实行A步骤时有m1种方法,在实行B步骤时有m2种方法,即card(A)=m1;card(B)=m2,那么完成这件事的不同方法的种数是card(A·B)=card(A)·card(B)=m1·m2.这就是n=2时的分步计数原理.两个原理都是涉及完成一件事的不同方法的种数.它们的区别在于:分类计数原理与“分类”有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.初学时,应结合实例,弄清两个原理的区别,学会使用两个原理.【基础知识必备】一、必记知识精选1.分类计数原理:做一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.二、重点难点突破本节重点是准确理解和灵活运用分类计数原理和分步计数原理.难点是两个原理的恰当运用.两个原理的区别在于“分类”与“分步”,完成一件事的方法种数若需“分类”思考,则这n类办法是相互独立的,且无论哪一类办法中的哪一个方法都能单独完成这件事,则用加法计数.若完成这件事需分为n个步骤,这n个步骤相互依存.具有连续性,当且仅当这n个步骤依次全都完成后,这件事才完成,那么完成这件事的方法总数用乘法计算.处理具体问题时,首先要弄清是“分类”还是“分步”,简单地说是“分类互斥、分步互依”,因此在解题时,要搞清题目的条件与结论,且还要注意分类时,要不重不漏,分步时合理设计步骤、顺序,使各步互不干扰.对于一些较复杂的题目,往往既要分类又要分步,也就是说既要应用分类计数原理又要运用分步计数原理.三、易错点和易忽略点导析由于对两个原理理解不清,解题时,易发生分类不全和分类时各类有叠加现象的错误,即“遗漏”或者“重复”.【例1】有红、黄、蓝旗各3面,每次升一面、二面、三面在某一旗杆上纵向排列,表示不同的信号,顺序不同则表示不同的信号,共可以组成多少种不同的信号?错解:可组成3×3×3=27种不同的信号.正确解法:每次升1面旗可组成3种不同的信号;每次用2面旗可组成3×3=9种不同的信号;每次升3面旗可组成3×3×3=27种不同的信号.根据分步计数原理得共可组成3+9+27=39种不同的信号.错解分析:错解忽略了信号可分为使用的旗数分别可以为1面、2面、3面这3类.本题综合应用了乘法原理和加法原理.【例2】在3000到8000之间有多少个无重复数字的奇数?错解:分三步完成,首先排首位有5种方法,再排个位有5种方法,最后排中间两位有8×7种方法,所以共有5×5×8×7=1400个.正确解法:分两类;一类是以3、5、7为首位的四位奇数,可分三步完成:先排首位有3种方法,再排个位有4种方法,最后排中间两个数位有8×7种方法,所以共有3×4×8×7=672个.另一类是首位是4或6的四位奇数,也可以3步完成,共有2×5×8×7=560个.由分类计数原理得共有672+560=1232个.错解分析:由题意,3、5、7这三个数既可以排在首位,也可以排在个位,因此,首位是用3、5、7去填.还是用4、6去填,影响到第二步,即填个位的方法数,遇到此类情形,则要分类处理.错解中有重复排上同一个奇数的四位数而产生错误.【例3】编号为1~25的25个球摆成五行五列的方阵,现从中任选3个球,要求3个球中任意两个都不在同一行也不在同一列,有多少种不同的选法?错解:分以下三步完成:(1)选取第一个球,可在25个球中任意选取,有25种选法;(2)选取第二个球,为了保证两球不在同一行也不在同一列,将第一个球所在的行和列划掉,在剩余的16个球中任取一个,有16种选法;(3)选取第三个球,应从去掉第一、二个球所在的行和列后所剩余的9个球中选取有9种选法.根据乘法原理,有25×16×9=3600种方法.正确解法:分以下三个步骤:(1)先从5行5列中选出3行有10种选法;(2)从一行的5个球中选出3个球,有10种选法;(3)最后从所选出的3个球中按照它所在列放在第(1)步选出3行的每一行上有6种方法.根据乘法原理有10×10×6=600种选法.错解分析:错解中先选一球,假定此球为①,第二步去掉球①所在的行和列,在剩余的16个球中任选一个球,假定选取了球(25),第三步在去掉球①与(25)所在的两行、两列16个球,在剩余的9个球中任选一球,假定为球(13),则此选法为①(25)(13),若第一步选(13),第二步选①,第三步选(25),显然这两种选法是相同结果.这说明上述解法中有许多重复之处.所以,解法是错误的,每一不同取法在错解中都被重复了6次.【综合应用创新思维点拨】一、学科内综合思维点拨【例1】三边长均为整数,且最大边长为11的三角形共有()A.25个B.26个C.36个D.37个思维入门指导:设另两边长分别为x,y,且不妨设1≤x≤y.由三角形的特性,必须满足x+y ≥12,以下可以分类考虑.解:当y取11时,x=1,2,3,…,11,可有11个三角形.当y取10时,x=2,3,…,10,可有9个三角形.……当y取6时,x=6可有1个三角形.因此,所求三角形的个数为11+9+7+5+3+1=36个,故应选C.点拨:本题应用了“穷举法”,这也是解决排列组合应用题的一个基本方法.二、学科间综合思维点拨【例2】 DNA分子多样性表现在碱基的排列顺序的千变万化上.若一个DNA分子有8000个碱基,则由此组成的DNA的碱基对的排列方式共有()种.A.2100B.24000C.48000D.44000解:选D.点拨:每个碱基可互配对及自配对.三、应用思维点拨【例3】 (1)有5名同学报名参加4个课外活动小组,若每人限报1个,共有多少种不同的报名方法?(2)5名同学争夺4项竞赛冠军,冠军获得者共有多少种可能?思维入门指导:(1)每名同学确定参报课外活动小组项目可依次让每个同学去报.因此,可划分为五个步骤.(2)可依次为四项冠军确定人选,这样,可分4步完成.解:(1)每名同学在四个项目中可任报一项,即每一步有4种方法,根据分步计数原理,不同的报名方法共有:N=4×4×4×4×4=45=1024种.(2)为每一个冠军寻找人选均有5种可能,因此,根据分步计数原理,冠军获得者共有:N=5×5×5×5=54=625种.四、创新思维点拨【例4】(1)有面值为五分、一角、二角、五角、一元、二元、五十元、一百元人民币各一张,共可组成多少种不同的币值?(2)有一角、二角、五角人民币各一张,一元人民币3张,五元人民币2张,一百元人民币2张,由这些人民币可组成多少种不同的币值?思维入门指导:(1)中的8张人民币的面值各不相同,并且这8张人民币中任意几张的面值之和各不相同.因此,8张人民币所组成的不同币值的数种就是人民币所有可能取法的数种. 对每一张人民币而言,都有“取”与“不取”两种可能.因此,可按这样的程序:(2)中这10张人民币一元的有3张,五元的有2张,一百元的有2张.因此取人民币的程序应该是:解:(1)每张人民币均有“取”与“不取”两种可能,所以有2×2×2×2×2×2×2×2=28.而其中每一张都不取,不组成币值,所以不同的币值数为;N=28-1=255(种).(2)第一、二、三步都只有“取”与“不取”这两种情况,第四步取一元的3张中,可分“不取”、“取一张”、“取二张”、“取三张”这四种情况,第五步与第六步都有3种情况,且每步都不取不构成币值.所以不同的币值数:N=2×2×2×4×3×3-1=287种.点拨:此题若“分类”思考,特别是第(2)问,则较麻烦.此法为“间接法”.五、高考思维点拨【例5】(2003,河南)将3种作物种植在如图10-1-1所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______ 种(以数字作答).解:设从左到右五块田中要种a、b、c三种作物,不妨先设第一块种a,则第2块可种b或c,有两种选法.同理,如果第二块种b,则第三块可种a和c,也有两种选法,由乘法原理共有:1×2×2×2×2=16.其中要去掉ababa和acaca两种方法,故a种作物种在第1块田时有16-2=14种方法.同样b 和c也可种在第1块田中,故共有:14×3=42种.点拨:本小题主要考查运用乘法原理分析解决问题的能力.六、经典类型题思维点拨【例6】如图10-1-2所示,从A地到B地有3条不同的道路,从B地到C地有4条不同的道路,从A地不经B地直接到C地有2条不同的道路.(1)从A地到C地共有多少种不同的走法?(2)从A地到C地再回到A地有多少种不同的走法?(3)从A地到C地再回到A地,但回来时要走与去时不同的道路,有多少种走法?(4)从A地到C地再回到A地,但回来时要走与去时完全不同的道路,有多少种走法?思维入门指导:要综合应用两个原理.解:(1)从A到C地的走法分为两类:第一类经过B,第二类不经过B.在第一类中分两步完成,第一步从A到B,第二步从B到C,所以从A地到C地的不同走法总数是3×4+2=14种.(2)该事件发生的过程可以分为两大步,第一步去,第二步回.由(1)可知这两步的走法都是14种,所以去后又回来的走法总数是14×14=196种.(3)该事件的过程与(2)一样可分为两大步,但不同的是第二步即回来时的走法比去时的走法少1种,所以,走法总数是14×13=182种.(4)该事件同样分去与回两大步,但须对去时的各类走法分别讨论:若去时用第一类走法,则回来时,用第二类方法或用第一类中的部分走法,即第一类中的两步各去掉1种走法中的走法,这样的走法数是:3×4×(2+3×2)=96种;若去时用第2类走法,则回来时可用第一类走法或用第二类中的另一种走法.这样的走法数是:2×(4×3+1)=26种.所以,走法总数为96+26=122种.点拨:正确区分“不同”与“完全不相同”两种含义是解题的另一个关键,前者的含义是回来时不能原路返回,但允许有部分是原路,后者的含义是去时走过的路,回来时都不能走,前者包含后者.七、探究性学习点拨允许元素重复出现的排列,叫做有重复的排列.在m个不同的元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一,第二,…,第n位上选取元素的方法都是m个,所以从m个不同的元素中,每次取出n个元素的可重复的排列数为=m n.【例7】有数学、物理、文学3个课外活动小组,6个同学报名,每人限报一组,一共有多少种报名的方法?解:这就是有重复的排列.第一个同学有3种报名的方法,无论他报了哪一个组,第二个同学还是有3种报名的方法,其余类推.所以,一共有36=729种报名的方法.思考题:用0,1,2,…,9共10个数字中的4个数字组成电话号码,但0000不能作号码,问可编成多少个号码?。