不等式解法大全

合集下载

不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题典型例题一解15种典型例题的不等式,需要注意处理好有重根的情况。

例如,如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>(或f(x)<)可用“穿根法”求解。

对于偶次或奇次重根,可以转化为不含重根的不等式,也可直接用“穿根法”,但要注意“奇穿偶不穿”,其法如图。

下面分别解两个例题:例题一:解不等式2x-x²-15x>0;(x+4)(x+5)(2-x)<231)原不等式可化为x(2x+5)(x-3)>0.把方程x(2x+5)(x -3)=0的三个根5,-1,3顺次标上数轴。

然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分。

∴原不等式解集为{x|-5<x<0}∪{x|x>3}。

2)原不等式等价于(x+4)(x+5)(x-2)>23.用“穿根法”得到原不等式解集为{x|x<-5或-5<x<-4或x>2}。

典型例题二解分式不等式时,要注意它的等价变形。

当分式不等式化为f(x)/g(x)<(或≤)时,可以按如下方法解题。

1)解:原不等式等价于3(x+2)-x(x-2)-x²+5x+6/3x(x+2)<1-2x+2.化简后得到原不等式等价于(x-6)(x+1)(x-2)(x+2)≥0.用“穿根法”得到原不等式解集为{x|x<-2或-1≤x≤2或x≥6}。

2)解法一:原不等式等价于2x²-3x+1/2x²-9x+14>0.化简后得到原不等式等价于(x-1)(2x-1)(3x-7)<0.用“穿根法”得到原不等式解集为{x|x<1/2或7/3<x<1}。

解法二:原不等式等价于(2x-1)(x-1)<0.用“穿根法”得到原不等式解集为{x|x<1/2或x>1}。

例7解不等式2ax-a2>1-x(a>0)。

分析:将不等式移项整理得到2ax+x>a2+1,然后按照无理不等式的解法化为两个不等式组,再分类讨论求解。

解:原不等式等价于(1) 2ax-a2>1-x,或(2) 2ax-a2<1-x。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种关系式,用于表示两个数或者两个代数式之间的大小关系。

解不等式是指找出满足不等式条件的未知数的取值范围。

在解不等式的过程中,可以运用一些特定的方法和技巧,以求得精确的解。

一、一元一次在解一元一次不等式时,可以运用以下几种常见的方法和技巧:1.1 加减法法则:对于不等式中的两边都加上或者减去同一个数,不等式的符号不改变。

1.2 乘除法法则:对于不等式中的两边都乘以或者除以同一个正数,不等式的符号不改变;若乘以或者除以同一个负数,不等式的符号则反向。

1.3 移项法:将不等式中的项移动到同一边,形成一个相等的等式,然后根据等式求解的方法得到解的范围。

1.4 区间判定法:通过观察不等式中的系数和常数项的正负关系,判断不等式的解的范围。

二、一元二次在解一元二次不等式时,除了可以运用一元一次不等式的解法外,还可以运用以下方法和技巧:2.1 因式分解法:将一元二次不等式进行因式分解,然后根据因式的正负情况判断不等式的解的范围。

2.2 二次函数图像法:将一元二次不等式所对应的二次函数的图像进行分析,根据图像的凹凸性和与 x 轴的交点来求解不等式。

2.3 完全平方差和平方根法:将一元二次不等式形式化为完全平方差或平方根的形式,然后根据完全平方差和平方根的性质来求解不等式。

三、绝对值绝对值不等式是指含有绝对值符号的不等式,其解的范围一般分成两个部分。

解绝对值不等式时,可以采用以下方法和技巧:3.1 分情况讨论法:根据绝对值的定义,将不等式分成正数和负数的情况讨论,并解出相应的不等式。

3.2 辅助变量法:引入一个辅助变量,使得绝对值不等式可以转化为一元一次或一元二次不等式,然后使用已知的解法来求解。

3.3 图像法:将绝对值不等式所对应的函数图像进行分析,根据图像的凹凸性和与 x 轴的交点来求解不等式。

四、多元多元不等式是指含有多个未知数的不等式,解多元不等式时可以运用以下方法和技巧:4.1 图像法:将多元不等式所对应的多元函数的图像进行分析,根据图像的几何特征来求解不等式。

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。

2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。

3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。

4.倒数不等式公式:若a>b>0,则1/a<1/b。

5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。

若a<0且n为奇数整数,则a^n<0。

常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。

2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。

3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。

通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。

4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。

5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。

以上是基本不等式的一些公式和常用解法。

对于不同的不等式,我们需要根据具体情况选择合适的解法。

希望以上内容对您有所帮助。

不等式解法的精辟总结

不等式解法的精辟总结

不等式解法一、一元二次不等式解法1、 ax 2+bx+c>0 (或ax 2+bx+c<0) (a>0) 形式解题步骤:① 转化为一元二次方程ax 2+bx+c=0,并求此方程的解;② 根据方程ax 2+bx+c=0解的情况,结合f(x)= ax 2+bx+c 的图像写出解集;③ x 2+bx+c>0 (a<0) 的情况首先转化为-ax 2-bx-c<0,再利用上表进行解答。

2、 经典练习1) x 2-4x-21≤0 2) 3x 2+x-14>0 3) -5x 2+3x+14>04) 06222>-+x x 5) 033442<-+-x x 6) 12x 2-8x-15≤0二、高次不等式1、高中阶段只解决比较简单的高次不等式,举例如下:例题1 x 3-6x 2+11x-6>0解: ① 试根,令x 3-6x 2+11x-6=0,将1带入成立,则此三次式可分解出因式(x-1)② 多项式除法将x 3-6x 2+11x-6分解为(x-1)(x 2-5x+6),再将x 2-5x+6分解为 (x-2)(x-3), 最终分解为:(x-1)(x-2)(x-3)=0,③④ 写出解集,x 3-6x 2+11x-6>0的解集为:{x ∣1< x<2或x>3}.(注:写成集合) 方法归纳如下:① 试根,一般取[-3,3]之间的整数② 用多项式除法分解因式将其分解为(x-a )(x-b )(x-c)……=0的形式③ 用数轴标根法,在数轴上依次标出所有根④ 写出解集,> 0取x 轴上方部分,< 0取x 轴下方部分2、经典练习:1) x 3-3x 2+2x ≤0 2) x 3-x 2-x+1>0 (二重根情况的处理)。

不等式的解法

不等式的解法

不等式的解法不等式,即数学中用来表示大小关系的符号,它与等式不同的地方在于,不等式可以有无数个解,而不像等式只有一个解。

解不等式的方法有很多种,接下来将介绍几种常见的解不等式的方法。

一、一元一次不等式一元一次不等式是最基本的不等式,它的形式通常为ax+b>0或ax+b<0,其中a和b为已知数,x为未知数。

解一元一次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在数轴上画出所给不等式的解集来解不等式。

首先,我们将不等式中的x系数作为直线的斜率,常数项作为直线的截距,画出不等式对应的直线。

然后,根据不等式符号的方向,涂色标记出不等式的解集。

例如,对于不等式3x+2>0,我们可以画出直线y=3x+2,并根据大于号的方向,将直线上大于0的部分涂色。

2. 代数法代数法是通过代数运算解不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行加法、减法、乘法和除法运算,将未知数x的系数和常数项移到不等式的一侧,使得不等式变为0的形式。

最后,通过考察几个关键点的取值情况,确定不等式的解集。

二、一元二次不等式一元二次不等式是一元二次方程的不等式形式,它的形式通常为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b、c为已知数,x为未知数。

解一元二次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在坐标平面上画出所给不等式的解集来解不等式。

首先,我们将不等式转化为对应的一元二次方程,找到方程的判别式,判断方程的根的情况。

根据根的位置,将坐标平面分为几个区域,并确定每个区域对应的不等式的正负。

然后,将不等式对应的曲线画在坐标平面上,并根据不等式符号的方向,将曲线上符合条件的部分涂色。

2. 代数法代数法是通过代数运算解一元二次不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行移项、配方、因式分解等运算,将不等式变为一元二次方程的零点形式。

不等式求解技巧大全

不等式求解技巧大全

不等式求解技巧大全不等式是数学中的一种重要的关系表达式,解不等式是我们在数学中常常会遇到的问题。

在解不等式时,我们常常需要使用一些技巧和方法来求解。

下面是一些常见的不等式求解技巧。

1.化简法:对于一些较为复杂的不等式,我们可以先进行化简,将不等式转化为一个简单的形式,再进行求解。

例如,对于不等式2(x-1)>3x+4,可以先将其化简为2x-2>3x+4,再继续求解。

2.移项法:不等式的基本思想是找到使不等式成立的数的范围。

在移项法中,我们可以将不等式中的变量项移到同一边,并用0替代不等式。

例如,对于不等式2x+3>5x+2,可以将其改写为0>3x-2,然后继续求解。

3.分情况讨论法:有时候,不等式的解集与变量的取值范围有关。

在这种情况下,我们可以将不等式根据变量的取值范围进行分情况讨论,然后求解每一个情况。

例如,对于不等式,x-1,>2,可以将其分为两个情况讨论:x-1>2或者x-1<-2,然后分别求解。

4.绝对值法:绝对值是求解不等式时常常会遇到的一个概念。

在解绝对值不等式时,我们可以将绝对值分成两部分,然后分别求解每一部分。

例如,对于不等式,2x-1,>3,可以将其分为两个不等式2x-1>3或者2x-1<-3,然后分别求解。

5.图像法:有些时候,我们可以利用图像来求解不等式。

例如,对于不等式x^2-4x+3>0,我们可以通过绘制函数y=x^2-4x+3的图像,找到使不等式成立的区间。

6.数列法:数列法是一种递归思想,如果不等式中的变量之间存在其中一种特殊关系,我们可以通过构造一个数列来求解不等式。

例如,对于不等式x^2-3x-4>0,我们可以构造数列{a_n},其中a_n=a_{n-1}^2-3a_{n-1}-4,然后通过求解这个数列的极限值来求解不等式。

7.寻找最值:有时候,我们可以通过寻找不等式中的最值来求解不等式。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的问题,解不等式可以帮助我们找到满足特定条件的数值范围。

本文将介绍几种常用的不等式的解法。

一、一元一次一元一次不等式是形如ax+b>c或ax+b<c的不等式,其中a、b、c都是已知的实数,x是未知数。

1. 等价变形法通过对不等式进行等价变形,使得未知数x单独在一边,从而得到不等式的解。

例如,对于不等式3x+4>10,我们可以通过减4,并除以3来消去4和3,得到x>2。

所以x的取值范围为大于2的所有实数。

2. 符号法考虑不等式中的符号,根据不等式关系的性质确定解的范围。

例如,对于不等式5x-7≥8,我们观察到不等式中的符号是≥,根据≥的意义,我们知道等号成立时也是一个解。

所以我们可以解得5x-7=8,得到x=3。

因此,x的取值范围为大于等于3的所有实数。

二、一元二次一元二次不等式是形如ax^2+bx+c>d或ax^2+bx+c<d的不等式,其中a、b、c、d都是已知的实数,x是未知数。

1. 图像法将一元二次不等式转化为二次函数的图像,通过观察函数图像来确定不等式的解。

例如,对于不等式x^2-4x<3,我们可以将不等式转化为方程x^2-4x=3,并求得其根为x=1和x=3。

然后绘制出函数图像y=x^2-4x的图像,在图像上观察x轴上落在1和3之间的部分,即得到不等式的解为1<x<3。

2. 化简法将一元二次不等式进行化简,将不等式转化为一个或多个一元一次不等式,然后求解这些一元一次不等式的解。

例如,对于不等式x^2+2x-3>0,我们可以将不等式因式分解为(x-1)(x+3)>0。

然后我们考虑两个因式的正负情况,得到两个一元一次不等式x-1>0和x+3>0。

解这两个一元一次不等式,得到x>1和x>-3。

因此,x的取值范围为大于1和大于-3的所有实数。

三、多元多元不等式是包含两个或多个未知数的不等式,解多元不等式可以使用代入法、图像法或数学方法。

不等式的解法

不等式的解法

2x + 3 例8:解不等式 ≤ 3. x −1 2x + 3 x−6 解: − 3 ≤ 0, ≥0 x −1 x −1 ( x − 6)( x − 1) ≥ 0 x −1 ≠ 0 ∴ ( −∞ ,1) ∪ [6,+∞ )
x −3x +2 <0 例9:解不等式 2 : x −2x −3 解一: 解一:原不等式转化为 2 x2 −3x +2 > 0 x −3x +2 < 0 或(2) ) (1) ) x2 −2x −3< 0 x2 −2x −3> 0

x ≥ −3 x > 1

3 − 2
17
< x ≤ 1或 x > 1
∴ x∈(
3− 2
17
, +∞ )
3. 3 x − 5 > x − 4
解:
3 x − 5 ≥ 0 ⇒ x − 4 ≥ 0 3 x − 5 > x − 4
x x x ≥ ≥ > 5 3 4 1 2
解: x +2 > 0
0
1 3x +14 x +2 > 5
x + 2 ≤ 0 0 2 3x +14 − x − 2 > 5
x > −2 x > 2
x ≤ −2 x < −3
∴(−∞,−3) ∪(2,+∞)
(6) | 2 x − 1| − x <| x + 3 | +1
∴ 所求不等式即为 x − 2 x − 8 > 0
2
解得x ∈ (− ∞,−2) ∪ (4,+∞ )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次不等式的解法
例1.解不等式 2x2-3x-2 > 0 .
所以,原不等式的解集是
1 x | x , 或x 2. 2
若改为:不等式 2x2-3x-2 < 0 .
1 则不等式的解集为: x 2 2
x 3x 3 3.不等式 2 1的解集为( C ) x 2x 5
2
对所对应方程根的大小进行讨论
2 2 3
例3:解关于x的不等式x (a a ) x a 0
综合题型I
例4:解关于x的不等式:ax (2a 1) x 2 0
2
综合题型II
例5:解关于x的不等式ax 2 x a 0
2
小结与归纳
• • • • • 含参数的一元二次不等式需讨论一般分为 1:对二次项系数进行讨论; 2:对所对应方程根的个数进行讨论; 3:对所对应方程根的大小进行讨论; 注意:因不确定所以需要讨论,在讨论时需 清楚在哪讨论;怎样讨论.讨论要不重不漏,通 过讨论后化不确定为确定.
2 a0 x2 a
2 0 a 1 x 或 x 2 a
a 1 x 2
2 a 1 x 或 x 2 a
例3若不等式ax2+2ax- 4<2x2+4x对于任意的 实数x均成立,求实数a的取值范围。
Ax2+Bx+C>0的解集为R,则满足 或A=0,B=0,C>0 Ax2+Bx+C>0的解集为φ,则满足 或A=0,B=0,C 0
例6不等式ax2+bx+c>0的解集为 {x|α<x<β}其中β>α>0,求不等式 cx2+bx+a<0的解集。
A 例7设 {x | x 4 x 3 0}, B {x | x 4 x a 8 0} 且 A B ,求a的取值范围.
2 2
A {x | x 2 4 x 3 0}, B {x | x 2 4 x a 8 0} 变式:设
2
(A){x| 0<x<2} (B){x| x>2} (C){x| x<2} (D)R
(3x 4)(2 x 1) 0 的解集 15.不等式 2 ( x 1) 1 4 为 {x| x 且x≠1} . 2 3
题型一 题型二 题型三 题型四
题型一 题型二 题型三 题型四
含绝对值的不等式
题型一 题型二 题型三 题型四
含参二次不等式的解法
怎样解含字母的不等式: 例 4 解关于 x 的不等式: ax2 2(a 1) x 4 0
解 (1) a 0 x 2
(2) a 0 , 原不等式化为:(ax-2)(x-2)>0 2 a( x )( x 2) 0 a
原式化为:(log2 x 1)(log 2 x 2) 6 2 (log 2 x) 3log 2 x 4 0 (log 2 x 4)(log 2 x 1) 0
4 log 2 x 1
1 x2 16
对所对应方程根的个数进行讨论
例2:解关于x的不等式x 2 x m 0
题型一 题型二 题型三 题型四
6.不等式(1-|x|)(1+x)>0的解集为( D ) (A)(-1,1)
(B)(-∞,1) (C)(0,1)
(D)(-∞,-1)∪(-1,1)
题型一 题型二 题型三 题型四
题型一 题型二 题型三 题型四
题型一 题型二 题型三 题型四
题型一 题型二 题型三 题型四
且 B A ,求a的取值范围.
例8若不等式2x-1>m(x2-1)对于满足m 2 的所有m都成立,求x的取值范围。
• 对数与指数不等式
例 9 试解下列不等式:

2
x 2 5 x 5
1 2
1 解:∵ 2 2 x 2 5 x 5 1 2 ∴2 2 ∴ x 5x 5 1 ∴ ( x 2)( x 3) 0
2
3
3
解得 2 x 1 或 4 x 7
∴原不等式的解集为 x 2 x 1 或 4 x 7 .
(3) 4 x 3 2 x 4 0
令2x t t 2 3t 4 0 (t 1)(t 4) 0
t 4 或 t 1 (舍) 2x 4 x 2 (4) log 2 2 x log 2 4 x 6
题型一 题型二 题型三 题型四
1~5 10 12
6~9 11
1~5 10 12
6~9 11
1~5 10 12
6~9 11
1~5 10 12
6~9 11
例5不等式ax2+bx+c<0的解集为
1 {x | x 2或x } 2
其中a,b为实数,求不等式ax2-bx+c>0的 解集。
作业
1:已知不等式(m 4m 5) x 4(m 1) x 3 0
2 2
对于一切实数x恒成立,求实数m的取值范围.
2:解关于x的不等式x 2 x 1 m 0
2 2
3:2
对二次项系数进行讨论
求实数m的取值范围.
例1:设函数f ( x) mx 2 mx 1 0对于一切实数x恒成立
A 0 0
A 0 0
(a 2) x (2a 4) x 4 0
2
a 4 0 (2a 4) 2 16( a 2) 0
或 a2
题型一 题型二 题型三 题型四
题型一 题型二 题型三 题型四
题型一 题型二 题型三 题型四
x 2 5 x 5
∴ 原 不 等 式 的 解 集 为 x x 2 或 x 3 .
(2) log 1 ( x 3x 4) log 1 (2 x 10)
2 3
3
log 1 ( x 2 3x 4) log 1 (2 x 10) 解: ∵
x 3x 4 0 ∴ 2 x 10 0 x 2 3x 4 2 x 10
相关文档
最新文档