方法点拨整式

合集下载

初一第一讲幂的运算

初一第一讲幂的运算

第一讲 幂的运算本讲知识要点:同底数的幂相乘、幂的乘方、积得乘方、零指数、负指数。

一、典例精讲考点1、 判断整式例1、指出下列各代数式中哪些是单项式,哪些是多项式,哪些是整式?2,,,2a 3,5,4y y ab x y b a m π---+,3-π,88n m +,-9。

方法点拨:一个数字或一个字母也是单项式,(数字与字母的乘积)。

整式分单项式和多项式。

代数式分整式和分式(分式是分母是字母)。

考点2 、 同底数的幂相乘例2、计算:(1)-a ·(-a )3·(-a )2 ·(-a 4); (2)()()()5223...a a a a ---;(3 (a -b )·(b -a )2·(b -a )3·(a -b ) 4思考:8 m+2×2m ×16=64,求m 的值。

考点3 、幂的乘方、积得乘方例3、计算:(1)()()()[]23328..p p p --- (2)()()()()22323223.2.23y x y x y x -+-+-(3)2010200931273⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛-变式练习1:(1) ()()()5223...a a a a ---; (2)()()()()4242222220.53.4b a b a ab b ab +--+---;(3)1)25.0(42324--⨯ (4)(3)2010200931273⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛-思考1:(1)、若352=+y x ,求yx 32.4的值. (2)2333333++⋅⋅-n n n考点4、乘法分配律的逆用例4、计算(-2)2007+(-2)2008的结果是▲ 考点5、比较大小▲ 例5、比较大小:3334445555,4,3。

方法点拨:底数和指数都不一样,把指数化成相同,比较底数.变式议练1 比较大小:(1)100753,4; (2)223344556,5,3,2考点6、幂的有关公式逆运算(常考B 卷题)例6、(1)已知4,32==n n b a ,求()nb a 242的值。

《整式》整式及其加减PPT精品课件

《整式》整式及其加减PPT精品课件

ab-4c2 是单项式ab与单项式-4c2 的和,
ab-1π6b2是单项式ab与单项式-1π6b2的和, ab+ac+bc是单项式ab与单项式ac与单项式bc的和.
探究新知 多项式相关概念 1.几个单项式的和叫做多项式,例如x2y+xy2. 2.在多项式中,每个单项式叫做多项式的项. 3.不含字母的项叫做常数项. 4.多项式里次数最高项的次数就是多项式的次数.
探究新知 知识点 3 整式
观察下面的式子,试着将它们分类. 3x+5y+2z 0.8p v+2.5 a2h -n
mn 12ab-πr2
单项式: 0.8p a2h -n mn 多项式: 3x+5y+2z v+2.5 12ab-πr2
单项式和多项式统称整式.
探究新知
素养考点 整式的概念 例 下列式子:x2+2, 1a+4, 3a7b2, acb,-5x,0中,整式的个数是 (C)
次数
常数项
多项式: 3x3 + 5x + 8
探究新知
练一练 小红和小兰房间窗户的装饰物如图所示,它们分别由两个四
分之一圆和四个半圆组成(半径分别相同)
(1)窗户中能射进阳光的部分的面 积分别是多少?
(窗框面积忽略不计) (2)你能指出其中的单项式或多项 式吗? 它们的次数分别是多少?
探究新知
解:(1)窗户中能射进阳光的部分的面积分别是:
巩固练习
变式训练
1.单项式2a的系数是 ( A )
A. 2
B. 2a C. 1 D. a
2.单项式-x2y的系数和次数依次是( A ) A.-1,3 B.-1,4 C.1,3 D.1,4

一元二次方程的重难点及题型

一元二次方程的重难点及题型

一元二次方程的重难点及题型【重难点1 一元二次方程的概念】【方法点拨】解决此类问题掌握一元二次方程的定义是关键;等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。

【思路点拨】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【题型】①ax2+x+2=0,当a=0时,该方程属于一元一次方程,故错误;②3(x﹣9)2﹣(x+1)2=1、④(a2+a+1)x2﹣a=0符合一元二次方程的定义,故正确;③x+3=1/x属于分式方程,故错误;⑤√x+1=x﹣1属于无理方程,故错误;故选:B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2。

【重难点2 一元二次方程的解】【方法点拨】一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解,解决此类问题,通常是将方程的根或解反代回去再进行求解.【思路点拨】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为0【题型】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,得m²﹣9=0,解得m=﹣3或3,当m=3时,原方程二次项系数m﹣3=0,舍去,故选:B【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念【重难点3 用指定方法解一元二次方程】【方法点拨】解决此类问题需熟练掌握直接开方法、配方法、公式法、因式分解法的步骤【思路点拨】(1)方程变形后,利用平方根的定义开方即可求出解;(2)方程常数项移到右边,两边加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方即可求出解;(3)方程整理为一般形式,找出a,b,c的值,当根的判别式大于等于0时,代入求根公式即可求出解;(4)方程左边提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【点睛】此题考查了解一元二次方程﹣因式分解法,配方法,公式法,以及直接开平方法,熟练掌握各自解法是解本题的关键.【重难点4 一元二次方程根的判别式】【方法点拨】解决此类问题需熟练掌握根的判别式:当①b²-4ac>0时,方程有两个不相等的实数根;②b²-4ac=0时,方程有两个相等的实数根;③b²-4ac<0时,方程无实数根,反之亦成立.【思路点拨】(1)根据一元二次方程根的判别式列出不等式,结合一元二次方程的定义可得a的范围;(2)将a的值代入得出方程,解之可得.【题型】(1)由题意知△≥0,即4(a﹣1)²﹣4(a﹣2)(a+1)≥0,解得:a≤3,∴a≤3且a≠2;(2)由题意知a=3,则方程为x2﹣4x+4=0,解得:x1=x2=2.【点睛】本题考查的是根的判别式,熟知一元二次方程ax²+bx+c=0(a≠0)的根与△=b²﹣4ac的关系是解答此题的关键.【重难点5 一元二次方程根与系数的关系】【方法点拨】解决此类问题需熟练掌根与系数的关系,熟记两根之和与两根之积,并且能够灵活运用所学知识对代数式进行变形得到两根之和与两根之积的形式,代入即可求值.【思路点拨】(1)将所求的代数式进行变形处理:x₁²+x₂²=(x₁+x₂)²﹣2x₁x₂。

整式的除法(基础)知识讲解

整式的除法(基础)知识讲解

整式的除法(基础)【学习目标】1. 会进行单项式除以单项式的计算.2. 会进行多项式除以单项式的计算. 【要点梳理】要点一、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点二、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化. 【典型例题】类型一、单项式除以单项式1、计算:(1)342222(4)(2)x y x y ÷; (2)2137323m n m m n xy z x y x y z +⎛⎫÷÷- ⎪⎝⎭;(3)22[()()]()()x y x y x y x y +-÷+÷-; (4)2[12()()][4()()]a b b c a b b c ++÷++.【思路点拨】(1)先乘方,再进行除法计算.(2)、(3)三个单项式连除按顺序计算.(3)、(4)中多项式因式当做一个整体参与计算. 【答案与解析】解:(1)342222684424(4)(2)1644x y x y x y x y x y ÷=÷=. (2)2137323m n m m n xy z x y x y z +⎛⎫÷÷- ⎪⎝⎭21373211()()()3m m m n n x x x y y y z z +⎡⎤⎛⎫=÷÷-÷÷÷÷÷ ⎪⎢⎥⎝⎭⎣⎦21432n xy z -=-.(3)22[()()]()()x y x y x y x y +-÷+÷-222()()()()x y x y x y x y =+-÷+÷- 2()()x y x y x y =-÷-=-.(4)2[12()()][4()()]a b b c a b b c ++÷++2(124)[()()][()()]a b a b b c b c =÷+÷++÷+3()33a b a b =+=+.【总结升华】(1)单项式的除法的顺序为:①系数相除;②相同字母相除;③被除式中单独有的字母,连同它的指数作为商的一个因式.(2)注意书写规范:系数不能用带分数表示,必须写成假分数. 举一反三: 【变式】计算:(1)3153a b ab ÷; (2)532253x y z x y -÷;(3)2221126a b c ab ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)63(1010)(210)⨯÷⨯. 【答案】解:(1)33202153(153)()()55a b ab a a b b a b a ÷=÷÷÷==. (2)532252323553(53)()()3x y z x y x x y y z x yz -÷=-÷÷÷=-. (3)22222201111()()332626a b c ab a a b b c ab c ac ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-÷-÷÷== ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (4)63633(1010)(210)(102)(1010)510⨯÷⨯=÷÷=⨯.2、(泾阳县校级月考)金星是太阳系九大行星中距离地球最近的行星,也是人在地球上看到的天空中最漂亮的一颗星.金星离地球的距离为4.2×107千米,从金星射出的光到达地球需要多少时间?(光速为3.0×105千米/秒)【答案与解析】 解:t=秒,答:从金星射出的光到达地球需要1.4×102秒.【总结升华】本题考查了同底数幂的除法法则,关键是利用时间=路程÷速度这一公式,此题比较简单,易于掌握. 类型二、多项式除以单项式3、计算(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭ ;(2)()()32271833x x x x -+÷-.【思路点拨】直接利用多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加计算.【答案与解析】解:(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭54325242323211224111124424482x x x x x x x x x x x x x⎛⎫=++÷ ⎪⎝⎭=÷+÷+÷=++(2)()()32271833x x x x -+÷-()()()32227318333961x x x x x x x x =÷--÷-+÷-=-+-【总结升华】本题考查多项式除以单项式的运算,熟练掌握运算法则是解题的关键,要注意符号的处理.4、计算:(1)324(67)x y x y xy -÷; (2)42(342)(2)x x x x -+-÷-; (3)22222(1284)(4)x y xy y y -+÷-; (4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭. 【答案与解析】解:(1)32432423(67)(6)(7)67x y x y xy x y xy x y xy x y x -÷=÷+-÷=-. (2)42(342)(2)x x x x -+-÷-42[(3)(2)][4(2)][(2)(2)]x x x x x x =-÷-+÷-+-÷-33212x x =-+. (3)22222(1284)(4)x y xy y y -+÷-222222212(4)(8)(4)4(4)x y y xy y y y =÷-+-÷-+÷-2321x x =-+-(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭22322432110.3(0.5)(0.5)(0.5)36a b a b a b a b a b a b ⎛⎫⎛⎫=÷-+-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭22321533ab a b =-++.【总结升华】(1)多项式除以单项式是转化为单项式除以单项式来解决的.(2)利用法则计算时,不能漏项.特别是多项式中与除式相同的项,相除结果为1.(3)运算时要注意符号的变化. 举一反三:【高清课堂399108 整式的除法 例5】 【变式1】计算:(1)23233421(3)2(3)92xy x x xy y x y ⎡⎤--÷⎢⎥⎣⎦; (2)2[(2)(2)4()]6x y x y x y x +-+-÷. 【答案】解: (1)原式223239421922792x yx x x y y x y ⎛⎫=-÷ ⎪⎝⎭52510428(927)93x y x y x y x xy =-÷=-. (2)原式2222[44(2)]6x y x xy y x =-+-+÷2222(4484)6x y x xy y x =-+-+÷ 2(58)6x xy x =-÷5463x y =-. 【变式2】(滕州市校级月考)计算:[(3a+b )2﹣b 2]÷3a. 解:[(3a+b )2﹣b 2]÷3a,=(9a 2+6ab+b 2﹣b 2)÷3a,=(9a 2+6ab )÷3a, =3a+2b 【巩固练习】一.选择题1. 下列计算结果正确的是( )A .2334222x y xy x y -⋅=- B .222352x y xy x y -=-C .4232874x y x y xy ÷= D .()()2323294a a a ---=-2. 423287a b a b ÷的结果是 ( ) A.24abB.44a bC. 224a bD. 4ab3.(下城区二模)下列运算正确的是( ) A .(a 3﹣a )÷a=a 2 B .(a 3)2=a 5 C .a 3+a 2=a 5 D .a 3÷a 3=14. 如果□×3ab =23a b ,则□内应填的代数式是( )A.abB.3abC.aD.3a5.下列计算正确的是( ). A.()13n n x y z +-÷()13n n x y z +- =0B.()()221510532x y xy xy x y -÷-=- C.x xy xy y x 216)63(2=÷- D.231123931)3(x x x x xn n n +=÷+-++ 6. 太阳的质量约为2.1×2710t ,地球的质量约为6×2110t ,则太阳的质量约是地球质量的( )A.3.5×610倍 B.2.9×510倍 C.3.5×510倍 D.2.9×610-倍 二.填空题7. 计算:()()22963a b ab ab -÷=_______. 8. 2xy •(______)=26x yz -. 9. 计算()()34432322396332x y x y x y x y x y xy -+÷=-+-.10.直接写出结果:(1)()()35aa -÷-=_______;(2)()24a a -÷-=_______;(3)1042x x x ÷÷=_______; (4)10n ÷210n -=_______;(5)()3mm aa ÷=_______;(6)()()21nn y x x y --÷-=_______.11.(成都校级月考)(﹣a 6b 7)÷= .12.学校图书馆藏书约3.6×410册,学校现有师生约1.8×310人,每个教师或学生假期平均最多可以借阅______册图书. 三.解答题13.(陇西县期末)(1)计算:()2÷(﹣)2(2)计算:(x 2y ﹣xy 2﹣y 3)(﹣4xy 2).14. 先化简,再求值:()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦,其中a =-5. 15.天文学上常用太阳和地球的平均距离 1.4960×810千米作为一个天文单位,已知月亮和地球的平均距离约为384401千米,合多少天文单位?(用小数表示,精确到0.0001)【答案与解析】 一.选择题1. 【答案】C ;【解析】A 、2334224x y xy x y -⋅=-,所以A 选项错误;B 、两个整式不是同类项,不能合并,所以B 选项错误;D 、()()2323294a a a ---=-+,所以,D 选项错误.2. 【答案】D ;3. 【答案】D ;【解析】解:A 、(a 3﹣a )÷a=a 2﹣1,错误;B 、(a 3)2=a 6,错误;C 、a 3与a 2表示同类项,不能合并,错误;D 、a 3÷a 3=1,正确; 故选D .4. 【答案】C ;5. 【答案】D ; 【解析】()13n n xy z +-÷()13n n xy z +- =1;()()221510532x y xy xy x y-÷-=-+;21(36)612x y xy xy x -÷=-. 6. 【答案】C ;【解析】(2.1×2710)÷(6×2110)=0.35×610=3.5×510. 二.填空题7. 【答案】32a b -; 8. 【答案】3xz -;【解析】26x yz -÷2xy =3xz -. 9. 【答案】23xy -;10. 【答案】(1)2a ;(2)-2a ;(3)4x ;(4)100;(5) 2ma ;(6) ()1n x y +- ;【解析】(6)()()()()21211nn n n n y x x y x y x y --++-÷-=-=-.11.【答案】﹣3a 2b 5; 【解析】解:(﹣a 6b 7)÷=,故答案为:﹣3a 2b 5. 12.【答案】20册;【解析】3.6×410÷(1.8×310)=20. 三.解答题 13.【解析】 解:(1)()2÷(﹣)2=×=;(2)(x 2y ﹣xy 2﹣y 3)(﹣4xy 2)=﹣3x 3y 3+2x 2y 4+xy 5.14. 【解析】解:原式=()61264594a a a a -÷÷ =6444a a -÷ =2a -当a =-5时,原式=-25. 15.【解析】解:由题意得:384401÷1.4960×810≈0.0026(个天文单位) 答:月亮和地球的平均距离约为0.0026个天文单位.。

初中数学学习重难点与方法点拨

初中数学学习重难点与方法点拨

数学初中阶段学习重难点与方法点拨1、数与运算【学习重难点①】知识板块的条理性:我们教材上的课程设置通常是由易到难,由浅入深。

我们的数与运算同样是按照这样的思想,在不断扩充数的范围:六年级第一学期学整数和分数六年级下学期扩展到有理数进入到七年级第一学期进一步拓展到实数;跟数的内容安排一样,我们所学习的式子也是从整式(分母中没有未知数,根号下无字母)然后分式(分母中有未知数,根号下无字母)最后学习二次根式。

学生在学习过程中没有梳理、总结知识的意识,往往都是单一的学习某一块的内容,随着时间推移,接触内容多了之后,对之前学过的内容就会产生混乱。

【方法点拨】a.掌握基本定义这部分内容在考察的时候往往不太难,通常是基本的定义和简单运算。

所以把概念理解清楚是至关重要的,只有做到这些内容才能做到基础题不丢分。

b.把不同知识点对比讲解可以把不同的知识点对比着理解,这样可以让学生更加清楚各知识点的差异,能够更深刻地理解每个知识点。

c.形成知识体系做好复习工作,不光是对本学期所学内容进行复习,或者说到中考前才对整个初中阶段的内容进行复习;而是应该在适当的时机对相关内容进行复习。

比如在数与运算这块内容,我们可以在八年级上学期学完二次根式后,对数与运算相关的内容进行一个完整的梳理,这样的话有利于学生形成一个完整的知识体系,不至于学到后面,前面忘光。

【例题解析】【题目】同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。

试探索:(1)求|5-(-2)|=______。

(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是_____。

(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由。

(8分)【答案】【解析】(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.解:(1)原式=|5+2|=7 答案为7(2)令x+5=0或x-2=0时,则x=-5或x=2当x<-5时,∴-(x+5)-(x-2)=7,-x-5-x+2=7,x=5(范围内不成立)当-5<x<2时,∴(x+5)-(x-2)=7,x+5-x+2=7,7=7,∴x=-4,-3,-2,-1,0,1当x >2时,∴(x+5)+(x-2)=7, x+5+x-2=7, 2x=4, x=2, x=2(范围内不成立)∴综上所述,符合条件的整数x 有:-5,-4,-3,-2,-1,0,1,2 (3)由(2)的探索猜想,对于任何有理数x ,|x-3|+|x-6|有最小值为3【推荐课程】六年级秋季课程/六年级寒假课程/六年级春季课程/七年级暑假课程/七年级秋季课程/七年级寒假课程/八年级暑假课程/八年级秋季课程/八年级寒假课程2、方程与不等式 【学习重难点①】 列方程解应用题:许多学生总觉得应用题难。

专题1.3 整式乘法与因式分解章末重难点题型(举一反三)(苏科版)(解析版)

专题1.3  整式乘法与因式分解章末重难点题型(举一反三)(苏科版)(解析版)

专题1.3 整式乘法与因式分解章末重难点题型【苏科版】【考点1 单项式乘单项式】【方法点拨】单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中只含有的字母,则连同它的指数作为积的一个因式.【例1】(2019秋•金牛区校级期中)下列各式中,计算正确的是()A.(﹣5a n+1b)•(﹣2a)=10a n+1bB.(﹣4a2b)•(﹣a2b2)•cC.(﹣3xy)•(﹣x2z)•6xy2=3x3y3zD.【分析】单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.【答案】解:A、(﹣5a n+1b)•(﹣2a)=10a n+2b,此选项错误;B、(﹣4a2b)•(﹣a2b2)•c,此选项正确;C、(﹣3xy)•(﹣x2z)•6xy2=18x4y3z,此选项错误;D、(2a n b3)(﹣ab n﹣1)=﹣a n+1b n+2,此选项错误.故选:B.【点睛】考查了单项式乘单项式,关键是熟练掌握计算法则正确进行计算.【变式1-1】(2019秋•雨花区校级期末)如果一个单项式与﹣2a2b的积为﹣a3bc2,则这个单项式为()A.ac2B.ac C.ac D.ac2【分析】已知两个因式的积与其中一个因式,求另一个因式,用除法.根据单项式的除法法则计算即可得出结果.【答案】解:(﹣a3bc2)÷(﹣2a2b)=ac2.故选:A.【点睛】本题考查了单项式的除法法则.单项式与单项式相除,把他们的系数分别相除,相同字母的幂分别相除,对于只在被除式里出现的字母,连同他的指数不变,作为商的一个因式.【变式1-2】(2019春•城关区校级期中)化简的结果是()A.B.2(x﹣y)7C.(y﹣x)7D.4(y﹣x)7【分析】根据整式的运算法则即可求出答案.【答案】解:原式=16(x﹣y)4•(﹣)3(y﹣x)3=﹣16(x﹣y)4•()(x﹣y)3=2(x﹣y)7,故选:B.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.【变式1-3】(2019秋•丛台区校级期中)若(2xy2)3•(x m y n)2=x7y8,则()A.m=4,n=2B.m=3,n=3C.m=2,n=1D.m=3,n=1【分析】直接利用积的乘方运算法则进而得出m,n的值.【答案】解:∵(2xy2)3•(x m y n)2=x7y8,∴8x3y6•x2m y2n=x7y8,则x2m+3y2n+6=x7y8,∴2m+3=7,2n+6=8,解得:m=2,n=1,故选:C.【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键.【考点2 单项式乘多项式】【方法点拨】就是用单项式去乘多项式的每一项,再把所有的项相加,利用法则进行单项式和多项式运算时要注意:(1)多项式每一项都包括前面的符号,运用法则计算时,一定要强调积的符号.(2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.【例2】(2019秋•安居区期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1D.1【分析】先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.【答案】解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选:A.【点睛】本题考查的是单项式乘多项式,熟知单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加是解答此题的关键.【变式2-1】(2019春•雁塔区校级期中)已知7x5y3与一个多项式之积是28x7y3+98x6y5﹣21x5y5,则这个多项式是()A.4x2﹣3y2B.4x2y﹣3xy2C.4x2﹣3y2+14xy2D.4x2﹣3y2+7xy3【分析】根据乘法与除法的互逆关系,可得整式的除法,根据整式的除法,可得答案.【答案】解:由7x5y3与一个多项式之积是28x7y3+98x6y5﹣21x5y5,得(28x7y3+98x6y5﹣21x5y5)÷7x5y3=4x2+14xy2﹣3y2,故选:C.【点睛】本题考查了单项式乘多项式,利用了整式的除法:用多项式的每一项除以单项式,把所得商相加.【变式2-2】(2019秋•秀屿区校级期中)要使(x2+ax+5)(﹣6x3)的展开式中不含x4项,则a应等于()A.1B.﹣1C.D.0【分析】先展开,再根据题意得出x4项的系数为0即可.【答案】解:(x2+ax+5)(﹣6x3)=﹣6x5﹣6ax4﹣30x3,∵(x2+ax+5)(﹣6x3)的展开式中不含x4项,∴﹣6a=0,∴a=0,故选:D.【点睛】本题考查了单项式乘以多项式,掌握运算法则是解题的关键.【变式2-3】(2019春•凤翔县期中)某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断正确的计算结果是()A.4x2﹣x+1B.x2﹣x+1C.﹣12x4+3x3﹣3x2D.无法确定【分析】根据整式的减法法则求出多项式,根据单项式与多项式相乘的运算法则计算,得到答案.【答案】解:x2﹣x+1﹣(﹣3x2)=x2﹣x+1+3x2=4x2﹣x+1,﹣3x2•(4x2﹣x+1)=﹣12x4+3x3﹣3x2,故选:C.【点睛】本题考查的是单项式乘多项式、整式的加减混合运算,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【考点3 多项式乘多项式】【方法点拨】多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。

最新人教版八年级数学上册第十四章《整式的乘法》教材习题点拨

最新人教版八年级数学上册第十四章《整式的乘法》教材习题点拨

教材习题点拨P95“探究”答案:7,5,m +n练习解:(1)b 5·b =b 5+1=b 6. (2)⎝⎛⎭⎫-12×⎝⎛⎭⎫-122×⎝⎛⎭⎫-123=⎝⎛⎭⎫-121+2+3=⎝⎛⎭⎫-126=126. (3)a 2·a 6=a 8.(4)y 2n ·y n +1=y 3n +1. 点拨:运用同底数幂乘法的运算法则可得.P96“探究”答案:6,6,3m练习解:(1)(103)3=103×3=109. (2)(x 3)2=x 3×2=x 6. (3)-(x m )5=-x 5m .(4)(a 2)3·a 5=a 6·a 5=a 11.点拨:运用幂的乘方性质可得.P97“探究”答案:(1)2,2(2)(ab )·(ab )·(ab ),(a ·a ·a )(b ·b ·b ),3,3练习解:(1)(ab )4=a 4b 4.(2)(-12xy )3=-18x 3y 3. (3)(-3×102)3=-27×106=-2.7×107.(4)(2ab 2)3=8a 3b 6.点拨:利用积的乘方运算法则可得.P98”思考”(1)(3×105)×(5×102)=(3×5)×(105×102)=15×107=1.5×108分配、结合.(2)ac 5·bc 2=abc 7.练习1.解:(1)3x 2·5x 3=15x 5.(2)4y ·(-2xy 2)=-8xy 3.(3)(-3x )2·4x 2=9x 2·4x 2=36x 4.(4)(-2a )3·(-3a )2=-8a 3·9a 2=-72a 5.点拨:利用单项式乘法法则可得.2.解:(1)不对;应为6a 5;(2)对;(3)不对,应为12x 4;(4)不对;应为15y 8.点拨:在进行整式乘法运算时,应首先判断是哪种运算,再运用相关法则进行计算. 练习1.解:(1)3a (5a -2b )=15a 2-6ab ;(2)(x -3y )·(-6x )=-6x 2+18xy .点拨:运用单项式乘以多项式法则易得.2.解:原式=x 2-x +2x 2+2x -6x 2+15x =-3x 2+16x .点拨:注意先做乘法,再合并同类项.练习1.解:(1)(2x +1)(x +3)=2x 2+x +6x +3=2x 2+7x +3.(2)(m +2n )(3n -m )=3mn -m 2+6n 2-2mn =-m 2+mn +6n 2.(3)(a -1)2=(a -1)(a -1)=a 2-2a +1.(4)(a +3b )(a -3b )=a 2-9b 2.(5)原式=2x 3-8x 2-x +4.(6)原式=2x 3-x 2-4x -15.点拨:运用多项式乘以多项式法则可得.2.解:(1)(x +2)(x +3)=x 2+5x +6.(2)(x -4)(x +1)=x 2-3x -4.(3)(y +4)(y -2)=y 2+2y -8.(4)(y -5)(y -3)=y 2-8y +15.填空:x 2 p +q pq .点拨:计算时一定要注意确定积中各项的符号.练习1.解:(1)x 2;(2)1;(3)-a 3;(4)x 2y 2.点拨:运用同底数幂的除法法则进行计算.2.解:(1)-2b 2;(2)-43ab ; (3)7y ;(4)2×103.点拨:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.3.解:(1)6b +5;(2)3x -2y .习题14.11.解:(1)不对,应为b 6;(2)不对,应为x 8;(3)不对,应为a 10;(4)不对,应为a 10;(5)不对,应为a 3b 6;(6)不对,应为4a 2.点拨:利用幂的三个运算性质进行判断.2.解:(1)2x 4;(2)-p 3q 3;(3)-16a 8b 4;(4)6a 8.点拨:利用幂的三个运算性质进行计算.3.解:(1)18x 3y ;(2)-6a 2b 3;(3)-4x 5y 7;(4)4.94×108.点拨:利用单项式乘法法则计算.4.解:(1)-8ab +2b 3;(2)2x 3-x 2;(3)10a 2b -5ab 2+ab ;(4)-18a 3+6a 2+4a .点拨:利用单项式乘以多项式法则计算.5.解:(1)原式=x 2-9x +18;(2)原式=x 2+16x -16; (3)原式=3x 2+8x +4;(4)原式=-4y 2+21y -5;(5)原式=x 3-2x 2+4x -8;(6)原式=x 3-y 3.点拨:利用多项式乘以多项式法则进行计算.6.解:(1)1;(2)ab 4;(3)-4x ;(4)16m 3p 2;(5)-3x 2+4x ;(6)-0.5+ab +13a 2b 2. 7.解:原式=x 3-x 2-x 3-x 2+x =-2x 2+x ,当x =12时,原式=-2×⎝⎛⎭⎫122+12=0. 点拨:在计算时要注意运算顺序.8.解:(1)-5x 2-12x +15;(2)2x 2-8.点拨:对于混合运算,先算乘法,再算加减,得出最简结果.9.解:8G =8×210×210×210B =23×230B =233B.点拨:本题实质是单位换算.10.解:7.9×103×2×102=1.58×106(m).点拨:计算结果仍用科学记数法表示.11.解:题图中阴影部分的面积是(a +2a +2a +2a +a )·(1.5a +2.5a )-2a ·2.5a -2a ·2.5a=8a ·4a -5a 2-5a 2=32a 2-10a 2=22a 2(m 2).点拨:阴影部分面积等于大矩形面积减去两个小矩形面积.12.解:长方形纸板的长为4a 2b ÷ab +2a =4a +2a =6a ;宽为b +2a .13.解:∵2m =a ,∴(2m )3=a 3.∴23m =a 3.∵32n =b ,∴(25)n =b .∴25n =b .∴210n =b 2,23m ×210n =a 3b 2.∴23m +10n =a 3b 2.点拨:本题运用了幂的乘方和同底数幂相乘的运算法则进行计算.14.解:(1)x 2-5x +6+18=x 2+10x +9,15x =15,得x =1.(2)9x 2-16<9(x 2+x -6),9x 2-16<9x 2+9x -54,38<9x ,x >389. 点拨:先利用整式的加、减、乘混合运算化简等号(小于号)两侧的多项式,再经过移项、合并同类项等程序得到解.15.解:(1)m =13;(2)m =-20;(3)m =15;(4)m =-12;(5)m =37,20,15,13,12.点拨:(1)(2)(3)(4)可先展开等式的左侧,对比右侧可得.(5)中由于pq =36,且pq 为正整数,所以有下列五种情形:①p =1,q =36,此时m =37;②p =2,q =18,此时m =20;③p =3,q =12,此时m =15;④p =4,q =9,此时m =13;⑤p =6,q =6,此时m =12;所以m 的值分别为37,20,15,13,12.。

第二讲_整式

第二讲_整式

3 针对训练 2 1: 计算( 2x) ÷ x的结果正确的是(
)
( A) 8x2 ( B) 6x2 ( C) 8x3 ( D) 6x3 解析: 原式= 8x3÷ x= 8x2, 故选 A. 针对训练 2 2: ( 2011 年成都)下列计算正确的是( ( A) x+x=x2 ( B) x· x= 2x
• 例1,下列各式子中,是单项式的有___①、 ②、④、⑦ • ___________(填序号
多项式的项数与次数
• • • (1)多项式的次数不是所有项的次数的和,而是它的最高次项次数; (2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
• (4)一个多项式的次数最高项的次数是几,就说这个多项式是几次多 项式。 • (5).在多项式中,每个单项式都是这个多项式的项,每一项都有系 数,但对整个多项式来说,没有系数的概念,只有次数的概念。
• 【例1】若单项式-5x3ym的次数是9,求m 的值. • 【思路点拨】根据单项式次数的定义得到 关于m的一元一次方程,解方程得m的值. • 【自主解答】根据题意,得m+3=9, • 解得m=6.
• 3.(2010· 肇庆中考)观察下列单项式:a,2a2,4a3,-8a4, • 16a5,…按此规律第n个单项式是_____.(n 是正整数) • 【解析】由题意知第n项的系数为(1)n+12n-1, • 第n项a的次数为n, • 所以第n个单项式是(-1)n+12n-1an. • 答案:(-1)n+12n-1an
同类项
1,同类项的判定与合并同类项的法则: 例1 判断下列各式是否是同类项?
(1)2a b 与2 x y
2 3
2 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●方法点拨
[例1]下列整式中,次数与项数相同的有哪些
①7 ②-x ③1-s 2+3t ④πx +1 ⑤53a 2b -2bc +3 ⑥6
xy 点拨:先分别找出每小题的次数与项数,再判断它们是否一致.
①单项式,次数是0.
②单项式,次数是1——一致.
③多项式,二次三项式.
④多项式,一次二项式.
注意:πx 是第一项,是一次的.π只能出现在某一个单项式或项的系数中.
⑤多项式,三次三项式——一致.
⑥单项式,次数是2.
解答:次数与项数相同的②⑤.
[例2]根据题意列出整式,并在括号内说明是单项式还是多项式,若是多项式,写成“几次几项式”的形式.
(1)某商店前一个月盈利a 元,这个月盈利比前一个月减少15%,这个月盈利________元.
(2)三角形的底是高的2倍,若高x cm,则这个三角形的面积是________cm 2.
(3)一斤桔子a 元,一斤苹果b 元,则买10斤桔子和m 斤苹果共________元. 点拨:先根据题意列出整式,再判断单项式和多项式.
解:(1)75%a 一次单项式 (2)x 2 二次单项式 (3)(10a +bm ) 二次二项

[例3]若-3axy m 是关于x 、y 的单项式,且系数为-6,次数为3,则
a =________,m =________.
点拨:“关于x 、y 的单项式”说明只有x 、y 才是单项式中的字母,a 只是系数的一部分,所以-3a 是系数,也就是-6,即-3a =-6,解得:a =2.而单项式的次数是x 、y 的指数和:(1+m ),也就是3.因此1+m =3得m =2.
解:a =2,m =2
[例4]一个五次多项式,它的任何一项的次数都
A.小于5
B.等于5
C.不小于5
D.不大于5
点拨:由于多项式的次数是“多项式中次数最高的项的次数”,因此五次多项式中,次数最高的项是五次的,其余的项的次数可以是五次的,也可以是小于五次的,却不能是大于五次的.因此,五次多项式中的任何一项都是不大于5次的.
答案:D。

相关文档
最新文档