方法点拨整式的乘法

合集下载

方法点拨-1.6整式的乘法初一数学

方法点拨-1.6整式的乘法初一数学

●方法点拨[例1]计算(1)(-3.5x2y2)·(0.6xy4z)(2)(-ab3)2·(-a2b)点拨:先确定运算顺序,再利用单项式乘单项式的法则进行计算.(1)直接作乘法即可,(2)先作乘方运算,再作乘法运算.解:(1)(-3.5x2y2)·(0.6xy4z)(系数相乘)(相同字母相乘)(不同字母相乘)(在x2·x中,x的指数是1,不要漏掉)=-2.1x3y6z(2)(-ab3)2·(-a2b)=a2b6·(-a2b)——先算乘方=-(a2·a2)(b6·b)——再算乘法=-a4b7[例2]计算(1)a m(a m-a3+9)(2)(4x3)2·[x3-x·(2x2-1)]点拨:先确定运算顺序,再运用相应的公式进行计算.(2)中用到了幂的乘方,单乘多及去括号几种运算公式及方法,要一步步进行.解:[例3]计算(1)(2a+3b)(3a+2b) (2)(3m-n)2点拨:这两题都需运用多项式相乘的法则进行计算,能合并同类项的要将结果化到最简的形式.注意第(2)题要化为多乘多的形式.解:(2)(3m-n)2注意乘方的意义=(3m-n)(3m-n)=3m·3m-3m·n-n·3m+n·n=9m 2-3mn -3mn +n 2=9m 2-6mn +n 2[例4](1)(-31xy 2)2·[xy (2x -y )+xy 2] (2)(-3x )2-2(x -5)(x -2)点拨:对于混合运算,一定要注意运算顺序,尤其是乘方运算,每次运算后的结果要打上括号才能进行下一步运算.解:(1)(-31xy 2)2·[xy (2x -y )+xy 2] =91x 2y 4·[2x 2y -xy 2+xy 2] =91x 2y 4·(2x 2y ) =92x 4y 5 (2)(-3x )2-2(x -5)(x -2)=9x 2-2(x 2-2x -5x +10)=9x 2-2(x 2-7x +10)=9x 2-2x 2+14x -20=7x 2+14x -20说明:一般来说,为了简化运算,能合并同类项的可先合并同类项,减少项数,再进行下一步的运算.[例5]解下列方程8x 2-(2x -3)(4x +2)=14点拨:利用多乘多法则将方程左边部分化简,再运用解方程的方法求出x .解:8x 2-(2x -3)(4x +2)=148x 2-(8x 2+4x -12x -6)=148x 2-(8x 2-8x -6)=148x 2-8x 2+8x +6=148x =8x =1[例6]长方形的一边长3m +2n ,另一边比它大m -n ,求长方形的面积.点拨:先分别求出长和宽,再根据“长方形的面积=长×宽”求出面积.列式的时候,表示每条边的多项式都要用括号括起来.解:长方形的宽:3m +2n长方形的长=(3m +2n )+(m -n )=4m +n长方形的面积:(3m +2n )·(4m +n )=3m ·4m +3m ·n +2n ·4m +2n ·n=12m 2+3mn +8mn +2n 2=12m 2+11mn +2n 2答:长方形的面积是12m 2+11mn +2n 2.。

整式的乘除运算掌握整式乘除法的基本要点

整式的乘除运算掌握整式乘除法的基本要点

整式的乘除运算掌握整式乘除法的基本要点整式的乘除运算是数学中的基本内容,掌握整式的乘除法的基本要点对于解决各类问题具有重要作用。

本文将详细介绍整式的乘除运算的基本概念、要点和解题技巧,以帮助读者更好地掌握这一知识点。

一、整式的基本概念整式是由常数和变量按照加、减、乘的运算法则组成的代数表达式。

一般形式为:CnX^n + Cn-1X^n-1 + ... + C1X + C0,其中Cn, Cn-1, ...,C1, C0为常数,X为变量,n为非负整数。

二、整式的乘法运算整式的乘法运算通过应用乘法分配律和合并同类项的原则来进行。

具体步骤如下:1. 将两个整式的每一项相乘。

2. 对于乘积的每一项,将其中的同类项合并。

3. 简化合并后的整式,即合并同类项并按照降序排列。

例如,对于表达式2X^2 + 3X - 1与4X + 5的乘法运算,可以按照以下步骤进行:1. 将每个项相乘得到8X^3 + 10X^2 + 12X + 15X^2 + 20X - 5。

2. 合并同类项,得到8X^3 + 25X^2 + 32X - 5。

3. 简化合并后的整式,得到8X^3 + 25X^2 + 32X - 5。

三、整式的除法运算整式的除法运算通过应用除法运算规则来进行,常用的方法是长除法。

具体步骤如下:1. 将除数和被除数按照降序排列。

2. 将除数的第一项除以被除数的第一项,得到商的首项。

3. 用商的首项乘以被除数,得到一个乘积。

4. 将乘积减去除数,得到一个差。

5. 将差视为一个新的被除数,重复步骤2至步骤4,直到无法继续执行除法运算为止。

例如,对于表达式8X^3 + 25X^2 + 32X - 5除以2X + 4的除法运算,可以按照以下步骤进行:1. 将除数和被除数按照降序排列,即8X^3 + 25X^2 + 32X - 5 ÷ 2X+ 4。

2. 将除数的首项8X^3除以被除数的首项2X,得到商的首项4X^2。

整式的乘除法

整式的乘除法

整式的乘除法整式是指由数字、字母和运算符号(加减乘除和括号)组成的代数式。

在数学中,整式的乘除法是学习代数运算的重要一环。

本文将介绍整式的乘法和除法,并提供相应的解题方法和技巧。

一、整式的乘法整式的乘法是指将两个或多个整式相乘得到一个新的整式。

在进行整式的乘法时,需要注意以下几点:1. 符号相乘:当两个整式相乘时,需要根据乘法法则对各项进行符号相乘。

同号相乘得正,异号相乘得负。

2. 同类项合并:在得到乘积后,需要对乘积中的同类项进行合并。

即将相同指数的字母项合并,并将系数相加。

下面通过一个示例来展示整式的乘法:例题:计算乘积 $(3x-4y)(2x+5)$。

解答:按照乘法法则,我们将每一项进行符号相乘,得到乘积:$$6x^2+15x-8xy-20y$$然后,我们将乘积中的同类项进行合并:$$6x^2+15x-8xy-20y$$至此,我们得到了乘积的最简形式。

二、整式的除法整式的除法是将一个整式除以另一个整式,得到商和余数的过程。

在进行整式的除法时,需要遵循以下几个步骤:1. 确定除数和被除数:将要除以的整式称为除数,被除的整式称为被除数。

2. 用除法定律进行整式的除法:将整式的除法转化为有理数的除法。

3. 化简商式:对除法得到的商式进行化简,即将商式中的同类项合并。

4. 找到余式:将化简后的商式与被除数相乘,得到乘积后减去除数,得到余式。

下面通过一个示例来展示整式的除法:例题:计算商和余数 $\frac{4x^3-7x^2+10}{x-2}$。

解答:按照除法的步骤,我们首先确定除数为 $x-2$,被除数为$4x^3-7x^2+10$。

然后,我们用除法定律进行整式的除法:```4x^2 -5x___________________x-2 | 4x^3 -7x^2 +10- (4x^3 -8x^2)_______________x^2 +10- (x^2 -2x)____________12x +10- (12x -24)__________34```化简商式得到商 $4x^2-5x+1$,余数为 $34$。

整式的乘法教案(通用3篇)

整式的乘法教案(通用3篇)

整式的乘法教案整式的乘法教案(通用3篇)作为一名优秀的教育工作者,常常需要准备教案,借助教案可以有效提升自己的教学能力。

我们应该怎么写教案呢?以下是小编为大家整理的整式的乘法教案(通用3篇),仅供参考,大家一起来看看吧。

整式的乘法教案1一、内容和内容解析1、内容:同底数幂的乘法。

2、内容解析同底数幂的乘法是幂的一种运算,在整式乘法中具有基础地位。

在整式的乘法中,多项式的乘法要转化为单项式的乘法,单项式的乘法要转化为幂的运算,而幂的运算以同底数幂的乘法为基础。

同底数幂的乘法将同底数幂的乘法运算转化为指数的加法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。

同底数幂的乘法是类比数的乘方来学习的,首先在具体例子的基础上抽象出同底数幂的乘法的性质,进而通过推理加以推导,这一过程蕴含数式通性、从具体到抽象的思想方法。

基于以上分析,确定本节课的教学重点:同底数幂的乘法的运算性质。

二、目标和目标解析1、目标(1)理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算。

(2)体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用。

2、目标解析达成目标(1)的标志是:学生能根据乘方的意义推导出同底数幂乘法的性质,会用符号语言和文字语言表述这一性质,会用性质进行同底数幂的`乘法运算。

达成目标(2)的标志学生发现和推导同底数幂的乘法的运算性质,会用符号语言,文字语言表述这一性质,能认识到具体例子在发现结论的过程中所起的作用,能体会到数式通性在推到结论的过程中的重要作用。

三、教学问题诊断分析在前面的学习中,学生已经学习了用字母表示数以及整式的加减运算,但是用字母表示幂以及幂的运算还是初次接触。

幂的运算抽象程度较高,不易理解,特别对于am+n的指数的理解,因为它不仅抽象程度较高,而且运算结果反映在指数上,学生第一次接触,也很难理解。

教学时,应引导学生回顾乘方的意义,从数式通性的角度理解字母表示的幂的意义,进而明确同底数幂乘法的运算性质。

初中数学《整式的乘法》解题技巧

初中数学《整式的乘法》解题技巧

《整式的乘法》解题技巧整式的乘法包括三个方面的计算:单项式乘以单项式;单项式乘以多项式;多项式乘以多项式.由于对运算法则理解不透彻,在解题时易出现一些错误,现就可能出现的错误归纳如下:一、单×单漏字母【例1】 计算2x 2y ·(-4xy 3z ).错解:2x 2y ·(-4xy 3z )=2×(-4)(x 2·x )(y ·y 3)=-8x 3y 4.【分析】本题错解最后的结果中漏掉了z .错误的原因可能是对单项式的乘法法则理解不透,也可能是做题时马虎.对于单项式的乘法,应注意的一点是:只在一个单项式里的因式,应连同它的指数作为积的一个因式.所以z 不能漏掉.【正解】2x 2y ·(-4xy 3z )=2×(-4)(x 2·x )(y ·y 3)·z =-8x 3y 4z .二、单×多漏乘项【例2】计算3xy (5x 2y -7xy -1).错解: 3xy (5x 2y -7xy -1)=3xy ·5x 2y +3xy ×(-7xy )=15x 3y 2-21x 2y 2.【分析】单项式与多项式相乘的结果是多项式,其项数与多项式的项数相同,用来检验防止漏项,本题错解在漏乘了最后一项-1.【正解】3xy (5x 2y -7xy -1)=3xy ·5x 2y +3xy ×(-7xy )+3xy ×(-1)=15x 3y 2-21x 2y 2-3xy .三、多×多错创法则【例3】计算(2a -3b )(3a +7b ).错解:(2a -3b )(3a +7b )=2a ·3a +(-3b )·7b =6a 2-21b 2.【分析】两个多项式相乘,应根据多项式乘法法则进行.用一个多项式的每一项去乘另一个多项式的每一项,在合并同类项之前,积的项数等于两个多项式的项数相乘.错解在将两个多项式的前项乘以前项,后项乘以后项了.【正解】(2a -3b )(3a +7b )=2a ·3a +2a ·7b -3b ·3a -3b ·7b =6a 2+14ab -9ab -21b 2= 6a 2+5ab -21b 2.四、混合运输时漏“-”【例4】计算-2x (-21xy +y 3)-3x ·(x 2y -xy 2).错解: -2x (-21xy +y 3)-3x ·(x 2y -xy 2)=x 2y -2xy 3-3x 3y -3x 2y 2. 【分析】本题是两个单项式与多项式相乘的和,本题错在计算后一个单项式与多项式相乘时,写成3x ·(-xy 2)=-3x 2y 2.【正解】-2x (-21xy +y 3)-3x ·(x 2y -xy 2)=x 2y -2xy 3-3x 3y +3x 2y 2. 五、混合运算时错减对象【例5】计算(-2x )(x -1)-(x -2)(x +3)错解:原式=-2x 2+2x -x 2+3x -2x -6=-3x 2+3x -6【分析】减去的应是(x -2)(x -1),即应为-2x 2+2x -(x 2+3x -2x -6),而错解减去的是x 2.【正解】原式=-2x 2+2x -(x 2+3x -2x -6)=-3x 2+x +6。

教学重点整式的乘法运算方法

教学重点整式的乘法运算方法

教学重点整式的乘法运算方法教学重点:整式的乘法运算方法整式是指由字母、数字和运算符号组成的代数式,其中字母代表变量,数字代表常数。

在代数中,整式的乘法运算是一项基本而重要的内容。

掌握整式的乘法运算方法,有助于我们解决各种代数问题,进一步提高数学应用能力。

本文将介绍整式乘法的基本原理和操作方法。

一、整式的基本概念在开始讨论整式的乘法运算方法之前,我们首先来回顾一下整式的基本概念。

整式是由乘积法则、加法法则等基本运算法则形成的。

一个整式可能由多项式相加或相减构成,每个多项式又可由多个单项式相加或相减而成。

在整式中,单项式是由一个巢积式(多个字母的积)和一个数字或字母的积构成的代数式。

例如,5x^2、-3ab、7等都是单项式。

整式中的每个单项式之间通过加号或减号连接,形成多项式。

例如,3x^2+2xy-4y^2、-5a^2b+7ab^2-9a等都是多项式。

二、整式的乘法运算法则在整式的乘法运算中,我们需要掌握以下几个基本法则:1. 相同字母的乘法相同字母的乘积遵循指数相加的法则。

例如,a^2 * a^3 = a^(2+3) =a^5。

2. 不同字母的乘法不同字母的乘积保持不变。

例如,ab * cd = abcd。

3. 多个单项式的乘法多项式相乘的过程就是将每一项与另一个多项式的每一项分别相乘,然后将结果相加。

例如,(2x+3)(4x-5)的乘法运算可以按照如下步骤进行:2x * 4x = 8x^22x * -5 = -10x3 * 4x = 12x3 * -5 = -15然后将上述结果相加,得到最终结果:8x^2 - 10x + 12x - 15 = 8x^2+ 2x - 15。

三、整式乘法的应用举例接下来,我们通过一些具体的例子来应用整式乘法的运算方法。

例1:计算多项式的乘积计算 (3x - 4)(x + 2)的乘积。

解:按照上述乘法运算法则,我们可以依次计算每一个乘积并相加。

3x * x = 3x^23x * 2 = 6x-4 * x = -4x-4 * 2 = -8将上述结果相加,得到最终结果:3x^2 + 2x - 4x - 8 = 3x^2 - 2x - 8。

整式的乘法运算应注意的几点

整式的乘法运算应注意的几点

整式的乘法运算应把握的几点山东 王孝敏整式的乘法运算包括单项式与单项式相乘,单项式与多项式相乘以及多项式与多项式相乘。

进行整式的乘法运算应注意把握以下几点:一、把握积的符号 例1 计算: (-3xy )·(-2x )·(-xy 2)2.分析:本题是单项式的乘法运算,且含有积的乘方运算,再运算时应先确定积的符号,因为前两个单项式的系数为负,第三个单项式的系数为正,所以积的结果为正.解: (-3xy )·(-2x )·(-xy 2)2=(3xy )·(2x )·(x 2y 4)=6x 4y 5.【点拨】当多个单项式相乘时,应先确定积的符合,然后再按照法则进行计算。

二、把握分配律的使用例2 计算:(-2x ) 2·(xy -3xy 2-1).分析:本题是单项式与多项式相乘,且含有乘方运算,可先进行乘方运算,然后按乘法的分配律用单项式去乘多项式的每一项,计算时应注意符号的确定.解: (-2x ) 2·(xy -3xy 2-1)=4x 2·(xy -3xy 2-1)=4x 2·xy +4x 2·(-3xy 2)+4x 2·(-1)=4x 3y -12x 3y 2-4x 2.【点拨】单项式乘以多项式,先用单项式去乘多项式中的每一项,再把所得积相加.注意不要漏项.三、把握多项式与多项式相乘的运算法则例3 计算(x -3)(x +4).分析:进行多项式的乘法运算,首先要理解多项式乘以多项式的运算法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.本题的计算不要出现(x -3)(x +4)=x 2-12的错误.解: (x -3)(x +4)=x ·x +x ·4+(-3)·x +(-3)·4=x 2+4x -3x -12=x 2+x -12.【点拨】两项多项式与两项多项式的积为四项,有时可合并成三项或两项.两项多项式与三项多项式相乘,结果为2×3=6项,然后能合并的再进行合并.四、把握运算顺序例4 计算 (-x 2)(x -y +1)-(x +2)(x -1).分析:本题是一道混合运算,计算时应把握运算顺序,先算乘法运算,然后再进行加减运算,并注意符号问题.解: (-x 2)(x +1)-(x +2)(x -1)=-x 3-x 2-(x 2-x +2x -2)=-x 3-x 2-x 2+x -2x +2=-x 3-2x 2-x +2.【点拨】混合运算,先算乘方,再算乘除,最后加减,应注意运算符号。

【人教版】初中数学知识点总结整式的乘除

【人教版】初中数学知识点总结整式的乘除

整式的乘法目标认知学习目标:1.掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方),能用字母式子和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。

2.掌握单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,并能运用它们进行运算。

重点:整式乘法性质的准确掌握和熟练运用。

难点:字母的广泛含义的理解。

二、知识要点梳理知识点一:同底数幂的乘法要点诠释:同底数幂相乘,.底数不变,指数相加用字母表示为:a m×a n=a m+n(m、n都是正整数).三个或三个以上同底数幂相乘时,也具有这一性质,即a m·a n·a p=a m+n+p(m、n、p都是正整数).此性质可以逆用,即a m+n=a m×a n(m、n都是正整数).知识点二:幂的乘方要点诠释:幂的乘方,底数不变,指数相乘。

用字母表示为:(a m)n=a mn. (m、n都是正整数)知识点三:积的乘方要点诠释:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

用字母表示为:(ab)n=a n b n(n是正整数).知识点四:单项式乘以单项式要点诠释:单项式与单项式相乘,把它们的系数、相同字母分别相乘.对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.知识点五:单项式乘以多项式要点诠释:单项式与多项式相乘,就是用单项式乘以多项式的每一项,再把所得的积相加,用字母表示为m(a+b+c)=ma+mb+mc.知识点六:多项式乘以多项式要点诠释:多项式乘以多项式,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.用字母表示为(a+b)(m+n)=ma+na+mb+nb.三、规律方法指导1.在学习本节内容时,应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义.2.幂的三个运算性质是学习整式乘法的前提条件,单项式乘法是幂的运算性质的一个直接应用,单项式与多项式乘法及多项式与多项式乘法是在单项式乘法的基础上,利用分配律的更复杂的运算.3.在单项式的乘法法则中:①系数相乘,是有理数的乘法运算;相同字母相乘,是同底数幂的乘法运算;②单项式与单项式相乘的结果是单项式,一般确定结果的系数,往往先确定绝对值,再确定符号.4.在单项式与多项式相乘时:①单项式乘以多项式的依据是乘法对加法的分配律.②单项式与多项式相乘,结果是一个多项式,其项数和因式中多项式的项数相同,计算时要注意各项的符号.5.在多项式与多项式相乘时:①多项式乘以多项式可以化为单项式乘以多项式或单项式乘以单项式.②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应该等于两个多项式的项数的积.整式的乘法经典例题透析类型一:同底数幂的运算1、计算:(1)(-)(-)2(-)3 (2) -a4·(-a)3·(-a)5思路点拨:(1)分析:①(-)就是(-)1,指数为1;②底数为-,不变;③指数相加1+2+3=6;④乘方时先定符号“+”,再计算的6次幂(2)分析:①-a4与(-a)3不是同底数幂;②可利用-(-a)4=-a4③变为同底数幂总结升华:同底数幂的乘法法则是本章中的第一个幂的运算法则,也是整式乘法的主要依据之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●方法点拨
[例1]计算
(1)(-3.5x2y2)·(0.6xy4z)
(2)(-ab3)2·(-a2b)
点拨:先确定运算顺序,再利用单项式乘单项式的法则进行计算.(1)直接作乘法即可,(2)先作乘方运算,再作乘法运算.
解:(1)(-3.5x2y2)·(0.6xy4z)
(系数相乘)(相同字母相乘)(不同字母相乘)(在x2·x中,x的指数是1,不要漏掉)
=-2.1x3y6z
(2)(-ab3)2·(-a2b)
=a2b6·(-a2b)——先算乘方
=-(a2·a2)(b6·b)——再算乘法
=-a4b7
[例2]计算
(1)a m(a m-a3+9)
(2)(4x3)2·[x3-x·(2x2-1)]
点拨:先确定运算顺序,再运用相应的公式进行计算.(2)中用到了幂的乘方,单乘多及去括号几种运算公式及方法,要一步步进行.
解:
[例3]计算
(1)(2a+3b)(3a+2b) (2)(3m-n)2
点拨:这两题都需运用多项式相乘的法则进行计算,能合并同类项的要将结果化到最简的形式.注意第(2)题要化为多乘多的形式.
解:
(2)(3m-n)2注意乘方的意义
=(3m-n)(3m-n)
=3m·3m-3m·n-n·3m+n·n
=9m 2-3mn -3mn +n 2
=9m 2-6mn +n 2
[例4](1)(-3
1xy 2)2·[xy (2x -y )+xy 2] (2)(-3x )2-2(x -5)(x -2)
点拨:对于混合运算,一定要注意运算顺序,尤其是乘方运算,每次运算后的结果要打上括号才能进行下一步运算.
解:(1)(-
31xy 2)2·[xy (2x -y )+xy 2] =9
1x 2y 4·[2x 2y -xy 2+xy 2] =9
1x 2y 4·(2x 2y ) =9
2x 4y 5 (2)(-3x )2-2(x -5)(x -2)
=9x 2-2(x 2-2x -5x +10)
=9x 2-2(x 2-7x +10)
=9x 2-2x 2+14x -20
=7x 2+14x -20
说明:一般来说,为了简化运算,能合并同类项的可先合并同类项,减少项数,再进行下一步的运算.
[例5]解下列方程
8x 2-(2x -3)(4x +2)=14
点拨:利用多乘多法则将方程左边部分化简,再运用解方程的方法求出x .
解:8x 2-(2x -3)(4x +2)=14
8x 2-(8x 2+4x -12x -6)=14
8x 2-(8x 2-8x -6)=14
8x 2-8x 2+8x +6=14
8x =8
x =1
[例6]长方形的一边长3m +2n ,另一边比它大m -n ,求长方形的面积.
点拨:先分别求出长和宽,再根据“长方形的面积=长×宽”求出面积.列式的时候,表示每条边的多项式都要用括号括起来.
解:长方形的宽:3m +2n
长方形的长=(3m +2n )+(m -n )=4m +n
长方形的面积:(3m +2n )·(4m +n )
=3m ·4m +3m ·n +2n ·4m +2n ·n
=12m 2+3mn +8mn +2n 2
=12m 2+11mn +2n 2
答:长方形的面积是12m 2+11mn +2n 2.。

相关文档
最新文档