同步练习向量的概念和基本运算

合集下载

高中数学同步学案 空间向量及其运算

高中数学同步学案 空间向量及其运算

第3章空间向量与立体几何第1课时空间向量及其线性运算春节期间,我国南方遭受了寒潮袭击,大风降温天气频发,已知某人某天骑车以a km/h的速度向东行驶,感到风是从正北方向吹来.问题:某人骑车的速度和风速是空间向量吗?提示:是.1.空间向量(1)定义:在空间中,既有大小又有方向的量,叫做空间向量.(2)表示方法:空间向量用有向线段表示,并且空间任意两个向量都可以用同一平面内的两条有向线段表示.2.相等向量凡是方向相同且长度相等的有向线段都表示同一向量或者相等向量.问题1:如何进行平面向量的加法、减法及数乘运算.提示:利用平行四边形法则、三角形法则等.问题2:平面向量的加法及数乘向量满足哪些运算律?提示:交换律、结合律、分配律.1.空间向量的加减运算和数乘运算OB=OA+AB=a+b,BA=OA-OB=a-b,OC=λa(λ∈R).2.空间向量的加法和数乘运算满足如下运算律(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c);(3)分配律:λ(a+b)=λa+λb(λ∈R).空间中有向量a,b,c(均为非零向量).问题1:向量a与b共线的条件是什么?提示:存在惟一实数λ,使a=λb.问题2:空间中任意两个向量一定共面吗?任意三个向量呢?提示:一定;不一定.1.共线向量或平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.向量a与b平行,记作a∥b.规定,零向量与任何向量共线.2.共线向量定理对空间任意两个向量a,b(a≠0),b与a共线的充要条件是存在实数λ,使b=λa.1.空间向量的加法满足平行四边形和三角形法则.2.空间向量的数乘运算是线性运算的一种,结果仍是一个向量,方向取决于λ的正负,模为原向量模的|λ|倍.3.两向量共线,两向量所在的直线不一定共线,可能平行.[例1] 下列四个命题:(1)所有的单位向量都相等;(2)方向相反的两个向量是相反向量;(3)若a、b满足|a|>|b|,且a、b同向,则a>b;(4)零向量没有方向.其中不正确的命题的序号为________.[思路点拨] 根据空间向量的概念进行逐一判断,得出结论.[精解详析] 对于(1):单位向量是指长度等于1个单位长度的向量,而其方向不一定相同,它不符合相等向量的定义,故(1)错;对于(2):长度相等且方向相反的两个向量是相反向量,故(2)错;对于(3):向量是不能比较大小的,故不正确;对于(4):零向量有方向,只是没有确定的方向,故(4)错.[答案] (1)(2)(3)(4)[一点通]1.因为空间任何两个向量都可以平移到同一平面上,故空间的两个向量间的关系都可以转化为平面向量来解决.2.对于有关向量基本概念的考查,可以从概念的特征入手,也可以通过举出反例而排除或否定相关命题。

37.向量的概念及运算【学生版】(正式版)(含答案)

37.向量的概念及运算【学生版】(正式版)(含答案)

OABa ba b -O A BbA B a ba b +向量的概念及运算——加减数乘【课前预习】 一、知识梳理 1.向量的概念既有 又有 的量称为向量.如速度、位移等;常用标有箭头的线段来表示; 只有 没有 的量称为标量。

如长度、面积、质量等. 相关概念: (1)向量的大小称为 ; 的向量称为零向量, 零向量的方向是不确定的; (2)向量的相等:如果两个向量的 ,那么这两个向量叫做相等的向量,规定:零向量都是相等的;由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点。

(3)负向量: 与一个向量 的向量称为它的负向量,特别地, 零向量的负向量是零向量;(4)向量的平行: 的两个向量平行, 规定:零向量与任意向量都平行;(5)单位向量: 的向量称为单位向量.(向量的单位向量0a ,不仅要求0||1a =,而且0a 与向量的方向相同。

)2.向量的加减法 (1)向量的加法 如图所示, 满足平行四边形法则或三角形法则。

(注:对于平四边形法则,需要分平行向量与不平行向量来定义, 而三角形法则则不需要。

(2)向量的减法加法的逆运算. 几何表示如图所示:(3)三角不等式: . 3.向量的数乘运算为一个向量, 记作a λ, (1)实数λ与向量可做数乘运算, 所得结果仍并规定:①模: ||a λ= .②方向: 若0λ>, 则与a 向; 若0λ<, 则与a 向;若0λ=, 则0a λ=.(2)数乘运算的运算律设,R m n ∈, 则数乘运算具有以下运算律:(1)()m n a ma na +=+(分配律); (2)()m a b ma mb +=+(分配律); (3)()()m na mn a =(结合律).4.向量的平行两个非零向量,a b 平行的充要条件是存在实数λ使得 .二、基础练习1. 判断下列命题的真假:(1)温度有零上零下之分,所以“温度”是向量。

平面向量练习题及答案

平面向量练习题及答案

平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。

答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。

答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。

答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。

答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。

答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。

答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。

答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。

答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。

答案:两个向量相互垂直的条件是a·b = 0。

计算得到a·b = 14,因此向量a和向量b不相互垂直。

(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。

答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。

平面向量专题复习练习(含解析)【最新】

平面向量专题复习练习(含解析)【最新】
A. B. C.3D.5
14.已知 与 垂直,则实数 的值为()
A.1B. C.2D.
15.已知平面向量 , 满足 , ,且 ,则 ()
A.3B. C. D.5
16.已知向量 ,则向量 在向量 方向上的投影为()
A. B. C. D.
17.已知 , , =1,则向量 在 方向上的投影是()
A. B. C. D.1
2.下列命题正确的是()
A.单位向量都相等B.若 与 共线, 与 共线,则 与 共线
C.若 ,则 D.若 与 都是单位向量,则
3.在 中,点O满足 ,则 与 的面积比为()
A. B. C. D.
4.如图,在平行四边形 中,对角线 与 交于点 ,且 ,则 ()
A. B. C. D.
5.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则 ()
A. B. C. D.
【答案】D
6、如图, , , , ,若m= ,那么n=( )
A. B. C. D.
【解答】解:∵ ,故C为线段AB的中点,
故 = =2 ,∴ = ,
由 , ,
∴ , ,
∴ = ,
∵M,P,N三点共线,故 =1,当m= 时,n= ,故选:C
7、若向量a=(1,1),b=(-1,1),c=(4,2),则 c等于()
平面向量专题复习
一、基本概念与定理
1、定义:既有大小又有方向的量;向量的大小叫作向量的长度(或称模)
2、单位向量:长度等于1个单位的向量(与 同方向的单位向量为 )
3、零向量:长度为零的向量;其方向是任意的
4、平行、共线向量:同向或反向
5、相等向量:长度相等且方向相同的向量
6、相反向量:长度相等且方向相反的向量

空间向量及其运算知识点及练习题

空间向量及其运算知识点及练习题

空间向量及其运算知识点及练习题1. 空间向量的概念(1)定义:空间中既有大小又有方向的量叫作空间向量.(2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB →,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律(1)定义空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用(1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23(a ≠0,b ≠0) . 基础练习:1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两非零向量a ,b 共面.( √ )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × )(3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × )(4)两向量夹角的范围与两异面直线所成角的范围相同.( × )(5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ )(6)|a |-|b |=|a +b |是a 、b 共线的充要条件.( × )2. 如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向 量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3. 已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →,则x ,y 的值分别为( )A .x =1,y =1B .x =1,y =12C .x =12,y =12D .x =12,y =1答案 C解析 如图,AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(AB →+AD →).4. 同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是_______________.答案 ⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23 解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23,或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23.5. 在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示). 答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c . 典型例题:题型一 空间向量的线性运算例1 三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC的重心,用基向量OA →,OB →,OC →表示MG →,OG →.思维启迪 利用空间向量的加减法和数乘运算表示即可. 解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O →-12AB →-12AD →=________;(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________. 答案 (1)A 1A →(2)12AB →+12AD →+AA 1→解析 (1)A 1O →-12AB →-12AD →=A 1O →-12AC →=A 1O →-AO →=A 1A →.(2)OC 1→=OC →+CC 1→=12AB →+12AD →+AA 1→.题型二 共线定理、空间向量基本定理的应用例2 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).思维启迪 对于(1)只要证出向量EG →=EF →+EH →即可;对于(2)只要证出BD →与EH →共线即可;对于(3),易知四边形EFGH 为平行四边形,则点M 为线段EG 与FH 的中点,于是向量OM →可由向量OG →和OE →表示,再将OG →与OE →分别用向量OC →,OD →和向量OA →,OB →表示.证明 (1)连接BG , 则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →, 由共面向量定理的推论知: E 、F 、G 、H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH 平面EFGH ,BD 平面EFGH ,所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形. 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →) =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明点共线的方法证明点共线的问题可转化为证明向量共线的问题,如证明A ,B ,C 三点共线,即证明AB →,AC →共线,亦即证明AB →=λAC →(λ≠0). (2)证明点共面的方法证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC (x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.如图,正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 上的点,F 是AC 上的点,且A 1E =2EB ,CF =2AF ,则EF 与平面A 1B 1CD 的位置关系为________. 答案 平行解析 取AB →=a ,AD →=b ,AA 1→=c 为基底, 易得EF →=-13(a -b +c ),而DB 1→=a -b +c ,即EF →∥DB 1→,故EF ∥DB 1, 且EF平面A 1B 1CD ,DB 1平面A 1B 1CD ,所以EF ∥平面A 1B 1CD . 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形AB -CD 的各边和对角线的长都等于a ,点M 、N 分别是AB 、CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.思维启迪 两条直线的垂直关系可以转化为两个向量的垂直关系;利用|a |2=a ·a 可以求线段长;利用cos θ=a ·b|a ||b |可求两条直线所成的角.(1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →. 即MN ⊥AB . 同理可证MN ⊥CD .(2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14[a 2+a 2+a 2+2(a 22-a 22-a 22)] =14×2a 2=a 22. ∴|MN →|=22a .∴MN 的长为22a . (3)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)当题目条件有垂直关系时,常转化为数量积为零进行应用;(2)当异面直线所成的角为α时,常利用它们所在的向量转化为向量的夹角θ来进行计算.应该注意的是α∈(0,π2],θ∈[0,π],所以cos α=|cos θ|=|a ·b ||a ||b |;(3)立体几何中求线段的长度可以通过解三角形,也可依据|a |=a 2转化为向量求解.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值. 解 (1)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2, |b |=(-1)2+02+22=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010, 即向量a 与向量b 的夹角的余弦值为-1010. (2)方法一 ∵k a +b =(k -1,k,2). k a -2b =(k +2,k ,-4), 且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52,∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.方法二 由(1)知|a |=2,|b |=5,a ·b =-1, ∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2 =2k 2+k -10=0, 得k =2或k =-52.易失分点:********“两向量同向”意义不清致误典例:(5分)已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.易错分析 将a ,b 同向和a ∥b 混淆,没有搞清a ∥b 的意义:a ·b 方向相同或相反.解析 由题意知a ∥b ,所以x 1=x 2+y -22=y3,即⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ② 把①代入②得x 2+x -2=0,(x +2)(x -1)=0, 解得x =-2,或x =1当x =-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧x =-2y =-6时,b =(-2,-4,-6)=-2a , 两向量a ,b 反向,不符合题意,所以舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1y =3. 答案 1,3温馨提醒 (1)两向量平行和两向量同向不是等价的,同向是平行的一种情况.两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件;(2)若两向量a ,b 满足a =λb (b ≠0)且λ>0则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例.******方法与技巧1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题. 失误与防范1.向量的数量积满足交换律、分配律,但不满足结合律,即a·b =b·a ,a ·(b +c )=a·b +a·c 成立,(a·b )·c =a·(b·c )不一定成立.2.求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.A 组 专项基础训练 (时间:40分钟)一、选择题1. 空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), ∴AB →=-3CD →,∴AB →与CD →共线,又AB →与CD →没有公共点. ∴AB ∥CD .2. 已知O ,A ,B ,C 为空间四个点,又OA →,OB →,OC →为空间的一个基底,则( )A .O ,A ,B ,C 四点不共线 B .O ,A ,B ,C 四点共面,但不共线 C .O ,A ,B ,C 四点中任意三点不共线D .O ,A ,B ,C 四点不共面 答案 D解析 OA →,OB →,OC →为空间的一个基底,所以OA →,OB →,OC →不共面,但A ,B ,C 三种情况都有可能使OA →,OB →,OC →共面.3. 已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12B .-13,12C .-3,2D .2,2答案 A解析 由题意知:⎩⎪⎨⎪⎧λ+16=22λ,2μ-1=0,解得⎩⎪⎨⎪⎧ λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12.4. 空间四点A (2,3,6)、B (4,3,2)、C (0,0,1)、D (2,0,2)的位置关系是( )A .共线B .共面C .不共面D .无法确定答案 C解析 ∵AB →=(2,0,-4),AC →=(-2,-3,-5),AD →=(0,-3,-4). 假设四点共面,由共面向量定理得,存在实数x ,y , 使AD →=xAB →+yAC →,即⎩⎪⎨⎪⎧2x -2y =0, ①-3y =-3, ②-4x -5y =-4, ③由①②得x =y =1,代入③式不成立,矛盾. ∴假设不成立,故四点不共面.5. 如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( )A .0 B.12 C.32D.22答案 A解析 设OA →=a ,OB →=b ,OC →=c ,则|b |=|c |, 〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b ,∴OA →·BC →=a ·(c -b )=a ·c -a ·b =|a ||c |cos π3-|a ||b |cos π3=0,∴OA →⊥BC →,∴cos 〈OA →,BC →〉=0.二、填空题6. 已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.答案 60°解析 由题意得,(2a +b )·c =0+10-20=-10.即2a ·c +b ·c =-10,又∵a ·c =4,∴b ·c =-18,∴cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12, ∴〈b ,c 〉=120°,∴两直线的夹角为60°.7. 已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为________.答案 355解析 b -a =(1+t,2t -1,0),∴|b -a |=(1+t )2+(2t -1)2= 5⎝⎛⎭⎫t -152+95, ∴当t =15时,|b -a |取得最小值355. 8. 如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于________.答案 12解析 因为PC →=P A →+AB →+BC →,所以PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos 60°=144.所以|PC →|=12.三、解答题9. 已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)?解 (1)∵a =(1,-3,2),b =(-2,1,1),∴2a +b =(0,-5,5),∴|2a +b |=02+(-5)2+52=5 2. (2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),∴⎩⎪⎨⎪⎧ x =λ-3y =-λ-1z =-2λ+4,∴E (λ-3,-λ-1,-2λ+4),∴OE →=(λ-3,-λ-1,-2λ+4).又∵b =(-2,1,1),OE →⊥b ,∴OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0,∴λ=95,∴E (-65,-145,25),∴在直线AB 上存在点E (-65,-145,25),使OE →⊥b .10.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值.解 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.(1)|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6,∴|AC 1→|=6,即AC 1的长为 6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66. ∴BD 1与AC 夹角的余弦值为66. B 组 专项能力提升(时间:30分钟)1. 若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( )A .c ∥dB .c ⊥dC .c 不平行于d ,c 也不垂直于dD .以上三种情况均有可能答案 B解析 由题意得,c 垂直于由a ,b 确定的平面.∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .2. 以下命题中,正确的命题个数为 ( ) ①若a ,b 共线,则a 与b 所在直线平行;②若{a ,b ,c }为空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ③若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;④对空间任意一点O 和不共线三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P 、A 、B 、C 四点共面.A .1B .2C .3D .4答案 B解析 由共线向量知a 与b 所在直线可能重合知①错;若a +b ,b +c ,c +a 共面,则存在实数x ,y ,使a +b =x (b +c )+y (c +a )=y a +x b +(x +y )c ,∵a ,b ,c 不共面,∴y =1,x =1,x +y =0,∴x ,y 无解,∴{a +b ,b +c ,c +a }能构成空间的一个基底,∴②正确;由向量相等的定义知③正确;由共面向量定理的推论知,当x +y +z =1时,P ,A ,B ,C 四点共面,∴④不正确.故选B.3. 如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.答案 25解析 以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直 角坐标系,则A (1,0,0),A 1(1,0,1),B 1(1,1,1),B (1,1,0),C (0,1,0),∴M (1,12,1),N (1,1,12), ∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=AM →·CN→|AM →|·|CN →|=12(12)2+12× 12+(12)2=25.4. 已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标.解 (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2),∴cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.∴sin 〈AB →,AC →〉=32,∴以AB →,AC →为边的平行四边形的面积为S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3-2x -y +3z =0x -3y +2z =0,解得⎩⎪⎨⎪⎧ x =1y =1z =1或⎩⎪⎨⎪⎧ x =-1y =-1z =-1,∴向量a 的坐标为(1,1,1)或(-1,-1,-1).5. 直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |,且a·b =b·c =c·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a . ∴CE →·A ′D →=-12c 2+12b 2=0. ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |. AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角的余弦值为1010.。

新课标数学必修4第2章平面向量同步练习(含答案)

新课标数学必修4第2章平面向量同步练习(含答案)

第1课时 平面向量的实际背景及基础概念一、选择题1.下列各量中不是向量的是(A.浮力 B .风速 C.位移 D.2.下列命题正确的是(A.向量AB 与BA 是两平行向量B.若a 、b 都是单位向量,则a=bC.若=,则A 、B 、C 、D四点构成平行四D.3. 在△ABC 中,AB=AC ,D 、E 分别是AB 、AC 的中点,则(A. 与AC 共线B. 与CB 共线C. 与相等D. 与相等 4.在下列结论中,正确的结论为((1)|a |=|b |⇒a =b ; (2) a ∥b 且|a |=|b | ⇒ a =b ; (3) a =b ⇒a ∥b 且|a |=|b |(4) a ≠b ⇒ a 与b 方向相反 A. (3) B.(2)(3) C.(2)(4) D.(1)(3)(4) 二、填空题:5.物理学中的作用力和反作用力是模 且方向 的共线向量.6.把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是 .7.已知||=1,| AC |=2,若∠BAC=60°,则|BC |= .8.在四边形ABCD 中, =,且||=||,则四边形ABCD 是 .三、解答题:9. 某人从A 点出发向西走了200m 到达B 点,然后改变方向向西偏北60°走了450m 到达C点,最后又改变方向,向东走了200m 到达D 点. (1)作出向量、、 (1 cm 表示200 m).(2)求的模.10.如图,已知四边形ABCD 是矩形,设点集M ={A ,B ,C ,D },求集合T ={、P 、Q ∈M ,且P 、Q 不重合}.第10题图A B一、选择题1.下列等式: a +0=a , b +a =a +b ,AB +AC =BC , AB +BC =BC 正确的个数是( ) A.2 B .3 C.4 D.52.化简++的结果等于( ) A. B . C. SPD.3.若C 是线段AB 的中点,则 AC +为A. B . C. 0D. 以上都错4.O 为平行四边形ABCD 平面上的点,设=a ,=b ,=c ,=d ,则( )A.a +b =c +d B .a +c =b +d C.a +d =b +c D.a +b +c +d =0 二、填空题:5.化简:(OM BO MB AB +++)= ; 6.如图,在四边形ABCD 中,根据图示填空:b +e = , f +d = ,a +b +c = .7.已知向量a 、b 分别表示“向北走5km ”和“向西走5公里”,则a +b 表示 ; 8、一艘船从A 点出发以23km/h 的速度向垂直于对岸的方向行驶,而船实际行驶速度的大小为4 km/h ,则河水的流速的大小为 . 三、解答题:9.一架飞机向北飞行300公里,然后改变方向向东飞行400公里,求飞机飞行的路程和位移.10.如图所示,O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a 、b 、c 、d 的方向(用箭头表示),使a +b =AB ,c -d =,并画出a +d.Dd e c A f Ca bBC一、选择题1.下列等式:①AB -= ②AB -= ③-(-a )=a ④a +(-a )=0 ⑤a +(-b )=a -b( )A.2 B .3 C.4D.52. 在△ABC 中, =a , =b ,则AB 等于( ) A.a +bB .-a +(-b ) C.a -bD.b -a3.在下列各题中,正确的命题个数为( )(1)若向量a 与b 方向相反,且|a |>|b |,则a +b 与a (2)若向量a 与b 方向相反,且|a |>|b |,则a -b 与a +b(3)若向量a 与b 方向相同,且|a |<|b |,则a -b 与a (4)若向量a 与b 方向相同,且|a |<|b |,则a -b 与a +b A.1 B.2 C.3 D.44.若a 、b 是非零向量,且|a -b |=|a |=|b ,则a 和a +b 的夹角是( ) A.090 B . 600 C.300 D.045二、填空题5. 在正六边形ABCDEF 中, AE =m , AD =n ,则BA = .6. 已知a 、b 是非零向量,则|a -b |=|a |+|b |时,应满足条件. 7. 如图,在四边形ABCD 中,根据图示填空: c -d = ,a +b +c -d= .8.已知=a , =b ,若||=12,||=5,且∠AOB =90°,则|a -b |= . 三、解答题9. 试用向量方法证明:对角线互相平分的四边形是平行四边形.10. 已知O 是平行四边形ABCD 的对角线AC 与BD 的交点,若=a , BC =b ,=c ,试证明:c +a -b =.Dd e c A fa b C B第4、5课时 向量的数乘运算及其几何意义一、选择题 1.设e 1、e2A.e 1、e2 B .e 1、e2C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a =e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .C.相等D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -yA.3B .-3C.0D.24. 下面向量a 、b 共线的有( )(1)a =2e 1,b =-2e 2 (2)a =e 1-e 2,b =-2e 1+2e2(3)a =4e 1-52e 2,b =e 1-101e 2 (4)a =e 1+e 2,b =2e 1-2e 2.(e 1、e 2不共线)A.(2)(3) B .(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3)(4) 二、填空题5.若a 、b 不共线,且λa +μb =0(λ,μ∈R )则λ= ,μ= .6.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .7.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).8. 如图,在△ABC 中,=a, =b ,AD 为边BC 的中线,G 为△ABC 的重心,则向量= 三、解答题:9. 如图,平行四边形ABCD 中,=a,=b,N 、M 是AD 、DC 之中点,F 使BF =31BC ,以a、b为基底分解向量与.DABCa bB FC MA N D10.如图,O 是三角形ABC 内一点,PQ ∥BC ,且BCPQ=t,=a,=b,=с,求OP 与.第6课时 平面向量基本定理一、选择题1.设e 1、e 2是同一平面内的两个向量,则有( ) A. e 1、e 2一定平行 B. e 1、e 2的模相等C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .共线 C.相等 D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( )A.3 B .-3 C.0 D.2 4.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45° 二、填空题5.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .6. 已知λ1>0,λ2>0,e 1、e 2是一组基底,且 a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).7. 已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .8. 已知矩形ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = . 三、解答题9. 已知梯形ABCD 中,AB ∥CD 且AB=2CD ,M , N 分别是DC , AB 中点,设AD =a , AB =b ,试以a, b 为基底表示DC , BC , MN .10. 化简++++.第7课时 平面向量的正交分解和坐标表示及运算一、选择题 1.设a =(23,sin α),b=(cosα,31),且a ∥b ,则锐角α为( ) A.30° B .60° C.45° D.75°2.设k ∈R,下列向量中,与向量a =(1,-1)一定不平行的向量是( )A.(k ,k ) B .(-k ,-k )C.(k 2+1,k2+1)D.(k2-1,k2-1)3.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-36 4.已知|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 二、填空题5.已知a =(3,2),b =(2,-1),若λa +b 与a +λb (λ∈R )平行,则λ= . 6.若a=(-1,x)与b=(-x ,2)共线且方向相同,则x= . 7.若A(0, 1), B(1, 2), C(3, 4) 则-2=8.在△ABC 中,AB =a, BC =b ,AD 为边BC 的中线,G 为△ABC 的重心,则向量= .三、解答题9.若M(3, -2) N(-5, -1) 且 21=MP MN , 求P 点的坐标.10.在中,设对角线AC =a ,BD =b 试用a, b 表示AB ,BC .11.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD 是梯形.12.设1e , 2e 是两个不共线向量,已知=21e +k 2e , =1e +32e ,=21e -2e , 若三点A , B , D 共线,求k 的值.第8课时 平面向量共线的坐标表示一、选择题1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( ) A.6 B .5 C.7 D.82.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A.-3 B .-1 C.1 D.33.若=i +2j , =(3-x )i +(4-y )j (其中i 、j 的方向分别与x 、y 轴正方向相同且为单位向量). 与共线,则x 、y 的值可能分别为( )A.1,2 B .2,2 C.3,2 D.2,44.若a =(x 1,y 1),b =(x 2,y 2),且a ∥b ,则坐标满足的条件为( ) A.x 1x 2-y1y2=0 B .x1y1-x2y2=0 C.x1y2+x2y1=0 D.x1y2-x2y1=0 二、填空题5.已知a =(4,2),b =(6,y ),且a ∥b ,则y = .6已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .7.已知□ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = . 8.若A (-1,-1),B (1,3),C (x ,5)三点共线,则x = . 三、解答题9.已知a =(1,2),b =(-3,2),当k 为何值时k a +b 与a -3b 平行?10.已知A 、B 、C 、D 四点坐标分别为A (1,0),B (4,3),C (2,4),D (0,2),试证明:四边形ABCD 是梯形.11.已知A 、B 、C 三点坐标分别为(-1,0)、(3,-1)、(1,2),AE =AC 3131=, 求证:∥.12.△ABC 顶点A(1, 1), B(-2, 10), C(3, 7) ,∠BAC 平分线交BC 边于D , 求D 点坐标第9课时 平面向量的数量积的物理背景及其含义一、选择题1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45° 2.已知|a |=2,|b |=1,a 与b 之间的夹角为3π,那么向量m =a -4b 的模为( ) A.2 B .23材 C.6 D.123.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( )A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件4.已知a =(λ,2),b =(-3,5)且a 与b 的夹角为钝角,则λ的取值范围是( )A.λ>310 B .λ≥310 C.λ<310 D.λ≤310 二、填空题5.已知a =(3,0),b =(k ,5)且a 与b 的夹角为43π,则k 的值为 . 6.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |·|a -b |= . 7.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = .8.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 三、解答题9.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.10.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角.11.对于两个非零向量a 、b ,求使|a +t b |最小时的t 值,并求此时b 与a +t b 的夹角.12.已知|a |=2,|b |=5,a ·b =-3,求|a +b |,|a -b |.第10课时 平面向量数量积的运算律一、选择题1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 4.给定两个向量a =(3,4),b =(2,-1)且(a +x b )⊥(a -b ),则x 等于( ) A.23 B .223 C. 323 D. 423 二、填空题5.已知a =(1,2),b (1,1),c=b -k a ,若c ⊥a ,则c = .6.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 7.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 8.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 三、解答题5. 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°).6. 已知a =(3,4),b =(4,3),求x ,y 的值使(x a +y b )⊥a ,且|x a +y b |=1.7. 已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x .12.如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90︒, 求点B 和向量的坐标.第11课时 平面向量数量积的坐标表示、模、夹角一、选择题1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.832.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( )A.)54,53(或)53,54( B .)54,53(或)54,53(--C.)54,53(-或)53,54(-D.)54,53(-或)54,53(-4.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为( ) A.13 B .513 C.565D.65 二、填空题5.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .6.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 7.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 8.已知|a |=10,b =(1,2)且a ∥b ,则a 的坐标为 .三、解答题9.已知a =(3,-1),b =(1,2),求满足条件x ·a =9与x ·b =-4的向量x .10.已知点A (1,2)和B (4,-1),问能否在y 轴上找到一点C ,使∠ACB=90°,若不能,说明理由;若能,求C 点坐标.11.四边形ABCD 中=AB (6,1), BC =(x ,y ),CD =(-2,-3), (1)若BC ∥DA ,求x 与y 间的关系式;(2)满足(1)问的同时又有⊥,求x ,y 的值及四边形ABCD 的面积.12.在△ABC 中,=(2, 3),=(1, k ),且△ABC 的一个内角为直角, 求k 值..第12课时 平面向量的应用举例一选择题1.在四边形ABCD 中,若则,AD AB AC += ( ) A .ABCD 是矩形 B.ABCD 是菱形C ABCD 是正方形 D.ABCD 是平行四边形 2已知:在是则中,ABC ABC ∆<∙∆,0( )A 钝角三角形B 直角三角形C 锐角三角形D 任意三角形二.解答题3.设M 、N 分别是四边形ABCD 的对边AB 、CD 的中点,求证:)(21MN +=4.求证:对角线相等的四边形是矩形.5.求证:圆的直径所对的圆周角为直角.6.求证:直角三角形斜边上的中线等于斜边的一半.7.证明:三角形的三条高交于一点.8..AC AB CE BD CE BD ABC ==∆,求证:为中线,且,中,第13课时 向量在物理中的应用一选择题1某人以时速为a km 向东行走,此时正刮着时速为a km 的南风,则此人感到的风向及风速分别为( )A .东北, 2akm/h B.东南, akm/hC .西南, 2akm/h D.东南, 2akm/h2.一船以4km/h 的速度沿与水流方向成1200的方向航行,已知河水流速为2km/h ,则ABCDA E3h 后船的实际航程为( )A .63km B.6km C .53km D.5km二、填空题3.力F 1,F 2共同作用在某质点上,已知F 1=5N, F 2=12N,且F 1与F 2互相垂直,则质点所受合力的大小为_______________4.在200米山顶上.测得山下一塔顶与塔底的俯角分别为 60,30则塔高为__________米 5.某人向正东方向走x 千米后,他向右转150,然后朝新方向走3千米.结果他离开出发点恰好3千米,则 x=_________________.6.若用两根完全相同的绳子向两侧呈“V ”挂重物,每根绳子最大拉力为100N ,两根绳子间的夹角为600,则能挂重物的最大重量是 . 三、解答题7.一个质量为100g 的球从1.8m 的. 高处落到水平板上又弹回到1.25m 的高度,求在整个过程中重力对球所做的功。

高中 空间向量及其运算 知识点+例题+练习

高中 空间向量及其运算 知识点+例题+练习

教学内容空间向量及其运算教学目标.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.重点.掌握空间向量的数量积及其坐标表示,运用向量的共线与垂直证明直线、平面的平行和垂直关系难点.掌握空间向量的数量积及其坐标表示,运用向量的共线与垂直证明直线、平面的平行和垂直关系教学准备教学过程自主梳理1.空间向量的有关概念及定理(1)空间向量:在空间中,具有________和________的量叫做空间向量.(2)相等向量:方向________且模________的向量.(3)共线向量定理对空间任意两个向量a,b(a≠0),b与a共线的充要条件是________________________.(4)共面向量定理如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在有序实数对(x,y),使得p=x a+y b,推论的表达式为MP→=xMA→+yMB→或对空间任意一点O有,OP→=________________或OP→=xOA→+yOB→+zOM→,其中x+y+z=____.(5)空间向量基本定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在惟一的有序实数组(x,y,z),使得p=________________________,把{e1,e2,e3}叫做空间的一个基底.2.空间向量的坐标表示及应用(1)数量积的坐标运算若a=(a1,a2,a3),b=(b1,b2,b3),则a·b=________________________________________________.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),若b≠0,则a∥b⇔________⇔__________,________,______________,a⊥b⇔__________⇔________________________(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=a·a=________________________________,cos〈a,b〉=a·b|a||b|=__________________________.若A(a1,b1,c1),B(a2,b2,c2),则|AB→|=______________________________.教学效果分析教学过程3.利用空间向量证明空间中的位置关系若直线l,l1,l2的方向向量分别为v,v1,v2,平面α,β的法向量分别为n1,n2,利用向量证明空间中平行关系与垂直关系的基本方法列表如下:平行垂直直线与直线l1∥l2⇔v1∥v2⇔v1=λv2(λ为非零实数)l1⊥l2⇔v1⊥v2⇔v1·v2=0直线与平面①l∥α⇔v⊥n1⇔v·n1=②l∥α⇔v=x v1+y v2其中v1,v2为平面α内不共线向量,x,y均为实数l⊥α⇔v∥n1⇔v=λn1(λ为非零实数)平面与平面α∥β⇔n1∥n2⇔n1=λn2(λ为非零实数)α⊥β⇔n1⊥n2⇔n1·n2=0 自我检测1.若a=(2x,1,3),b=(1,-2y,9),且a∥b,则x=_________,y=________.2.如图所示,在平行六面体ABCD—A1B1C1D1中,M为AC与BD的交点,若A1B1→=a,A1D1→=b,A1A→=c,则B1M→用a,b,c表示为________.3.在平行六面体ABCD—A′B′C′D′中,已知∠BAD=∠A′AB=∠A′AD=60°,AB=3,AD=4,AA′=5,则|AC′→|=________.4.下列4个命题:①若p=x a+y b,则p与a、b共面;②若p与a、b共面,则p=x a+y b;③若MP→=xMA→+yMB→,则P、M、A、B共面;④若P、M、A、B共面,则MP→=xMA→+yMB→.其中真命题是________(填序号).5.A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17)这四个点________(填共面或不共面).教学效果分析教学过程探究点一空间基向量的应用例1已知空间四边形OABC中,M为BC的中点,N为AC的中点,P为OA的中点,Q为OB的中点,若AB=OC,求证:PM⊥QN.变式迁移1如图,在正四面体ABCD中,E、F分别为棱AD、BC的中点,则异面直线AF和CE所成角的余弦值为________.教学效果分析教学过程探究点二利用向量法判断平行或垂直例2两个边长为1的正方形ABCD与正方形ABEF相交于AB,∠EBC=90°,点M、N分别在BD、AE上,且AN=DM.(1)求证:MN∥平面EBC;(2)求MN长度的最小值.变式迁移2如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥面BDF.教学效果分析教学过程探究点三利用向量法解探索性问题例3如图,平面P AC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为P A,PB,AC的中点,AC=16,P A=PC=10.(1)设G是OC的中点,证明FG∥平面BOE;(2)在△AOB内是否存在一点M,使FM⊥平面BOE?若存在,求出点M到OA,OB的距离;若不存在,说明理由.变式迁移3已知在直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.(1)求直线BE与A1C所成的角的余弦值;(2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出AF;若不存在,请说明理由.1.向量法解立体几何问题有两种基本思路:一种是利用基向量表示几何量,简称基向量法;另一种是建立空间直角坐标系,利用坐标法表示几何量,简称坐标法.2.利用坐标法解几何问题的基本步骤是:(1)建立适当的空间直角坐标系,用坐标准确表示涉及到的几何量.(2)通过向量的坐标运算,研究点、线、面之间的位置关系.(3)根据运算结果解释相关几何问题.教学效果分析教学过程(满分:90分)一、填空题(每小题6分,共48分)1.下列命题:①若A、B、C、D是空间任意四点,则有AB→+BC→+CD→+DA→=0;②|a|-|b|=|a+b|是a、b共线的充要条件;③若a、b共线,则a与b所在直线平行;④对空间任意一点O与不共线的三点A、B、C,若OP→=xOA→+yOB→+zOC→(其中x、y、z∈R)则P、A、B、C四点共面.其中不正确命题的序号为________.2.若A、B、C、D是空间中不共面的四点,且满足AB→·AC→=0,AC→·AD→=0,AB→·AD→=0,则△BCD的形状是______________三角形.3. 如图所示,在三棱柱ABC—A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角等于________.4.设点C(2a+1,a+1,2)在点P(2,0,0)、A(1,-3,2)、B(8,-1,4)确定的平面上,则a=____________.5.在直角坐标系中,A(-2,3),B(3,-2),沿x轴把直角坐标系折成120°的二面角,则AB的长度为________.6. (2010·信阳模拟)如图所示,已知空间四边形ABCD,F为BC的中点,E为AD的中点,若EF→=λ(AB→+DC→),则λ=________.7.(2010·铜川一模)在正方体ABCD—A1B1C1D1中,给出以下向量表达式:①(A1D1→-A1A→)-AB→;②(BC→+BB1→)-D1C1→;③(AD→-AB→)-2DD1→;④(B1D1→+A1A→)+DD1→.其中能够化简为向量BD1→的是________.(填所有正确的序号) 8.(2010·丽水模拟) 如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈DP→,AE→〉=33,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________.二、解答题(共42分)9.(14分) 如图所示,已知ABCD—A1B1C1D1是棱长为3的正方体,点教学效果分析E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E 、B 、F 、D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.10.(14分)(2009·福建)如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.11. (14分)如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M 、N 分别是AB 、CD 的中点.(1)求证:MN⊥AB,MN⊥CD;(2)求MN的长;(3)求异面直线AN与CM所成角的余弦值.。

平面向量同步练习

平面向量同步练习

2.1平面向量的实际背景及基本概念 1 .在下列判断中,正确的是 ( )①长度为0的向量都是零向量; ②零向量的方向都是相同的; ③单位向量的长度都相等;④单位向量都是同方向; ⑤任意向量与零向量都共线.A .①②③ B.②③④ C .①②⑤ D.①③⑤2. 下列关于向量的结论:(1)若|a | =|b |,贝U a = b 或a =- b ; (2)向量a 与b 平行,则a 与b 的方向相同或相反;⑶起点不同,但方向相同且模相等的向量是相等向量;(4)若向量a 与b 同向,且| a |>| b |,则a >b. 其中正确的序号为() A. (1)(2)B.⑵(3) C . (4)D. (3) 3. 下列说法正确的是( ) ① 向量ABw &是平行向量,则 A B C D 四点一定不在同一直线上② 向量a 与b 平行,且| a | = | b |丰0,贝U a + b = 0或a - b = 016.已知E,F 分别是平行四边形 ABCD 勺边BC,CD 中点,AF 与DE 相交于点G,若AB = a , AD 二b ,则GC 用a, b 表示为 ________ .③向量AB 勺长度与向量BA 勺长度相等 A. ①③ 1. 向量 2. ④单位向量都相等B.②④ C .①④ D.②③—2_― T2向量的线性运算及其几何意义(AB MB) (BO BC) OM 化简后等于PM -PN MN 所得结果是3. 4. 化简 四边形ABCD 是平行四边形,则BC -CD BA 等于11 — r r -4-化简的丄[丄(2a 8b) -(4^ 2b)]结果是 _____________ 3 2 已知向量 a , b ,且 3(x+a )+2(x — 2a )—4(x —a+b )= 0,则 x = ___________ .若向量x 、y 满足2x +3y = a ,3x —2y = b , a 、b 为已知向量,贝U x = ________ ; y = —F T T T在矩形 ABCD 中,若 | AB |=3 J BC |=4,则 | AB AD |=已知正方形 ABCD 边长为J , AB 二a , BC 二b , AC =C ,则a b C 的模等于 已知|OA|=|a |=3 , |OB|=|b|=3,/ AOB=60,则 |a b|二 一10. 已知E 、F 分别为四边形 ABCD 勺边CD BC 边上的中点,设AD =a , BA = b ,则EF = _11. 在厶ABC 中,D E 、F 分别BC CA AB 的中点,点皿是厶ABC 的重心,则MA • MB - MC 等于12. 已知AD ,BE 分别是JABC 的边BC ,AC 上的中线,且AD 二a , BE 二b ,则AC 是( ) 小、4 22 4 (A) a b (B) a b3 3 3 3 13. A. PA PB =0 B. PB PC =0 5. 6. 7. 8. 9. 42 (C) — a b (D)3 3 BC BA =2BP ,| 则( C. PC PA = 0 D. b 3 PA PB PC = 01 t T14. 在△ ABC 中,已知 D 是 AB 边上一点,若 AD =2DB,CD =^CA — CB ,则’二• 斗 T 畔 畔F ・ ・15. 6、e 2是两个不共线的向量,且AB =2e •ke 2,CB=e 1 3e , ,C^2e^e 2 .若A B 、D 三点共线,则k 的值为 ______ .3 设t P 是^ A%C 所在平面内的一点屮2.3 平面向量数量积的坐标表示、模、夹角A 蠹A . 52.已知平面向量A . - 1 a = (1 , B. B. 65 C ・¥ D. 13 —3) , b = (4 , — 2),入 a + b 与 a 垂直,则入=(1 C . -2 D. 2 3.已知 | a |=| A . 1 B T b | , .-1 a'_ b ,且(a + b ') — (k a - b ),则 k 的值是( ) C6), P ( 3, 4),且 AP =■ PB , x 和’的值分别为() C . -7 , - D . 5,- 5 5 5.已知向量a = ( 3, 1), b 是不平行于x 轴的单位向量,且 a • b = 3,贝U b 等于( ) 1, 4.已知平面内三点 A . -7 , 2A (-1 , 0), B( x , 」1 2 , 2 6. 设点M 是线段BC 的中点,点 A . 8 7. 已知a,b A. B. C. D. (1,0)JT &已知向量 A 30° B. 4 是非零向量且满足( A 在直线 BC 外, B C = 16, |A B + A C = |AB- A C ,则 | X M =( c. 2 a - 2b ) 丄a , 2 二 D. 1 (b -2a ) 丄b ,则a 与b 的夹角是( ) 5 二 6a =(1,2),b =(—2, M),|c|=、5,若(a b) 5 ,则a 与C 的夹角为 ( ) 2 D 150 °15 —,| a | = 3 , | b | = 5 ,贝U a 与b 的夹角是( B 60° 120 ° 9.已知△ ABC 中, XB= a , AC= b , a • b <0, &ABC =.30° B . 150 C . 210° D. 30° 或 150° 10. P 是厶ABC 所在平面上一点, PA PB 二 PB PC 二 PC PA ,贝U P 是厶 ABC 的(外心B 内心 重心 D 垂心 11. 已知向量 a=( cos msin v),向量 b=( 、、3, -1),则 |2a - b| 的最大值是12. (1) a = ( - 3,2) , b = (2,1) , c = (3 , - 1) , t € R13. (1) 已知向量 求|a + tb |的最小值及相应的t 值;(2)若a -tb 与c 共线,求实数t . 已知 XB= (6,1) , E3C = (x , y ) , &== ( - 2,- 3),若 E3C// 5A ACL E3D 求x 、y 的值;(2)求四边形ABC 啲面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步练习同步练习 g3.1053 向量的概念和基本运算
1.下面给出四个命题:①对于实数m 和向量,a b ,恒有()
m a b ma mb -=- ②对于实数m 、n 和向量a ,恒有()m n a ma na -=- ③若(,0),ma mb m R m a b =∈≠=则
④若(0)ma na a =≠,则m=n 其中正确的命题个数是


A 、1
B 、2
C 、3
D 、4
2.在平行四边形ABCD 中,若AB AD AB AD +=-,则必有 ( )
A. 0AD =
B. 00AB AD ==或
C. ABCD 是矩形
D. ABCD 是正方形 3.已知8,5AB AC ==,则BC 的取值范围是 ( ) A. [3,8] B. (3,8) C. [3,13] D. (3,13)
4.(04年浙江卷.文4)已知向量(3,4),(sin ,cos ),a b αα==且//a b ,则tan α=( ).
A .34
B. 34
- C.
43 D. 43
- 5.下列命题中,正确的是( )
A. 若a b =,则a b =
B. 若a b =,则//a b
C. 若a b >,则a b >
D. 若1a =,则1a = 6.下列说法中错误的是( )
A.向量AB 的长度与向量BA 的长度相等
B.任一非零向量都可以平行移动
C.长度不等且方向相反的两个向量不一定是共线向量
D.两个有共同起点而且相等的向
量,其终点必相同. 7. (05全国卷III )已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,
则k=
8.(05湖北卷)已知向量||).,5(),2,2(k +=-=若不超过5,则k 的取值范围是 9.(05广东卷)已知向量(2,3)a =,(,6)b x =,且a b ,则x 为_____________. 10.,,D E F 分别是ABC ∆的边,,BC CA AB 的中点,且,,BC a CA b ==给出下列命题
①12
AD a b =-- ②12
BE a b =+ ③ 112
2
CF a b =-+ ④0AD BE CF ++= 其中正确的序号是_________.
11.若112()(3)03
2x a b c x b --+-+=,则x =__________.
12.两列火车,先各从一站台沿相反方向开出,走了相同的路程,这两列火车位移的和是___. 13.已知12,e e 不共线,1212,a ke e b e ke =+=+,当k =______时,,a b 共线.
、 . 、 . 9、 、
11、 .12、 . 13、 . 14、证明:始点在同一点的向量,,32a b a b -的终点在同直线上。

15.如图,OADB 是以向量,OA a OB b ==为边的平行四边形,又11,33
BM BC CN CD ==,试用,a b 表示,,OM ON MN 。

16、如图,已知2,1,4,OA OB OC OA OB ===与300,用
,OA OB OC 表示.
答案:
1、D
2、C
3、C
4、C
5、B
6、C
7、k=2
3
- 8、[-6,2] 9、4
10、①②③④ 11、411
2177
a b c -+ 12、0 13、1±
14、略
15、1566OM a b =+,2()3ON a b =+,11
26
MN a b =-
16、
)3
OA OB +。

相关文档
最新文档