第2章质点运动定律(1)

合集下载

大学物理课件第二章质点动力学

大学物理课件第二章质点动力学
N sin m(a 'cos a) N cos mg m(a 'sin )

m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B

A
F
B

m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B

A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。

高一物理必修一第二章公式

高一物理必修一第二章公式

为⼤家整理的⾼⼀物理必修⼀第⼆章公式⽂章,供⼤家学习参考!更多最新信息请点击⼀、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有⽤推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正⽅向,a与Vo同向(加速)a>0;反向则a<0}8.实验⽤推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):⽶(m);路程:⽶;速度单位换算:1m/s=3.6km/h。

注:(1)平均速度是⽮量;(2)物体速度⼤,加速度不⼀定⼤;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第⼀册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第⼀册P24〕。

2)⾃由落体运动1.初速度Vo=02.末速度Vt=gt3.下落⾼度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)⾃由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重⼒加速度在⾚道附近较⼩,在⾼⼭处⽐平地⼩,⽅向竖直向下)。

(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)3.有⽤推论Vt2-Vo2=-2gs4.上升⾼度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正⽅向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为⾃由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。

练习册第2章《质点力学的运动定律守恒定律》答案(1)

练习册第2章《质点力学的运动定律守恒定律》答案(1)

练习册第2章《质点⼒学的运动定律守恒定律》答案(1)第2章质点⼒学的运动定律守恒定律⼀、选择题1(C),2(E),3(D),4(C),5(C),6(B),7(C),8(C),9(B),10(C),11(D),12(A),13(D)⼆、填空题(1). ω2=12rad/s ,A=0.027J (2). 290J (3). 3J (4). 18 N ·s(5). j t i t 2323+ (SI) (6). 16 N ·s , 176 J (7). 16 N ·s ,176 J (8). M k l /0,Mknm M Ml +0(9). j i5- (10).2m v ,指向正西南或南偏西45°三、计算题1. 已知⼀质量为m 的质点在x 轴上运动,质点只受到指向原点的引⼒的作⽤,引⼒⼤⼩与质点离原点的距离x 的平⽅成反⽐,即2/x k f -=,k 是⽐例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的⼤⼩.解:根据⽜顿第⼆定律x m t x x m t m xk f d d d d d d d d 2vv v v =?==-= ∴ ??-=-=4/202d d ,d d A Ax mx kmx x k v v v v vk mAA A m k 3)14(212=-=v ∴ )/(6mA k =v2. 质量为m 的⼦弹以速度v 0⽔平射⼊沙⼟中,设⼦弹所受阻⼒与速度反向,⼤⼩与速度成正⽐,⽐例系数为K,忽略⼦弹的重⼒,求:(1) ⼦弹射⼊沙⼟后,速度随时间变化的函数式; (2) ⼦弹进⼊沙⼟的最⼤深度.解:(1) ⼦弹进⼊沙⼟后受⼒为-Kv ,由⽜顿定律tmK d d vv =- ∴ ??=-=-v v v v vv 0d d ,d d 0t t m K t m K∴ mKt /0e -=v v(2) 求最⼤深度解法⼀: t xd d =vt x mKt d ed /0-=vt x m Kt txd e d /000-?=v∴ )e 1()/(/0mKt K m x --=vK m x /0m ax v =解法⼆: x m t x x m t m K d d )d d )(d d (d d vvv v v ===- ∴ v d K mdx -=v v d d 000m a x ??-=K mx x∴ K m x /0m ax v =3. ⼀物体按规律x =ct 3在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻⼒正⽐于速度的平⽅,阻⼒系数为k ,试求物体由x =0运动到x =l 时,阻⼒所作的功.解:由x =ct 3可求物体的速度: 23d d ct tx==v 物体受到的阻⼒⼤⼩为: 343242299x kc t kc k f ===v ⼒对物体所作的功为:=W W d =-lx x kc 03432d 9 =7273732l kc -4. ⼀质量为2 kg 的质点,在xy 平⾯上运动,受到外⼒j t i F 2244-= (SI)的作⽤,t = 0时,它的初速度为j i430+=v (SI),求t = 1 s 时质点的速度及受到的法向⼒n F .解: j t i m F a 2122/-==t a d /d v = ∴ t j t i d )122(d 2-=v=?vv vd ?-t t j t i 02d )122(∴ j t i t 3042-=-v vj t i t j t i t )44()23(42330-++=-+=v v当t = 1 s 时, i51=v 沿x 轴故这时, j a a y n12-==j a m F n n24-== (SI)5.⼀辆⽔平运动的装煤车,以速率v 0从煤⽃下⾯通过,每单位时间内有质量为m 0的煤卸⼊煤车.如果煤车的速率保持不变,煤车与钢轨间摩擦忽略不计,试求:(1) 牵引煤车的⼒的⼤⼩;(2) 牵引煤车所需功率的⼤⼩;(3) 牵引煤车所提供的能量中有多少转化为煤的动能?其余部分⽤于何处?解:(1) 以煤车和?t 时间内卸⼊车内的煤为研究对象,⽔平⽅向煤车受牵引⼒F 的作⽤,由动量定理: 000)(v v M t m M t F -+=?? 求出: 00v m F = (2) 2000v v m F P ==(3) 单位时间内煤获得的动能: 2021v m E K =单位时间内牵引煤车提供的能量为 P E ===21/E E K 50%即有50%的能量转变为煤的动能,其余部分⽤于在拖动煤时不可避免的滑动摩擦损耗.6.⼀链条总长为l ,质量为m ,放在桌⾯上,并使其部分下垂,下垂⼀段的长度为a .设链条与桌⾯之间的滑动摩擦系数为µ.令链条由静⽌开始运动,则(1)到链条刚离开桌⾯的过程中,摩擦⼒对链条作了多少功?(2)链条刚离开桌⾯时的速率是多少?解:(1)建⽴如图坐标.某⼀时刻桌⾯上全链条长为y ,则摩擦⼒⼤⼩为 g lym f µ=摩擦⼒的功 ??--==0d d al al f y gy lmy f W µ=22al y lmg-µ =2)(2a l lmg--µ(2)以链条为对象,应⽤质点的动能定理 ∑W =222121v v m m - 其中 ∑W = W P +W f ,v 0 = 0 W P =?la x P d =la l mg x x l mg la 2)(d 22-=? 由上问知 la l mg W f 2)(2--=µal -a-a1)(22)(v m a l l mg l a l mg =---µ得 []21222)()(a l a l lg ---=µv7. 如图所⽰,在中间有⼀⼩孔O 的⽔平光滑桌⾯上放置⼀个⽤绳⼦连结的、质量m = 4 kg 的⼩块物体.绳的另⼀端穿过⼩孔下垂且⽤⼿拉住.开始时物体以半径R 0 = 0.5 m 在桌⾯上转动,其线速度是4 m/s .现将绳缓慢地匀速下拉以缩短物体的转动半径.⽽绳最多只能承受 600 N 的拉⼒.求绳刚被拉断时,物体的转动半径R 等于多少?解:物体因受合外⼒矩为零,故⾓动量守恒.设开始时和绳被拉断时物体的切向速度、转动惯量、⾓速度分别为v 0、J 0、ω0和v 、J 、ω.则ωωJ J =00 ①因绳是缓慢地下拉,物体运动可始终视为圆周运动.①式可写成R mR R mR //20020v v =整理后得: v v /00R R =②物体作圆周运动的向⼼⼒由绳的张⼒提供 R m F /2v = 1分再由②式可得: 3/12020)/(F mR R v =当F = 600 N 时,绳刚好被拉断,此时物体的转动半径为R = 0.3 m8.设两个粒⼦之间相互作⽤⼒是排斥⼒,其⼤⼩与粒⼦间距离r 的函数关系为3r k f =,k 为正值常量,试求这两个粒⼦相距为r 时的势能.(设相互作⽤⼒为零的地⽅势能为零.)解:两个粒⼦的相互作⽤⼒ 3r k f =已知f =0即r =∞处为势能零点, 则势能∞∞∞=?==r r P P r r kW E d d 3r f)2(2r k =1. 汽车发动机内⽓体对活塞的推⼒以及各种传动部件之间的作⽤⼒能使汽车前进吗?使汽车前进的⼒是什么⼒?参考解答:汽车发动机内⽓体对活塞的推⼒以及各种传动部件之间的作⽤⼒都是汽车系统的内⼒,内⼒只会改变内部各质点的运动状态,不会改变系统的总动量,所以不能使汽车前进。

质点系的牛顿运动定律

质点系的牛顿运动定律

n
n
i1 Fi m1a1 m2 a2 m a 质点系的牛i顿1运动定i 律i
质点系的牛顿第二定律
例1:如图,质量为M、倾角为α的 斜面静止在粗糙的水平面上,质量 为m的滑块沿M粗糙的斜面以加速度 a下滑,求: (1)物体M受到地面的摩擦力大小 和方向。 (2)物体M受到地面的支持力大小
质点系的牛顿运动定律
F
1 2
质点系的牛顿运动定律
Fi
质点系各质点受系统以外力 F1、F2、…Fi…
mi
F1i Fi1
m1
F1
F31
F13
质点1
F3
m3
F1 F21 F31 Fi1 m1a1
各质点
… F21
F12
m2
F2 F12 F32 Fi2 m2a2
F2
Fi F1i F2i Fni miai
作用在质点系中的合外力,等于质点系的总质量和质心加 速度的乘积。
推论:
(1)如果一个质点系的质心原来是不动的,那么在无外力作用下,
则它的质心始终不动。
(2)如果一个质点系的质心原来是运动的,那么在无外力作用下,
则它的质心将以原来的速度做匀速直线运动。
(3)如果一个质点系在恒定合外力作用下,且质心的初速度为零
y
y
y
A
A
A
y A
x B
O
y A
B
B
O
O
A
B
B
B
O
O
C
D
质点系的牛顿运动定律
质心的应用
例2:在光滑水平面上,直立一 长度为l的均质杆AB,在如图所 示的坐标系中,(2)求杆从竖直 位置开始无初速倒下到触地的 过程中,端点A的轨迹方程。

大学物理第2章质点动力学

大学物理第2章质点动力学

第2章质点动力学2.1 牛顿运动定律一、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改 变这种状态为止。

二、牛顿第二定律物体所获得的加速度的大小与合外力的大小成正比,与物体的质量成反比, 方向与合外力的方向相同。

表示为f ma说明:⑵在直角坐标系中,牛顿方程可写成分量式f x ma *, f y ma y , f z ma z 。

⑶ 在圆周运动中,牛顿方程沿切向和法向的分量式f t ma t f n ma n⑷ 动量:物体质量m 与运动速度v 的乘积,用p 表示。

p mv动量是矢量,方向与速度方向相同。

由于质量是衡量,引入动量后,牛顿方程可写成dv m 一 dt 当 f 0时,r 0,dp 常量,即物体的动量大小和方向均不改变。

此结 论成为质点动量守恒定律三、 牛顿第三定律:物体间的作用力和反作用力大小相等,方向相反,且在同 一直线上。

物体同时受几个力f i ,f 2f n 的作用时,合力f 等于这些力的矢量和f n力的叠加原理d pdtf ma说明:作用力和反作用力是属于同一性质的力。

四、国际单位制量纲基本量与基本单位导出量与导出单位五、常见的力力是物体之间的相互作用。

力的基本类型:引力相互作用、电磁相互作用和核力相互作用。

按力的性质来分,常见的力可分为引力、弹性力和摩擦力。

六、牛顿运动定律的应用用牛顿运动定律解题时一般可分为以下几个步骤:隔离物体,受力分析。

建立坐标,列方程。

求解方程。

当力是变力时,用牛顿第二定律得微分方程形式求解。

例题例2-1如下图所示,在倾角为30°的光滑斜面(固定于水平面)上有两物体通过滑轮相连,已知叶3kg, m2 2kg,且滑轮和绳子的质量可忽略,试求每一物体的加速度a及绳子的张力F T(重力加速度g取9.80m • s 2)。

解分别取叶和m2为研究对象,受力分析如上图。

利用牛顿第二定律列方程:「m2g F TYL F T m1gsi n30o m1a绳子张力F T F T代入数据解方程组得加速度a 0.98m • s 2,张力F T 17.64N。

第二章质点运动学

第二章质点运动学
运动学的重要任务 之一, 之一,就是找出各 种具体运动所遵循 的运动方程。 的运动方程。
例1、自由落体运动的运动方程为 、
1 y = gt 2
2
例2、平抛运动的运动方程 、
x = v0t 1 y = 2 gt
2
g 2 y= 2 x 2v 0
为轨迹方程
v •定义 定义 ∆r v r1 把由始点到终点的有向线段定义为质点 P2 v 的位移矢量,简称位移。 的位移矢量,简称位移。它是描述质点 r2 位置变化的物理量。 位置变化的物理量 v v v O y •计算 计算 r1 + ∆r = r2 v v v ∆r = r2 − r1 v v v x ∆r = r2 − r1 v v v v v v = ( x 2 i +y 2 j + z 2 k ) − ( x1 i +y1 j + z1 k ) v v v 说明 = ( x 2 − x1 )i + ( y2 − y1 ) j + ( z 2 − z1 )k •说明 •位移是矢量; 位移是矢量; 位移是矢量 • 具有瞬时性; 具有瞬时性; •位移与路程的区别 位移与路程的区别 • 具有相对性; 具有相对性; 位移是矢量: 位移是矢量:是指位置矢量的变化 • 单位: 单位:米(m) ) 路程是标量: 路程是标量:是指运动轨迹的长度
二、位置矢量、运动方程、位移 位置矢量、运动方程、
1、位置矢量 、
基本概念 从原点O到质点所在的位 从原点 到质点所在的位 置P点的有向线段,叫做 点的有向线段, 点的有向线段 位置矢量或位矢。 位置矢量或位矢。
z v
k
γ α
v r
β
P(x,y,z)
v v v v r =xi +yj + zk

大学物理第二章质点动力学PPT课件


•若物体与流体的相对速度接近空气中的声速时,阻 力将按 f v3 迅速增大。
•常见的正压力、支持力、拉力、张力、弹簧的恢复 力、摩擦力、流体阻力等,从最基本的层次来看, 都属于电磁相互作用。
2021
12
五、牛顿定律的应用
•应用牛顿运动定律解题时,通常要用分量式:
如在直角坐标系中:
在自然坐标系中:
Fn
man
mv2
2021
6
三、牛顿第三定律
物体间的作用是相互的。两个物体之间的作用
力和反作用力,沿同一直线,大小相等,方向相反,
分别作用在两个物体上。
F21F12
第三定律主要表明以下几点:
(1)物体间的作用力具有相互作用的本质:即力总 是成对出现,作用力和反作用力同时存在,同时消 失,在同一条直线上,大小相等而方向相反。
(4)由于力、加速度都是矢量,第二定律的表示式 是矢量式。在解题时常常用其分量式,如在平面直 角坐标系X、Y轴上的分量式为 :
2021
5
Fx mxamddxvtmdd22xt Fy myamddyvtmd d22yt
在处理曲线运动问题时,还常用到沿切线方向 和法线方向上的分量式,即:
Ft
mat
mdv dt
2021
27
1983年第17届国际计量大会定义长度单位用真空中 的光速规定:
c = 299792458 m/s
因而米是光在真空中1299,792,458秒的时间间 隔内所经路程的长度。
❖其它所有物理量均为导出量,其单位为导出单位
如:速度 V=S/ t, 单位:米/秒(m/s)
加速度a=△V/t,单位:米/秒2(m/s2)
•摩擦力:两个相互接触的物体在 沿接触面相对运动时,或者有相对 运动趋势时,在接触面之间产生的

《大学物理》第2章 质点动力学


TM
Tm
2Mm M m
g
a
ar
M M
m m
g
a
FM
TM
ar
F m
Tm m
a
M PM
ar
Pm
注:牛顿第二 定律中的加速 度是相对于惯 性系而言的 。
例2 在倾角 θ 30 的固定光滑斜面上放一质量为
M的楔形滑块,其上表面与水平面平行,在其上 放一质量为m的小球, M 和m间无摩擦,
且 M 2m 。
解:以弹簧原长处为坐标原点 。
Fx kx
F Bm A
元功:
O xB x
xA x
dW Fx dx kxdx
dx
弹力做功:W
xB xA
kxdx
1 2
kxA2
1 2
kxB2
2.3.4 势能 Ep
W保 Ep Ep0 Ep
Ep重 mgh
牛顿 Issac Newton(1643-1727) 杰出的英国物理学家,经 典物理学的奠基人.他的 不朽巨著《自然哲学的数 学原理》总结了前人和自 己关于力学以及微积分学 方面的研究成果. 他在光 学、热学和天文学等学科 都有重大发现.
第2章 质点动力学
2.1 牛顿运动定律 2.1.1 牛顿运动定律
1 牛顿第一定律(惯性定律) • 内容:一切物体总保持静止状态或匀速直线运动 状态,直到有外力迫使它改变这种状态为止。 • 内涵: 任何物体都有保持静止或匀速直线运动状态的趋势。 给出了力的定义 。 定义了一种参照系------惯性参照系。
非惯性参照系:相对于已知的惯性系作变速运动 的参照系。
惯性定律在非惯性系 中不成立。
2.2 动量定理 动量守恒定律

2-1 质心 质心运动定理

Ch2 运动的守恒量和守恒定律§2-1质点系的内力外力质心质心运动定理§2-1 质心质心运动定理动量守恒定律1、质点系的内力和外力质心质心的位置例:任意三角形的每个顶点有一质量m 的小球,求/r m r M =∑G Gz yOΔm ir微元分割!例3-7 求腰长为a等腰直角三角形均匀薄板的质心位置。

3、质心运动定理质心运动定理G G G G G d v1 G m 1 a1 = m 1 = F1 外 + f 12 + f 13 + " + f 1 n , dt G G G G G d v2 G m 2a2 = m 2 = F2 外 + f 21 + f 23 + " + f 2 n , dt G G G G G d vn G = Fn外 + f n 1 + f n 2 + " + f n ( n − 1) , m nan = m n dt G G G G 由于内力 f12 + f 21 = 0," , f in + f ni = 0, ...由牛顿第二定律:""∴G ∑ m i ai =G ∑ F i外11/18中国矿业大学(北京)质心运动定理G ∑ m i ai =G ac =G ∑ F i外 G ∑ m i aiG ac =G ∑ Fi外∑m∑m=G ∑ Fi外 Mi∑G G Fi外 = M a ci质心运 动定理不管物体质量如何分布,也不管外力作用在物体 什么位置上,质心的运动就象是物体的质量全都集 中于此,而且所有外力也都集中作用其上的一个质 点的运动一样。

12/18 中国矿业大学(北京)补充例题1例1 质量为m1 和m2的两个小孩,在光滑水平冰面上用 绳彼此拉对方。

开始时静止,相距为l。

问他们将在何 处相遇?m2m1Ox20x10x13/18中国矿业大学(北京)补充例题1解:可直接由质心运动定律求出。

初始静止时,小孩系统的质 心位置: m 1 x 10 + m 2 x 20 1 xc = m1 + m 2m2C xcx10m1∑G G G Fi外 = M a c ⇒ a c = 0O x20x质心位置,在过程中应该始终保持静止。

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-o20(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G r 和轨道对它的支持力T r.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=r r r由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,习题2-2图Ao B rCT902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr v g rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰o r得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
Fx max Fy ma y Fz maz
在研究物体作圆周运动和平面曲线运动的问题时,常采用自然 坐标系,此时第二定律沿轨道法向和切向的分量式可写成如下 形式:
(3)
Fn man m
v
2

dv Ft mat m dt
(4)
式中, Fn、Ft分别代表物体所受的沿 轨道法向和切向方向的合外力。
对任意两个物体间的万有引力作用,上式的结论都应成立
m1 A m2 A 2 m1 I m 2 I F G G 2 r r2
令m1I=m2I=1kg,r=1m,实验测得F=6.6710-11N,因此,只需 选取G=6.6710-11Nm2/kg2,可以保证式中=1
13
讨论 • • 前提条件:同一地点测量一切自由落体的加速度都相同 结论:惯性质量与引力质量是相等的 牛顿定律的应用
2
F
dp dt

d (mv) dt
(1)
如果物体的质量不随时间而变,则第二定律可以写成
dv F m ma dt
(2)
式(1)是牛顿第二定律的普遍形式,式(2)则是定律在质量 保持不变条件下的特殊形式。 在国际单位制(SI)中,质量的单位是kg,加速度的单位 是m/s2,力的单位是N。 牛顿第二定律是物体的加速度和它所受的合外力之间 的瞬时关系,也是一个矢量等式。 在直角坐标系中,第二定律写成如下分量式:
这样我们就知道,牛顿定律并不是对所有参考系都成立的。 我们把牛顿定律 成立的参考系称作惯性参 乙 m k 考系(简称惯性系),而牛顿 a 定律不成立的参考系称作 甲 A 非惯性系。一个参考系是 不是惯性系,只能由实验确定。
7
天体运动的研究指出: 如果我们选择的参考系,以太阳中心 为原点,以指向某些恒星的直线为坐标轴,则所观察到的天文现 象都与 牛顿定律和万有引力定律推出的结论相符合,因此,这 样的参考系是惯性系。在研究地球表面附近(高度不太高、距 离不太远)物体的运动时,地面(或固定在地面上的物体)就是近 似程度相当好的惯性系。在大学物理的学习中,我们基本上 就是采用这种地面参考系。 惯性系有一个重要性质:一切相对于惯性系作匀速直线运 动的参考系也是惯性系。
g 在图(B)中:N=mR2, N≥mg, 解得 R 问题:若a,N ,使 N>mg, m是否会上升呢?
16
例题2-2 一条轻绳跨过摩擦可被忽略的轻滑轮,绳的一端挂有 质量为m1的物体,绳的另一端穿过一质量为m2的环,求当环相 对于绳以恒定的加速度a0沿绳向下滑动时,物体和环相对于地面 的加速度各是多少?环与绳间的摩擦力多大? 解 在图2-2中,已经画出了各物体的受力情况,并规定(ox轴)向 上为各量的正方向。
ω
N fs y x mg
g sin R cos 2 g cos R sin
2
对给定的ω、R和θ,μ不能小于 此值否则最大静摩擦力不足以维 持m在斜面上不动。
23
g sin R cos 2 g cos R sin
2
讨论:由μ>0,可得:gcosθ-ω 2 Rsinθ>0
(m1 m2 ) g m1a0 a2 m1 m2
(2 g a0 )m1m2 f T m1 m2
18
4.应用牛顿定律解题 例1、水平面上有一质量为51kg的小车D,其上有一 定滑轮C,通过绳在滑轮两侧分别连有质量m1=5kg 和m2=4kg的物体A 和B。其中物体A在小车的水平面 上,物体B被绳悬挂,系统处于静止瞬间,如图所示。 各接触面和滑轮轴均光滑,求以多大水平力作用在 小车上,才能使物体A与小车D之间无相对滑动。 (滑轮和绳的质量均不计,绳与滑轮间无滑动)
1666年。250年后发展 为广义相对论 W=mg=GMm/R2
G=6.6710-11Nm2/kg2
例:地球对物体的引力
(忽略地球自转)所以
rR
g=GM/R2
(2)电磁力:(库仑力)
f=kq1q2/r2
注意:电磁力远远大于万有引力!
10
k=9 109Nm2/C2
(3)强力:粒子之间的一种相互作用, 作用范围在0.410-15米至10-15米。
15
例 讨论:
Fs R a m mg N
m
(A)
m (B)
在上面的两个图中,要物体m不下滑,斜面的加速度a和圆 筒的角速度至少应为多少?(设斜面与物体m间和圆筒与物 体m间的摩擦系数都为)。
在两个图中物体m都受三个力作用:N, mg, Fs=N。 在图(A)中:N=ma, N=mg, 解得 a=g/ 。
4

(3)牛顿第三定律(作用力与反作用力定律) 两物体之间的作用力和反作用力,大小相等、方 向相反,且在同一直线上。
5
惯性系
1.惯性参考系 从运动的描述来说,参考系的选择是任意的,这主要由研 究问题的方便而定。但是,如果问题涉及运动和力的关系, 即要应用牛顿定律时,参考系是否也能任意选择呢?我们用下 面的例子来说明这个问题。 如图所示,车厢A在地面上以 加速度a向右运动。车厢内的光滑桌 面上有一与弹簧相连的质量m的小球, 弹簧的另一端系在该车厢壁上。现在 来分析这个 弹簧、小球 力学系统的 运动情况。
所以: 当
tan
g
R
2
tan
g
R
2
时,物体不可能在 锥面上静止不动
24
非惯性系
1. 平动系
惯性力
(只要求 平动系。 转动系不要求)
在实际问题中常常需要在非惯性系中观察和分析物 体的运动。然而在非惯性系中牛顿定律是不成立。

m
k a A

25
如果在相对于某惯性系以加速度a作直线运动的非 惯性系中,假定每个质量为m的物体除了受到真实的外 力F作用外,还受到一个附加的、假想的力Fi=-ma的 作用,那么我们就可以在非惯性系中形式地利用牛顿 定律来解决力学问题了。 这一假想的力 F ma 称为 惯性力。请注意:这里的 a不是物体m的加速度,而是 非惯性系相对于惯性系的加速度。 于是引进惯性力后,在非惯性系中就有了下述牛 顿第二定律的形式: F+Fi=ma` (1) 式中a`是物体m相对于非惯性系的加速度。 惯性力-ma与物体之间相互作用的那种真实力不同, 惯性力是虚拟、假想的力,不遵从牛顿第三定律。
A
D
C
B
19
解:建立坐标系并作受力分析图:
O
Y X
N2
T T
A
N1
T
F
T
B
D
Mg
m1g
解出:
m2g
列方程: A:
m2 g m1 m2 g T=m1a x ax T 2 2 T sin m a m12 m2 m12 m2 2 x B: (m1 m2 M )m2 g T cos m2 g F 784 N 2 2 D: F T T sin Ma m1 m2 20 x
R
ω
22
f s N 2 x : N cos N sin m R

y : N sin N cos mg 0
cos sin 2 R sin cos g
2 2
R
g cos g sin R cos R sin
第2章 质点动力学
1
§2-1 力对质点的瞬时效应——牛顿定律
1.牛顿三大定律 (1)牛顿第一定律(惯性定律) 任何物体都要保持其静止或匀速直线运动状态,直到 外力迫使它改变运动状态为止。 牛顿第一定律包含了两个重要的物理概念: 惯性—任何物体都具有保持其运动状态不变的性质。 力——是使物体改变其运动状态,或是使物体获得加 速度的一种作用。 (2)牛顿第二定律 一个物体的动量对时间的变化率正比于这个物体所 受的合外力,其方向与所受的合外力的方向相同。其数 学表达式为
相互作用力
8
力学几种常见的力
(1)弹簧的弹性力 在弹性限度内,弹性力 f = -kx 式中,k是弹簧的倔强系数, x表示弹簧的伸长量。上式又叫胡克 定律。 (2)摩擦力 滑动摩擦力f 的大小与正压力N成正比,即 f = kN 式中, k为滑动摩擦系数,其数值由两接触物体的材料性质和 接触面的粗糙程度决定。
dv mg kv F ma m dt
21
初始条件:t=0 时 v=0

v
0
dv ( mg kv F ) / m
kt m

t
0
dt
得证。
v ( mg F )(1 e
)/k
例3、在倾角为的圆锥体的侧面 放一质量为m的小物体,圆锥体以 角速度绕竖直轴匀速转动。轴与 物体间的距离为R,为了使物体能 在锥体该处保持静止不动,物体 与锥面间的静摩擦系数至少为多 少?并简单讨论所得到的结果。
§2.1.3
(1).牛顿定律应用的主要类型
A.已知受力求物体运动状态 B.已知物体运动状态求物体受力 C.已知物体部分运动状态和部分力求解未知力和运动状态 (2). 牛顿定律应用的解题步骤 A.确定研究对象,分析物体受力 B.建立坐标系,列动力学方程 C.解算及讨论
14
牛顿定律的适用范围
低速、宏观、实物。惯性系。
12
以M、mA分别表示地球与物体的引力质量,mI表示物体的
惯性质量,R表示地球的半径,g0表示地球表面自由落体的加 速度,由万有引力定律与牛顿第二定律
GM MmA mI G 2 mI g 0 mA g 0 R 2 R
实验证明,同一物体惯性质量与引力质量之比是一个常数,即
m A mI
静摩擦力 两接触物体间虽未发生相对运动,但存在着相对运动趋势 时,就产生静摩擦力。静摩擦力f是个变力: 0 f s N (最大静摩擦力) 式中,s为静摩擦系数。对于同样的两个物体,k<s。 (3)万有引力
相关文档
最新文档