高中数列的常见解法)

合集下载

数列解题方法大全

数列解题方法大全

数列方法大全一、求通项公式各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1. 已知数列{}n a 满足211=a ,1n n a a n +=+,求n a 。

变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。

变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例3:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。

(或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。

解法:一般地,要先在原递推公式两边同除以1+n q,得:qq a q p q a n n n n 111+•=++引入辅助数列{}n b (其中nnn qa b =),得:qb q p b n n 11+=+再待定系数法解决。

最新高中数学数列基本题型及解法教学内容

最新高中数学数列基本题型及解法教学内容
(1)求数列 { a n } 和 { b n } 的通项公式;
多练出技巧
巧思出硕果
当已知数列为等差或等比数列时, 可直接利用等差或等比数列的通项公式, 只需求得首项及公差公比。
三 、 叠加法
例 3: 已知数列 6,9, 14,21, 30,…求此数列的一个通项。
一般地,对于型如 an 1 a n f ( n) 类的通项公式,只要 f (1) f (2)
宜采用此方法求解。
f ( n) 能进行求和,则
四、 叠乘法
例 4: 在数列{ an }中, a1 =1, (n+1) · an 1 =n· an ,求 an 的表达式。 一般地,对于型如 an 1 = f (n)· an 类的通项公式,当 f (1) f (2) f (n) 的值可以求得时,宜采
用此方法。
例 3.设数列 { an} 的前项的和 Sn= 1 ( an-1) (n N +),( 1)求 a1;a2; (2) 求证数列 { an } 为等比数列。 3

4、设
5
a1=1, a2=
5
,an +2=
an+1-
2
an
(n=1,2,---), 令 bn=an+1-an
(n=1,2---) 求数列 { bn} 的通项公式,
五、 公式法
若已知数列的前 n 项和 Sn 与 a n 的关系,求数列 a n 的通项 a n 可用公式
an
Sn
n1
求解。
Sn Sn 1 n 2
例 5:已知下列两数列 { an} 的前 n 项和 sn 的公式,求 { an} 的通项公式。
( 1) Sn
3
n
n 1 。 (2) sn

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧数列求和的七种解法1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。

2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。

例如等差数列的求和公式,就可以用该方法进行证明。

3.错位相减:形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。

对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。

这种数列求和方式叫做错位相减。

4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。

5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。

6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。

7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜想证明起到了关键作用。

高中数学解题方法实用技巧1解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

高中数学数列题型归纳及解题方法梳理

高中数学数列题型归纳及解题方法梳理

1数列典型例题分析【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an}的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得=, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n.(Ⅱ)由(Ⅰ)知=2n,由等比数列前n 项和公式得S m =2+22+23+ (2)==2n+1-2.小结与拓展:数列{}na 是等差数列,则数列}{na a 是等比数列,公比为da ,其中a 是常数,d 是{}na 的121d +1812d d++2ma 2(12)12n --公差。

(a>0且a≠1).【题型2】与“前n项和Sn与通项an”、常用求通项公式的结合例 2 已知数列{a n}的前三项与数列{b n}的前三项对应相同,且a1+2a2+22a3+…+2n-1a n=8n对任意的n∈N*都成立,数列{b n+1-b n}是等差数列.求数列{a n}与{b n}的通项公式。

解:a1+2a2+22a3+…+2n-1a n=8n(n∈N*) ①当n≥2时,a1+2a2+22a3+…+2n-2a n-1=8(n-1)(n∈N*) ②①-②得2n-1a n=8,求得a n=24-n,在①中令n=1,可得a1=8=24-1,∴a n=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2,2∴数列{b n+1-b n}的公差为-2-(-4)=2,∴b n -b n=-4+(n-1)×2=2n-6,+1法一(迭代法)b n=b1+(b2-b1)+(b3-b2)+…+(b n-b n-1)=8+(-4)+(-2)+…+(2n-8)=n2-7n+14(n∈N*).法二(累加法)即b n-b n-1=2n-8,b n-1-b n-2=2n-10,…b3-b2=-2,b2-b1=-4,b1=8,相加得b n=8+(-4)+(-2)+…+(2n-8)34 =8+(n -1)(-4+2n -8)2=n 2-7n +14(n∈N *).小结与拓展:1)在数列{a n }中,前n 项和S n 与通项a n 的关系为:⎩⎨⎧∈≥-===-)N n ,2( )1(111n S S n S a a n n n.是重要考点;2)韦达定理应引起重视;3)迭代法、累加法及累乘法是求数列通项公式的常用方法。

高中数学数列题型及解题方法

高中数学数列题型及解题方法

高中数学数列题型及解题方法高中数学中,数列是一个非常重要的概念。

对于数列题型的掌握和解题方法的运用,对于学生在数学学习中起到至关重要的作用。

常见的数列题型包括等差数列、等比数列和斐波那契数列等。

下面将介绍这几种数列的定义和解题方法。

1. 等差数列:等差数列是指数列中相邻两项之差都相等的数列。

常见的解题方法有:- 求通项公式:通过已知条件求出公差d和首项a1,然后利用通项公式an=a1+(n-1)d来求解。

- 求和公式:通过已知条件求出公差d、首项a1和项数n,然后利用求和公式Sn=n/2(a1+an)来求解。

2. 等比数列:等比数列是指数列中相邻两项之比都相等的数列。

常见的解题方法有:- 求通项公式:通过已知条件求出公比r和首项a1,然后利用通项公式an=a1*r^(n-1)来求解。

- 求和公式:通过已知条件求出公比r、首项a1和项数n,然后利用求和公式Sn=a1*(1-r^n)/(1-r)来求解。

3. 斐波那契数列:斐波那契数列是指数列中每一项都是前两项之和的数列。

常见的解题方法有:- 递推公式:利用递推关系an=an-1+an-2来计算斐波那契数列的每一项。

- 通项公式:通过特征方程x^2=x+1,求出两个根φ和1-φ,然后利用通项公式an=Aφ^n+B(1-φ)^n来求解,其中A和B为常数,通过已知条件求解得出。

在解题过程中,可以根据已知条件,选择合适的方法来求解数列问题。

同时,还需要注意理解数列的性质,例如等差数列的公差为常数,等比数列的公比为常数等。

通过对不同类型数列的学习和练习,可以提高对数列问题的理解和解题能力。

高中数学解数列求和问题的技巧

高中数学解数列求和问题的技巧

高中数学解数列求和问题的技巧数列是高中数学中的重要概念之一,求和问题是数列中常见的考点。

解决数列求和问题需要掌握一些技巧和方法,下面我将介绍几种常见的数列求和问题及其解题技巧。

一、等差数列求和问题等差数列是指数列中相邻两项之间的差值恒定的数列。

求等差数列的前n项和,可以利用求和公式来解决。

求和公式为:Sn = (a1 + an) * n / 2,其中Sn表示前n项和,a1表示首项,an表示末项,n表示项数。

例如,给定一个等差数列的首项为3,公差为2,求前10项的和。

根据求和公式,首先计算出末项an:an = a1 + (n - 1) * d = 3 + (10 - 1) * 2 = 21。

然后代入公式计算出前10项的和:Sn = (a1 + an) * n / 2 = (3 + 21) * 10 / 2 = 120。

二、等比数列求和问题等比数列是指数列中相邻两项之间的比值恒定的数列。

求等比数列的前n项和,可以利用求和公式来解决。

求和公式为:Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和,a1表示首项,q表示公比,n表示项数。

例如,给定一个等比数列的首项为2,公比为3,求前5项的和。

根据求和公式,代入相应的值计算出前5项的和:Sn = 2 * (1 - 3^5) / (1 - 3) = 242。

三、特殊数列求和问题除了等差数列和等比数列外,还存在一些特殊的数列,求和问题也有相应的解题技巧。

1. 平方数列求和问题:平方数列是指数列中的每一项都是前一项的平方。

例如,1,1,4,16,...。

求平方数列的前n项和,可以利用平方数的求和公式来解决。

求和公式为:Sn = (2^(n+1) - n - 2) / 3。

2. 斐波那契数列求和问题:斐波那契数列是指数列中的每一项都是前两项的和。

例如,1,1,2,3,5,...。

求斐波那契数列的前n项和,可以利用斐波那契数列的性质来解决。

数列通项公式常见求法 (1)

数列通项公式常见求法 (1)

数列通项公式的常见求法数列在高中数学中占有非常重要的地位,每年高考都会出现相关数列的方面的试题,一般分为小题和大题两种题型,而数列的通项公式的求法是常考的一个知识点,一般常出现在大题的第一小问中,所以掌握好数列通项公式的求法不但有利于我们掌握好数列知识,更有助于我们在高考中取得好的成绩。

下面本文将中学数学中相关数列通项公式的常见求法实行较为系统的总结,希望能对同学们有所协助。

一.公式法高中重点学了等差数列和等比数列,当题中已知数列是等差数列或等比数列,在求其通项公式时我们就能够直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。

1、等差数列公式 例1、(2011辽宁理)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;解:(I )设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩故数列{}n a 的通项公式为2.n a n =- 2、等比数列公式例2.(2011重庆理)设{}n a 是公比为正数的等比数列,12a =,324a a =+。

(Ⅰ)求{}n a 的通项公式解:I )设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得,即220q q --=,解得21q q ==-或(舍去),所以 2.q =所以{}n a 的通项为1*222().n n n a n N -=⋅=∈3、通用公式若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n nn n 求解。

一般先求出a1=S1,若计算出的an 中当n=1适合时能够合并为一个关系式,若不适合则分段表达通项公式。

例3、已知数列}{n a 的前n 项和12-=n s n ,求}{n a 的通项公式。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数列的常见解法) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN数列解题方法一、基础知识:1.数列、项的概念:按一定次序排列的一列数,叫做数列,其中的每一个数叫做数列的项.2.数列的项的性质:①有序性;②确定性;③可重复性.3.数列的表示:通常用字母加右下角标表示数列的项,其中右下角标表示项的位置序号,因此数列的一般形式可以写成a1,a2,a3,…,a n,(…),简记作 {a n} .其中a n是该数列的第n 项,列表法、图象法、符号法、列举法、解析法、公式法(通项公式、递推公式、求和公式)都是表示数列的方法.4.数列的一般性质:①单调性;②周期性.5.数列的分类:①按项的数量分:有穷数列、无穷数列;②按相邻项的大小关系分:递增数列、递减数列、常数列、摆动数列、其他;③按项的变化规律分:等差数列、等比数列、其他;④按项的变化范围分:有界数列、无界数列.6.数列的通项公式:如果数列{a n}的第n项a n与它的序号n之间的函数关系可以用一个公式an=f(n)(n∈N+或其有限子集{1,2,3,…,n})来表示,那么这个公式叫做这个数列的通项公式.数列的项是指数列中一个确定的数,是函数值,而序号是指数列中项的位置,是自变量的值.由通项公式可知数列的图象是散点图,点的横坐标是项的序号值,纵坐标是各项的值.不是所有的数列都有通项公式,数列的通项公式在形式上未必唯一.7.数列的递推公式:如果已知数列{a n}的第一项(或前几项),且任一项a n与它的前一项a n-1(或前几项a n-1,a n-2,…)间关系可以用一个公式a n=f(a1n-)(n=2,3,…)(或a n=f(a1n-,a2n-)(n=3,4,5,…),…)来表示,那么这个公式叫做这个数列的递推公式.8.数列的求和公式:设S n 表示数列{a n }和前n 项和,即S n =1nii a =∑=a 1+a 2+…+a n ,如果S n与项数n 之间的函数关系可以用一个公式 S n = f (n )(n =1,2,3,…) 来表示,那么这个公式叫做这个数列的 求和公式 . 9.通项公式与求和公式的关系:通项公式a n 与求和公式S n 的关系可表示为:11(1)(n 2)n n n S n a S S -=⎧=⎨-≥⎩等差数列与等比数列:数列的项n a 与前n 项和n S 的关系:11(1)(2)n n n s n a s s n -=⎧=⎨-≥⎩数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。

3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。

适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差) 可裂项为:111111()n n n n a a d a a ++=-⋅1d=等差数列前n 项和的最值问题:1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。

(ⅰ)若已知通项n a ,则n S 最大⇔10n n a a +≥⎧⎨≤⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值 (ⅰ)若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。

⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。

已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。

⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅(2)n ≥。

⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。

特别地,(1)形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n k 得到一个等差数列后,再求n a 。

(2)形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项。

(3)形如1kn n a a +=的递推数列都可以用对数法求通项。

(8)遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式数列求和的常用方法:(1)公式法:①等差数列求和公式;②等比数列求和公式。

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<=二、解题方法:求数列通项公式的常用方法: 1、公式法 2、n n a S 求由(时,,时,)na S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n nn 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a∴a nn =+21∴a n n n n ==≥⎧⎨⎩+141221()()[练习] {}数列满足,,求a S S a a a n n n n n +==++1115344、叠乘法 {}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a n n n n 213211122311·……·……,∴-=-= 又,∴a a nn 133==5、等差型递推公式 由,,求,用迭加法a a f n a a a nn n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n-=+++123()()()…… ∴……a a f f f n n=++++023()()()[练习] {}()数列,,,求a a a a n a n n n n n 111132==+≥--6、等比型递推公式 ()a ca d c d c c d nn =+≠≠≠-1010、为常数,,,()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n+-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c nn +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c d c n n =+-⎛⎝ ⎫⎭⎪---1111[练习] {}数列满足,,求a a a a a n n nn 11934=+=+7、倒数法 例如:,,求a a a a a n nn n 11122==++由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-=∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ∴a n n=+21数列前n 项和的常用方法:1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

{}如:是公差为的等差数列,求a d a a n k k k n111+=∑解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠∴11111111a a d a a k k k nkk k n+=+=∑∑=-⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥=-⎛⎝ ⎫⎭⎪++11111111111223111d a a a a a a d a a n n n ……[练习] 求和:…………111211231123+++++++++++n3、错位相减法: {}{}{}若为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n{}和,可由求,其中为的公比。

S qS S q b n n n n -如:……S x x x nx nn =+++++<>-12341231()x S x x x x n x nx nn n·……=+++++-+<>-234122341()<>-<>-=++++--121121:……x S x x x nx n n n()()xS x x nx xnnn≠=----11112时,()x S n n n n ==++++=+112312时,……4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

相关文档
最新文档