刚塑性有限元数值模拟中产生误差的原因及改进方法(精)

合集下载

第五章刚塑性有限元法基本理论与模拟方法

第五章刚塑性有限元法基本理论与模拟方法
❖ 由于刚塑性模型假设,对一般的体积不可压缩材料,因为其静 水压力与体积应变率无关,如要计算应力张量,还必须进行应 力计算的处理。
塑性成形过程 计算机数值模拟
第五章 刚塑性有限元法基本理论与模拟方法
❖ 从数学的角度来讲,有限元法是解微分方程的一种数值方法。它的 基本思想是:在整个求解区域内要解某一微分方程很困难(即求出 原函数)时,先用适当的单元将求解区域进行离散化,在单元内假 定一个满足微分方程的简单函数作为解,求出单元内各点的解;然 后,再考虑各单元间的相互影响,最后求出整个区域的场量。
两个或一个事先得到满足,而将其余的一个或两个,通过拉格朗日
乘子引入泛函中,组成新的泛函,真实解使泛函取驻值,这就是不
完全广义变分原理。
❖ 在选择速度场时应变速率与速度的关系(1)式和速度边界条(3)式容 易满足,而体积不可压缩条件(2)式难于满足。因此,可以把体积 不可压缩条件用拉格朗日乘子入引入到泛函中,得到新泛函:
够的工程精度的前提下,可提高计算效率。
塑性成形过程 计算机数值模拟
第五章 刚塑性有限元法基本理论与模拟方法
❖ 由于刚塑性有限元法采用率方程表示,材料变形后的构形可通 过在离散空间对速度的积分而获得,从而避开了应变与位移之 间的几何非线性问题。
❖ 由于忽略了弹性变形,刚塑性有限元法仅适合于塑性变形区的 分析,不能直接分析弹性区的变形和应力状态,也无法处理卸 载和计算残余应力与变形。
在满足: (1) 速度-应变速率关系
ij
1 2
ui, j
u j,i
(2) 体积不可压缩条件 (3) 速度边界条件
V kk 0
ui ui
(在 Su 上)
的一切动可容场
ui*j

试验检测误差产生原因与改善措施

试验检测误差产生原因与改善措施

试验检测误差产生原因及改善措施1.概述工程质量的评价是以各种试验检测数据为依据的,而大量实践表明:一切试验测量结果均具有误差。

因此作为从事试验检测工作的专业技术人员和管理人员有必要了解误差的种类,分析这些误差产生的原因及影响因素,以便在工作过程中采取针对性的措施最大限度的加以减少和消除误差。

同时应具备科学地解析检测数据的能力,确保检测结果能最大限度地反应真值,及时、准确、可靠地测定检测对象,为管理部门提供真实可靠的工程质量状况及其变化规律。

2.试验检测的误差分类及成因根据误差产生的原因及产生性质,可以把测量误差分为系统误差、随机误差和过失误差三大类。

系统误差原因分析系统误差是由人机系统产生的误差,是由一定原因引起的在相同条件下多次重复测量同一物理量时产生的。

它具有测量结果总是朝一个方向偏离,其绝对值大小和符号保持恒定,或按照一定规律变化的特点。

因此系统误差有时称之为恒定误差。

系统误差主要由些列原因引起:(1)仪器误差由于测量工具、设备、仪器结构上的不完善,电路的安装、布置、调整不得当,仪器刻度不准确或刻度的零点发生变动,样品不符合要求等原因引起的误差。

(2)人为误差指试验检测操作人员感官的最小分辨力和某些固有习惯引起的误差。

例如,由于观察者的最小分辨力不同,在测量数值的估读或与界面的接触程度上,不同观测者就有不同的判断误差。

有的试验检测人员的固有习惯,如在读取仪表读数时总是把头偏向一边,也可能会引起误差。

(3)外界误差外界误差也称环境误差,是由于测试环境,如温度、湿度等的影响而造成的误差。

(4)方法误差由于测试者未按规定的方法进行试验检测,或测量方法的理论依据有缺点,或引用了近似的公式,或试验条件达不到理论公式所规定的要求等造成的误差。

(5)试剂误差在材料的成分分析及某些性质的测定中,有时要用一些试剂,当试剂中含有被测成分或含有干扰杂质时,也会引起测试误差,这种误差称为试剂误差。

一般来说,系统误差的出现是有规律的,其产生原因往往是可知或可掌握的,只要仔细观察和研究各种系统误差的具体来源,就可设法消除或降低其影响。

有限元仿真误差

有限元仿真误差

有限元仿真误差有限元仿真是一种常用的工程分析方法,它通过将物体划分为小的元素,对每个元素的特性进行计算,然后将这些元素组合成大的模型,以模拟物体在所受力的情况下的应力和位移。

然而,尽管有限元仿真成为了工程领域中广泛使用的工具,但是在实际应用中,由于多种因素的影响,仿真结果可能会产生误差。

以下是一些可能会导致仿真误差的因素。

第一个因素是模型几何形状的简化。

在有限元仿真中,模型的几何形状可能需要进行简化以便进行运算。

例如,将曲面转化成平面或是将立体形状简化成二维形状,并将每个形状分为小元素以便进行计算。

但是,这些简化方式可能会丢失真实模型的细节和复杂性,从而影响仿真结果的精确度。

第二个因素是材料的物理性质的误差。

在进行有限元仿真时,需要求得物体的材料性质,如弹性模量和泊松比等。

这些物理量通常从实验结果中估计而来,但是实验结果往往受到多种因素干扰,如温度、湿度和应力等。

这些因素会影响材料行为的精确度,从而影响仿真结果的准确性。

第三个因素是边界条件的误差。

在有限元仿真中,外部力和边界条件被认为是恒定的,并被认为是物体的一部分。

但在实际场景中,这些条件可能不是恒定的,它们可能会在时间和空间上变化。

例如,在风力作用的情况下,风速和方向可能会随时间而变化,而在地震等自然灾害中,由于地震波在空间中传递,物体的边界条件可能会随着时间和空间的变化而发生变化。

这些外部因素的变化可能会影响物体的行为,并导致仿真结果的误差。

第四个因素是数值计算误差。

由于有限元计算是基于数学算法进行的,所以数值计算误差也可能导致仿真结果的误差。

常见的数值计算误差包括离散化误差、舍入误差和迭代误差等。

在有限元仿真中,如果不采用正确的方法进行模型构建、材料属性计算、边界条件设定和数值计算,那么可能会导致仿真误差的产生。

因此,为了减小仿真误差的影响,需要采取以下方法:首先,通过对模型进行更精细的几何形状建模和材料特性测量以提高数据的准确性和精度,尽量减小模型简化造成的误差。

试验和有限元的误差

试验和有限元的误差

试验和有限元的误差全文共四篇示例,供您参考第一篇示例:试验和有限元分析是工程领域常用的两种方法,它们常常用于预测和分析结构在不同载荷条件下的响应。

无论是试验还是有限元分析,都存在着误差,因此了解和评估这些误差是非常重要的。

本文将探讨试验和有限元分析中的误差,以及如何有效地管理和减小这些误差。

让我们来看看试验中存在的误差。

试验通常涉及到测量物理量,如应力、应变、位移等。

由于测量设备的精度、环境条件、人为操作等因素,测量结果往往会存在一定的误差。

测量设备的刻度可能不够精确,环境温度和湿度可能会影响到测量结果的准确性,操作人员的技术水平也会对测量结果产生影响。

试验中还可能会出现一些偶然误差,如设备故障、实验样品的缺陷等。

这些偶然误差在一定程度上会影响试验结果的准确性。

对于试验中可能存在的误差,我们需要采取相应的措施来减小这些误差的影响。

比如说,可以通过校准测量设备、控制实验环境、提高操作技术来减小误差,并且在试验结果分析时考虑到可能的误差范围,以便更准确地评估结构的响应。

与试验不同,有限元分析是一种数值计算方法,它通过将结构分割成有限个小单元,利用数学方程对这些小单元进行求解,从而得到结构的响应。

有限元分析中也存在着误差。

有限元分析中的误差可以来自模型的简化。

由于实际结构往往非常复杂,我们在进行有限元建模时往往需要对结构进行简化,例如忽略一些小的细节,这样会导致模型与实际结构存在一定的差异,从而引入误差。

有限元分析中的误差还可能来自数值计算的方法和参数选择。

数值计算方法的选取、边界条件的处理、网格划分的精度等因素都会对有限元分析结果的精度产生影响。

在进行有限元分析时,需要认真选择合适的数值计算方法,合理处理边界条件,以及进行网格收敛性分析,以减小这些误差的影响。

有限元分析中还可能存在由于数值计算误差引起的问题。

使用有限元方法进行求解时,使用的数值积分、迭代收敛条件等都可能会引入数值计算误差,从而影响到结果的准确性。

有限元计算误差的影响因素

有限元计算误差的影响因素

本周热点:有限元计算误差的影响因素有限元作为一种数值计算方法,它的计算结果一般与真实解存在误差,影响这些误差的因素有那些?如何减小误差?何种情况下不存在误差(不考虑由于计算机本身的计算误差)?我发表一下个人的一些想法,请各位指正,有限元仿真的结果基本上和真实解都会存在误差的,可从多个方面来说。

1.就是在有限元模拟的时候,我们都要对模型进行一些简化,这一定或多或少影响计算精度的;2.有限元求解的时候,由于各个项目的差异,我们定义各种参数(和实际的一定有差异)例如滑动摩擦系数的值等等,这也会影响理论公式的计算精度;3.建立有限元模型的时候网格的划分,熟练人员和不熟练人员的网格划分有很大差别,这更是影响着求解的计算精度;4.有限元求解本身就是近似计算,它用近似模型替代实际模型,所以计算的最终结果一定和实际存在着一定的差别;5.即使有限元的计算结果正好等于实际值,但是有的实际解在实际中根本没办法测量或者说即使测量了由于采取的手段的诧异,它的结果也不一定非常的精确,这样来说实际的解本身也存在误差;¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥我就考虑到这么多,请各位多多指正。

至于减小误差,我个人认为,这是一种经验的积累,随着我们资历的加深,对分析所采用的各种手段(采用什么样的网格?材料模型?各种参数控制?等等的一些)理解的更加透彻,计算精度一定会更加的精确,由于有限元算法和程序不是我们这些CAE操作人员所能决定的,所以这里对软件本身就不给意见了。

有限元计算中的误差来源与处理方法

有限元计算中的误差来源与处理方法

有限元计算中的误差来源与处理方法在有限元计算中,用户最关心自己计算的结果是否准确与合理,那么今天就和大家谈谈有限元计算的误差来源,按照误差来源类型主要分为两类:1、有限元理论假设引入的误差有限元这种数值计算方法,为了实现对现实问题的计算,引入一些力学假设,即(1)连续介质假设,认为计算模型是理想连续,没有孔洞,即位移具有单值性,但是实际产品在加工中难以避免会引入初始的孔洞缺陷,例如铸造件。

(2)材料均匀性假设,认为模型的材料参数不随空间变化为变化,是均匀的,但是实际产品在工艺处理过程中,例如淬火,都会使得材料的力学性能发生改变,并不能严格满足材料均匀性。

有限元理论与真实物理世界的差别通过一个系数来进行折中,也就是有限元计算得到一个基准结果,再通过实验进行对比,计算得到二者的转换系数。

2.有限元计算过程的误差有限元的计算过程主要包括前处理,求解和后处理三个阶段,有限元计算过程的误差主要发生在前处理和求解阶段。

第一个误差来源,即模型简化,发生在前处理阶段模型简化的是否恰当直接影响的计算结果,一般情况数值计算模型与产品的加工CAD模型还是有区别的,数值计算模型只要求把模型的主要特征反映出来,而舍去一下细致的特征,从而平衡了求解精度与计算效率。

第二个误差来源,即材料参数,就是反映计算模型的材料参数,如弹性模量,泊松比等,但是如前所述,即使找到材料参数也不能完全反应由于工艺造成的材料非均匀性,如果输入了错误的材料参数,则计算得到结果没有价值。

第三个误差来源,即工况对接,所谓工况对接,就是在软件中设置的位移约束和载荷与模型实际工况的对应情况,软件只提供了有限的位移约束和载荷类型,而分析模型可能收到的约束和载荷非常多,如果二者对应不正确,则计算结果也没有价值。

第四个误差来源,即网格划分,这个大家容易理解,也是目前很多文献提到的比较多的一个误差,要想将该误差降到最低,必须通过合理的网格加密得到网格无关解。

3.总结与处理有限元理论假设引入的误差是有限元理论与生俱来的,无法避免只能通过一些实验数据进行修正,这也说明要想有限元对工程设计产生作用,必须有与实验对比的过程。

有限元计算误差的影响因素

有限元计算误差的影响因素

有限元计算误差的影响因素1.网格划分网格划分是有限元方法中最关键的一步,网格的划分对计算结果具有很大的影响。

当网格划分不够细致时,会导致网格近似真实物理结构的能力较差,从而引入较大的误差。

而当网格划分过于细致时,会增加计算量,造成不必要的计算误差。

因此,网格划分需要根据具体问题的特点进行合理选择。

2.材料参数有限元方法在计算中需要使用材料的本构模型和材料的物理性质等参数。

如果这些参数的值与真实材料参数相差较大,就会引入较大的误差。

因此,确定准确的材料参数对于减小有限元计算误差非常重要。

3.边界条件边界条件是指在计算区域内界面及周边所给出的条件。

边界条件的选择和给定不准确都会对计算结果产生很大影响。

合理选择边界条件是保证计算结果准确性的关键。

4.计算方法和算法不同的有限元计算方法和算法对计算结果的准确性也有影响。

例如高阶元素和低阶元素、隐式算法和显式算法等的选择都会对计算误差产生影响。

5.近似假设有限元方法在对实际问题进行数值计算时,通常要对问题进行简化和近似处理。

这些简化和近似假设可能会导致误差的产生。

因此,在进行有限元计算时需要对问题的简化和近似假设进行合理的评估。

6.数值积分在有限元分析中,求解离散形式的形式方程通常需要进行数值积分。

数值积分是将连续函数在一个有限区间中近似表示为离散点的加权和。

数值积分的精度和稳定性会直接影响到计算结果的准确性。

7.迭代收敛有限元求解器通常会使用迭代算法来求解非线性和时间依赖问题。

迭代算法的收敛速度和稳定性对计算误差也会有一定影响。

8.舍入误差总结起来,有限元计算误差的影响因素包括网格划分、材料参数、边界条件、计算方法和算法、近似假设、数值积分、迭代收敛和舍入误差等。

在进行有限元计算前,需要认真评估这些影响因素,并采取相应的措施来减小计算误差,以获得准确可靠的计算结果。

第四章 刚塑性有限元法

第四章 刚塑性有限元法

1 2
ij ij k
v ij
2
• 5.体积不可压缩条件 0 (4-6) • 6.边界条件:包括应力边界和速度边界条件 n p (4-7) SS SS • (4-8) u u
ij
ij j i
p
i
0 i
u
二、理想刚塑性材料的变分原理
• 称为马可夫变分原理(Markov Principle),表述如 下:对于刚塑性边值问题,在满足变形几何方程(42)、体积不可压缩条件(4-5)和边界位移速度条 件式(4-8)的一切运动容许速度场中,使泛函 dV p u dS • (4-9)
i 1, 2 , m
• 的条件下的极值,可构造如下修正函数
g (u , u • 并令其一阶偏导数为零而得到,即
i i 1 i 2
,un )
F ui F i
1
0 0
i 1, 2, n
• 这里 称为Lagrange乘子,数值待定。共有(m + n)个 方程,恰好可解出 u , u , u 和 , , 共(m + n)个未知数。
一、刚塑性材料的边值问题
• 塑性变形问题是一个边值 问题,可以描述如下:设 一刚塑性体,体积为V, 表面积为S,在表面力 p i 作用下整个变形体处于塑 性状态,表面分为S p和 S u 两部分,其中 S p上给定表 面力 p i , S u 上给定速度 u (如图所示)。该问题称之 为刚塑性边值问题,它由 以下塑性方程和边界条件 定义,即

刚塑性有限元法的种类
• 刚(粘)塑性有限元法是建立在刚(粘) 塑性材料材料变分原理基础上的,其方法 主要三种: • Kobayashi 等提出的,建立在不完全广义变 分原理基础上的Lagrange乘子法; • 小坂田等人提出的,建立在可压缩性材料 基础上的刚塑性有限元法; • 由Zienkiewicz(监凯维奇) 等提出的罚函 数法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚塑性有限元数值模拟中产生误差的原因及改进方法
1 引言
塑性加工过程的有限元数值模拟,可以获得金属变形的详细规律,如网格变形、速度场、应力和应变场的分布规律,以及载荷-行程曲线。

通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。

利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。

在制造技术飞速发展、市场竞争日益加剧的今天,塑性加工过程的计算机模拟可在模具虚拟设计、制造阶段就能充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。

由此可见,金属成型过程的有限元模拟已是模具计算机集成制造系统中必不可少的模具设计检验环节。

金属成形工艺分体积成形和板料成形两大类,相应地,用于分析其流动规律的有限元法也分为两类,即:刚塑性、刚粘塑性有限元和弹塑性有限元。

体积成形中的挤压成形和锻造成形在实际生产中应用很广,中外学者在这方面进行了很多研究,其中二维模拟技术已相当成熟,三维模拟是目前的世界研究热点。

刚塑性、刚粘塑性有限元模拟能否对模具设计的合理性做出可靠校验,取决于模拟的精度和效率。

作者结合从事二维塑性有限元模拟的经验和当前的三维塑性有限元模拟系统开发的实践,对刚塑性、刚粘塑性有限元模拟过程中产生误差的原因进行了全面的详细分析,并提出相应的解决方法,同时以具体实例说明。

2 刚塑性、刚粘塑性有限元模拟中产生误差的原因及改进方法
2.1 刚塑性有限元法求解的数学基础
刚塑性有限元法是假设材料具有刚塑性的特点,把实际的加工过程定义为边值问题,从刚塑性材料的变分原理或上界定理出发,接有限元模式把能耗率表示为节点速度的非线性函数,利用数学上的最优化原理,在给定变形体某些表面的力边界条件和速度边界条件的情况下,求满足平衡方程、本构方程和体积不变条件的速度场和应力场。

速度场的真实解使以动可容速度场建立的能量泛函取极小值。

但所得到的塑性力学的微分方程组一般不能用解析法求解,常采用数值解近似,而采用数值解,则会出现各种误差。

误差取决于所用的数值方法。

下述处理方式易引起系统误差。

2.1.1时间和空间的离散化
刚塑性有限元分析的对象是一个非线性变化过程,即材料应力-应变关系的非线性和几何边界条件的非线性。

解决这一问题可以采用线性小变形拟合非线性大变形,如图1所示。

每一个小变形过程的选取须足够小,同时兼顾逼
)应近的精度和效率。

对于刚塑性材料来说,每个加载步长△S,即(△t·V
dz
小于某一规定值(坯料当前高度的1.0%)[1]。

作者认为,三维模拟的位移加载步长不应超过边界单元最小边长的1/4,以减缓接触边界非平面性的程度,更好的模拟金属的流动规律。

另一方面,所分析的变形材料是一个空间连续体,而有限元法的思想是把无限的连续用有限的连续近似,即用网格离散变形体。

变形场量在单元内连接,这时将产生离散误差,一般地,有限元网格划分得越细,引起的离散误差越小。

但是刚塑性有限元分析必须同时兼顾精度和效率,所以单元不可能过于细化,采用局部网格细分可以满足要求。

如图2所示是作者对方坯反挤工艺三维刚塑性有限元模拟时采用局部网格细分后的网格变形。

文献[2~4]中采用自适应网格离散变形体。

相关文档
最新文档