弹塑性力学的非线性有限元
弹塑性本构关系简介

松比)。
塑性材料受外部作用的反应和变形的历史有关(可称为历 史相关性或路径相关性),本构关系应写成增量关系。
应力空间表述的弹塑性本构关系
韧性(塑性)金属材料单向拉伸试验曲线如下 图示意
强度极限
b
屈服上限
L y
U y
e
屈服下限
弹性极限
强化段
软化段 卸载
残余变形
弹性变形
y
y
卸载、反向加载 包辛格效应
屈服面随内变量改变的规律称强化规律。由 材料试验的资料可建立各种强化模型,目前广 泛采用的有:等向强化;随动强化两种模型。
等 向 强
初始屈服面
2
B
f 0(ij ) 0 B
2
C A o1
化
o A 1
o
1
C
D
随
弹性
动
f 0 (ij ) 0
强 化
后继屈服面
f
( ij
,
p ij
,
k)
0
等向强化认为屈服面形状不变,只是作均匀
称后继屈服面,f
(
ij
,
p ij
,
k
)
0
。
如果一点应力的 f (ij ,ipj,,则k)此 点0 处于弹性状态,如
果
f (,ij则,处ipj ,于k)塑 0性状态。
式变张中形量的为i量j间应。存ip力j在张如和ip量j 下k,关统系称为ipj为塑内性变应量ip力j 。张其D量i中j,klkkp与l为塑标ipj 性志应永变久
d ij
Dt ijkl
d
kl
式中 Ditjk为l 切线弹性张量,形式上仍可表为
Dt ijkl
线性和非线性有限元

目
CONTENCT
录
• 线性有限元方法 • 非线性有限元方法 • 线性与非线性有限元的比较 • 线性与非线性有限元的实例分析 • 未来研究方向与展望
01
线性有限元方法
定义与原理
定义
线性有限元方法是一种数值分析方法,用于求解偏微分方程的近 似解。它将复杂的求解区域离散化为有限个小的、简单的子区域 ,即有限元,然后对每个有限元进行求解,最终得到原偏微分方 程的近似解。
THANK YOU
感谢聆听
在实际应用中,应根据问题的特性和需求选择合适 的有限元方法。对于复杂的问题,可能需要结合多 种有限元方法进行求解。
05
未来研究方向与展望
线性有限元方法的改进与优化
80%
高效求解算法
研究更快速、稳定的线性有限元 求解算法,提高计算效率。
100%
自适应网格生成
发展更智能、自动的网格生成技 术,以适应复杂几何形状和边界 条件。
线性有限元
由于线性有限元基于线性方程组进行求解,因此计算复杂度 相对较低,适用于求解一些较简单的问题,如弹性力学问题 。
非线性有限元
非线性有限元需要求解非线性方程组,计算复杂度较高,但 能够处理更复杂的问题,如塑性力学、流体力学等领域的问 题。
精度比较
线性有限元
对于一些简单的问题,线性有限元可以给出较为精确的结果。然而,对于一些 复杂的问题,线性有限元可能无法准确描述非线性行为。
80%
多物理场耦合
研究线性有限元在多物理场耦合 问题中的应用,如流体-结构、电 磁-热等。
非线性有限元方法的改进与优化
高阶非线性有限元
发展高阶非线性有限元方法, 以更精确地描述复杂非线性行 为。
弹塑性力学的非线性有限元

P u
改进的Newton-Raphson法
使用第n个(n<m+1)加载步时计算所得的切向刚度矩阵n[K]替代切向刚度 矩阵m+1[K](i-1)。
准Newton法
(1)是N-R法和改进的N-R法之间的一个折衷方法。 (2)使用低秩矩阵去更新刚度矩阵m+1[K](i-1)的逆矩阵。Broyden–Fletcher-
Goldfarb-Shanno(BFGS)方法就是其中的一种。 (3)准Newton法的收敛速率介于线性收敛和二次收敛之间。 (4)可适用于应变强化、应变软化或理想塑性等分析。可以考虑卸载。
p u
改进N-R法的特点 (1)比 N-R法减少了刚度矩阵的计算和分解。 (2)是线性收敛,通常比N-R法收敛得慢,如在分析应变软化材料时, 收敛将会特别地慢。 (3)刚度矩阵可能变成奇异矩阵或病态矩阵的问题仍然存在。 (4)如果出现卸载,应力状态从塑性状态卸载到弹性状态,这个算法 可能得不到一个收敛结果,除非一旦卸载出现,刚度矩阵重新计算。
本构方程
(1)增量本构关系,是无穷小应力增量与应变增量的关系。
(2)加载步中的荷载增量是有限值,应力和应变增量也为有限值。
(3)必须对增量本构关系在加载步内积分,确定有限应变增量ij 与有限应力增量ij的关系
m1
m1
ij
dij
C ep ijkl
d
kl
m
m
其中
C ep ijkl
切线模量为
C ep ijkl
力边界S上的面力是 m1 X i mX i X i
弹塑性问题的有限单元法

1
(3-9) Q
r
线
1 2 3 3
式中 ρ
σ
—偏平面与原点的距离
而π 平面的方程为
偏平面( )
1 2 3 0
为了确定偏剪应力的方向 引入罗德角θ σ 的概念。
Q’
O
2
平面
M
' 2
3
1'
3'
偏剪应力与O′M线的夹角就定 义为罗德角,规定顺时针(-), 逆时针(+)。这样θ σ 就代表 偏剪应力在偏平面上的作用方 向。
或写成:
xx yx zx
xy yy zy
xz yz zz
资源与地球科学学院
x xy xz yx y yz ij zx zy z
(3-1)
O’
资源与地球科学学院
与等压线相正交的平面称为偏平面,通过坐标原点与等压
线相正交的平面称为π平面。可见π平面是一个特殊的偏平面。
由偏平面的定义可知,在一个偏平面内平均应力为常量,故偏 平面的方程为:
1 2 3 3
式中
(3-9)
偏平面与原点的距离
资源与地球科ห้องสมุดไป่ตู้学院
1
Q
r
线
原点O与Q的连线OQ称为 该点的应力矢量,它代 表着岩土体中相应点的 应力大小与方向。
Q’
偏平面( )
O
3
2
平面
•在主应力空间中,与三个坐标轴成相等倾角的线称为λ 线(等 压线)。λ 线的方程可以表示为 • σ 1=σ 2=σ 3 (3-8)
弹塑性_塑性力学基本方程和解法

在加载过程中物体各点处的偏应力分量 sij 保持比例不变。在工程允许精度下,也可推
广应用于稍为偏离简单加载的情况。
以上各种理论中涉及的一些假设,例如:塑性应变偏量的增在单一的函数关系等假设,都得到了常用金属材
料大量试验的验证。
z 强化规律 对于理想弹塑性材料,材料一旦屈服,其应力状态点在主应力空间中就落在屈服
变形, Hα 也不变,于是
∂f ∂σ ij
除等向强化外,有些强化材料表现为随动强化(图 7.7b),即,在强化过程中,屈
服面的大小和形状保持不变,只随塑性变形的发展而在应力空间中平移。还有些材料
在强化过程中随动强化与等向强化同时发生,称为混合强化。
由于在应力和强化参数空间中,表示应力状态的应力点只可能位于后继屈服面
(或加载面)上或其内,不可能位于曲面之外,若加载面是一个正则曲面,则有
⎯2⎯
研究生学位课弹塑性力学电子讲义
姚振汉
⎧ε = 0 ⎨⎩σ = σ s
当 σ <σs 当 ε >0
(2)
图 7.5 理想弹塑性和刚塑性
当考虑材料强化性质时,可在理想弹塑性模型的基础上加以改进,采用线性强化 弹塑性模型来近似:
⎧σ = Eε
⎨⎩σ = σ s +E1 (ε − εs )
当 ε ≤εs 当 ε >εs
(5)
⎯3⎯
第七章 塑性力学的基本方程与解法
其中 k 可由单向拉伸或其它材料试验测得的σ s 确定, k = σ s 2 。当不能确定主应力的 排序时,在以三个主应力为坐标轴的应力空间中,由特雷斯卡条件所包围的弹性状态 的应力空间为
σ1 −σ 2 ≤ 2k, σ 2 −σ 3 ≤ 2k, σ 3 −σ1 ≤ 2k
材料非线性有限元2

1. 增量切线刚度法 将荷载分成若干增量段
dσ DT dε
材料非线性有限元解法ቤተ መጻሕፍቲ ባይዱ
由于材料和结构的弹塑性行为与应力、 应变的历史有关,因此弹塑性问题的本构方程必 须用增量形式表示。同时这类问题与非线性弹性 问题数值求解的差别还在于塑性问题应力-应变 关系不再具有单调连续的显式。尽管在任意应变 下,应力都必须在当时的屈服面上或屈服面内, 但要具体地确定每一个应力分量的精确值是不可 能的,需用以下两点来确定: 1. 对于规定的应力值及加载方向,弹塑性切 线矩阵 DT Dep 已知; 2. 应力通过 dσ DT dε 积分求得。至于每一增量步的计算, 可以采用N-R法或初应力法等。
第四章 弹塑性体的本构理论

第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。
塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。
塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。
4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。
常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。
变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。
因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。
对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。
因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。
只有当应力点再次达到该加载面时,才可能产生新的塑性变形。
非线性有限元——lesson6 2018-10-24

《弹塑性力学与有限元》
屈服总则和弹塑性应力-应变关系
q 屈服总则定义
物体内某一点开始产生塑性应变时,应力或应变所必需满足的条件, 叫做屈服条件。屈服条件是判断材料处于弹性还是塑性的准则。
Ø
单向拉压应力状态的屈服条件 s :屈服应力
s
Ø
f () - s 0
(6.1)
复杂应力状态的屈服函数
a E b
n
其中,a,b,n为材料常数,有三个参数,能较好地代表真实材料, 数学表达式简单。
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
q 单轴状态下的全量和增量应力-应变模型 n Ø Ramberg-Osgood模型 (三参数模型) a
q 单轴应力-应变
(MPa)
C(s上) (e) B 200 D(s下) A(p) E=tg O Ey= tg O1 O2 0.1
低碳钢压缩 应力应变曲线
特性
Ø 单调加载
400
E ( b ) f1(f)
低碳钢拉伸 应力应变曲线
g
0.2
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
q 单轴状态下的增量应力-应变模型
3)物理条件 Ø 对于Ramberg-Osgood模型 ,荷载位移关系为: 物理条件为:
n a E b
《弹塑性力学与有限元》
单轴状态下材料的特征和模型
q
作业:
1)请完成教材第163页的习题:4.2;4.3. 2)对自己可能的研究方向中存在哪些弹塑性力学的问题和应用进 行调研,并对该问题和应用从问题的提出、解决问题的理论、求 解方法和结果进行简要论述,写成Word文件提交(4周内完成)。 3)仔细复算第177-179页的算例.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本构方程
(1)增量本构关系,是无穷小应力增量与应变增量的关系。
(2)加载步中的荷载增量是有限值,应力和应变增量也为有限值。
(3)必须对增量本构关系在加载步内积分,确定有限应变增量ij 与有限应力增量ij的关系
m1
m1
ij
dij
C ep ijkl
d
kl
m
m
其中
C ep ijkl
切线模量为
C ep ijkl
塑性力学问题的有限元方法
增量方法 增量迭代方法
塑性力学问题的提法
增量理论: 应力全量和应变全量不单值对应,取决于历史,且是非线性
边值问题的特点: 物体内的应力应变分布取决于:
(1)边界上荷载和位移的最终值(2)达到最终值的路径 求解方法:
(1)通常将荷载分成若干个增量,从初始状态开始,沿着给定的 加载路径,将荷载增量逐步施加
S
Q
控制方程改写成
[B]T {}dQ = {F}+ m{F} m{P} Q
不平衡节点力
(m{}) = m{F} m{P(m{})} 最终的增量求解方程
[K]{u}== {F}+(m{u})
增量法
每一个荷载增量步,解一次线性方程组,其实质就是以分段线性来近似 非线性。
将求解的位移增量、应变增量和应力增量叠加到上一步的位移、应变和 应力中去
Cijkl
Cijmn
f mn
f pq
C pqkl
h
f ij
C ijkl
f kl
ij
C
ep ijkl
kl
其中代表第m+1加载步中间的某一状态。 Euler近似方法:是使用增量加载前切线模量
C C ep m ep
ijkl
ijkl
弹塑性切线刚度的推导
dij
C
ijkl
d
e kl
Cijkl
边界条件
ni( mij +ij) = m X j X j mui +ui = m ui ui
两点说明:
在力边界S上 在位移边界Su上
(1)除本构方程外上述其他方程及边界条件都是线性的。 (2)若mui、mij和mij已精确满足m加载步末的所有方程和边界条件
则可以从中消去它们,得到只有增量的一组方程
方法 有限元控制方程用位移表示为 (m+1{u}) = m+1{P(m+1{u}) m+1{F} = 0 m+1{u}= m{u}+{u}, m+1{}= m{}+{} 问题归结为求m+1{u},使得不平衡力为零,即(m+1{u})=0。
取上一步末的位移作为下一步的初值,m+1{u}(0) = m{u}, 不平衡力一般不为零,(m+1{u}(0))0, 通过迭代方法逐步消除不平衡力使之为零。 在有限元分析中广泛应用三种Newton迭代法。
,
有限元控制方程
,
[B]T m1 {}dQ [N ]T m1 {X }d [N ]T m1 {X }dQ
Q
S
Q
m+1{P}= m+1{F}
m+1 加载步末的节点力平衡
m1{P} [B]T m1{}dQ Q
m+1{F} [N ]T m1 {X }d [N ]T m1 {X }dQ
在求解过程中,它们不一定能精确满足方程和边界条件
将它们保留下来,可减小累积误差
增量有限元格式
对于m+1加载步末,假想它发生虚位移(ui),虚应变是 (ij ))
m1 ij ij dQ= m1 X i ui d m1 X i ui dQ
Q
S
Q
(1)将单元内的位移增量表示成节点位移增量的插值形式 {u}=[N]{u}e
Newton-Raphson迭代方法
假设在(m+1)步,第(i-1)次迭代近似值m+1{u}(i-1)已经得到。 使用Taylor级数将Ψ(m+1{u})在m+1{u}(i-1)处展开,并忽略高次项
( m1{u}(i1) )
( m1{u} m1 {u}(i1) ) 0
{u} m1{u}(i1)
关键的问题是如何选定[K] 的值 增量法的主要优缺点:
(1)优点:它适用于各种类型的非线性状态, (2)缺点:计算效率不高。当要求足够精度的解答,必须采用足够小的 荷载增量,这导致较大的计算量。
P u
增量迭代法
思路: 将加载步内的荷载增量适当加大,在每个加载步内进行若干次迭代
目的: 为了提高计算效率
{}
{} {u}
dQ
[B]T [D]ep
Q
[B]dQ m1 k i1
m 1{u}(i 1)
d kl
d
p kl
d
1 h
f ij
d ij
dij
Cijkl dkl
d f kl
d
f ij
Cijkl dkl
h
f ij
Cijkl
f kl
d ij
C
ep ijkl
d
kl
C ep ijkl
Cijkl
Cijmn
f mn
f pq
C pqkl
h
f ij
Cijkl
f kl
与弹性刚度张量具有相同的对称性
(2)对于每一步荷载增量,求解物体内应力和应变的增量, (3)“积分”(累计)得到最终的应力和应变。
具体求解步骤
第m增量加载步末 体积力是mXi, 力边界S上的面力是,位移边界Su上的位移是 物体内的位移mui、应变mij和应力mij均已求出
在第m+1增量加载步,给定增量的荷载和位移
体积力是
m+1Xi= mXi +Xi
其中
P
{u}(i) m1 {P}(i1) (m1) {F} 0
{u} m1{u}(i1)
{u}(=m+1{u} m+1{u}(i-1)
m1{P}(i1) m1 {P( m1{u}(i1) )} [B]T m1 {}i1 dQ Q
P
{u} m1{u}(i1)
[B]T
Q
{}
(2)几何关系的矩阵形式 {}=[B]{u}e
{}={x,y,z,xy,yz,zx}T (3)本构方程式的矩阵形式为
{}= [D]ep{}
{}={x,y,z,x,y,yz,zx}T
f
f
x
f y
,
f f f
z xy yz
T
f
zx
D ep
De
De f f T De h f T De ,f
力边界S上的面力是 m1 X i mX i X i
位移边界Su上的位移是
u m1 i
m
ui
ui
求m+1增量加载步物体内引起的位移增量u i和应力增量ij
用增量表示的求解方程
平衡方程
mij,i +ij,i+mXj+Xj=0
几何方程
1
1
mij +ij = 2 (mui,j+muj,i) + 2 (ui,j+uj,i)