高中数学-空间直角坐标系与空间向量典型例题-学生版

高中数学-空间直角坐标系与空间向量典型例题-学生版
高中数学-空间直角坐标系与空间向量典型例题-学生版

高中数学-空间直角坐标系与空间向量

一、建立空间直角坐标系的几种方法 构建原则:

遵循对称性,尽可能多的让点落在坐标轴上。 作法:

充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下:

(一)用共顶点的互相垂直的三条棱构建直角坐标系

例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠

A 为直角,A

B ∥CD ,AB =4,AD =2,D

C =1,求异面直线BC 1与DC 所成角的余弦

值.

(二)利用线面垂直关系构建直角坐标系

例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于

C 、C 1的一点,EA ⊥EB 1.已知2AB =

,BB 1=2,BC =1,∠BCC 1=

3

π

.求二面角A -EB 1-A 1的平面角的正切值.

(三)利用面面垂直关系构建直角坐标系

例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . (1)证明AB ⊥平面VAD ;

(2)求面VAD 与面VDB 所成的二面角的余弦值.

(四)利用正棱锥的中心与高所在直线构建直角坐标系

例4 已知正四棱锥V-ABCD中,E为VC中点,正四棱锥底面边长为2a,高为h.

(1)求∠DEB的余弦值;

(2)若BE⊥VC,求∠DEB的余弦值.

(五)利用图形中的对称关系建立坐标系

图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.

例5已知两个正四棱锥P-ABCD与Q-ABCD的高都为2,AB=4.

(1)证明:PQ⊥平面ABCD;

(2)求异面直线AQ与PB所成的角;

(3)求点P到面QAD的距离.

二、向量法解立体几何 (一)知识点

向量的数量积和坐标运算

b a ρ

ρ,是两个非零向量,

它们的夹角为θ,则数θcos |||??b 叫做与的数量积(或内积),记作?,即.cos ||||θ??=?b a b a 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是:

若),,(),,,(222111z y x z y x ==,则

①212121z z y y x x b a ++=?ρ

ρ;

②2

22222212121||,||z y x b z y x a ++=++=

③212121z z y y x x b a ++=?ρ

ρ

④2

2

2

22

22

12

12

12

12121,cos z y x z y x z z y y x x b a ++?++++>=

<

题型:求角度相关

1. 异面直线n m ,所成的角

分别在直线n m ,上取定向量,,b a ρ

ρ则异面直线n m ,所成的角θ等于向量b a ρρ,所成的角或其

补角(如图1所示),

则.|

||||

|cos b a b a ρρ

ρρ??=θ 2. 直线L 与平面α所成的角

在L 上取定AB ,求平面α的法向量n (如图2所示),再求cos =

θ

则θπ

β-=

2

为所求的角.

3. 二面角

方法一:构造二面角βα--l 的两个半平面βα、的法向量21n n 、(都取向上的方

向,如图3所示),则 ①

若二面角βα--l 是“钝角型”的如图3甲所示,那么其大小等于两法向量

图1

图3甲

21n n 、的夹角的补角,即|

|||cos 2121n n ?=θ

② 若二面角βα--l 是“锐角型”的如图3乙所示,那么其大小等于两法向量21n n 、的夹角,即|

|||cos 2121n n ?=

θ.

方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面βα、

内求出与l 垂直的向量21n n 、(如图4所示),则二面角βα--l 的大小等于向量21n n 、的夹角,即 |

|||cos 2121n n ?=θ

题型:求距离相关

1. 异面直线n m 、的距离

分别在直线n m 、上取定向量,,b a ρ

ρ求与向量b a ρρ、都垂直的向量,分别在

n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在上的

射影长,即d

=

.

证明:设CD 为公垂线段,取b DB a CA ρρ

==,

|

|||)(n AB n CD ?=?∴?++=?∴++= ||CD d =

=∴设直线n m ,所成的角为θ,显然.|

||||

|cos b a b a ρρ

ρρ??=θ 2. 平面外一点

p 到平面α的距离

求平面α的法向量n ,在面内任取一定点A ,点p 到平面α的距离d 等于AP 在n 上的射影长,即

|

|n d =

.

图4

图1

三、法向量 例题解析

题型:求空间角

1、运用法向量求直线和平面所成角

设平面α的法向量为n r

=(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为

sin θ

= cos(

2

π

-θ) = |cos| = AB AB n

n

??u u u r r

u u u r r

2、运用法向量求二面角

设二面角的两个面的法向量为12,n n u r u u r ,则<12,n n u r u u r >或π-<12,n n u r u u r

>是所求角。这时要借助图形来判断所求角为

锐角还是钝角,来决定<12,n n u r u u r >是所求,还是π-<12,n n u r u u r

>是所求角。

题型:求空间距离

1、求两条异面直线间的距离

设异面直线a 、b 的公共法向量为(,,)n x y z =r

,在a 、b 上任取一点A 、B ,则 异面直线a 、b 的距离:d =AB ·cos ∠BAA '=||||

AB n n ?u u u r r r

略证:如图,EF 为a 、b 的公垂线段, a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B , 过A 作AA '//EF ,交a '于A ',

则?ˉ

//AA n u u u u r r ,

所以∠BAA '

=<,BA n u u u r r

>(或其补角)

∴异面直线a 、b 的距离d =AB ·cos ∠BAA '=||||

AB n n ?u u u r r r * 其中,n r

的坐标可利用a 、b 上的任一向量,a b r r (或图中的,AE BF u u u r u u u r ),及n r 的定义得

0n a n a n b n b ??⊥?=?????⊥?=???

?r r r r r r r r

① 解方程组可得n r 。

2、求点到面的距离

求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =r

,在α内任取一点B ,则A 点到平面α的距离: d =||||

AB n n ?u u u r r r , n r 的坐标由n r

与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则

法向量与XOY 平面平行,此时可改设(1,,0)n y =r

,下同)。

3、求直线到与直线平行的平面的距离

求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =r

,在直线a 上任取一点A ,在平面α内任取一

点B ,则直线a 到平面α的距离:

d = ||||

AB n n ?u u u r r r 4、求两平行平面的距离

设两个平行设平面α、β的公共法向量法为(,,1)n x y =r

,在平面α、β内各任取一点A 、B ,则平面α到平面β

的距离:

d = ||||

AB n n ?u u u r r r 三、证明线面、面面的平行、垂直关系

设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n u r u u r

,则

1a//a n α?⊥u r 1a a//n α⊥?u u r

12////n n αβ?u r u u r 12n n αβ⊥?⊥u r u u r

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

高中数学-空间向量的基本定理练习

高中数学-空间向量的基本定理练习 课后导练 基础达标 1.若对任意一点O ,且OP =y x +,则x+y=1是P 、A 、B 三点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:C 2.已知点M 在平面ABC 内,并且对空间任一点O ,OM OM=x + 31+31,则x 的值为…( ) A.1 B.0 C.3 D. 3 1 答案:D 3.在以下命题中,不正确的个数是( ) ①已知A,B,C,D 是空间任意四点,则DA CD BC AB +++=0 ②|a |+|b |=|a +b |是a ,b 共线的充要条件 ③若a 与b 共线,则a 与b 所在的直线的平行 ④对空间任意一点O 和不共线的三点A,B,C,若z y x ++=,(其中x,y,z∈R ),则P,A,B,C 四点共面 A.1 B.2 C.3 D.4 答案:C 4.设命题p:a ,b ,c 是三个非零向量;命题q:{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B 5.下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM --= B.MC MB MA ++=0 C.3 13131++++ D.OC OB OA OM +-=2 答案:B 6.在长方体ABCD —A 1B 1C 1D 1中,E 为矩形ABC D的对角线的交点,设A 1=a,11B A =b,11D A =c,则E A 1=____________.

答案:a +21b +21c 7.设O 为空间任意一点,a,b 为不共线向量,OA =a,OB =b,OC =ma+nb,(m,n∈k)若A,B,C 三点共线,则m,n 满足____________. 答案:m+n=1. 8.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,在下列各条件下,点P 是否与A 、B 、C 一定共面? (1)OP =52OA +51OB +5 2OC ; (2)OP=2OA-2OB-OC. 解:(1)OP = 52OA +51OB +52OC . ∵1525152=++,∴P 与A 、B 、C 共面. (2)OP =OC OB OA --22. ∵2-2-1=-1,∴P 与A 、B 、C 不共面. 9.如右图,已知四边形ABCD 是空间四边形,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF =32CB ,CG =3 2CD . 求证:四边形EFGH 是梯形. 证明:∵E、H 分别是AB 、AD 的中点, ∴= 21,=2 1, EH =-=21AD -21AB =21(AD -AB )=21BD =2 1(CB CD -) =21(23CG -23CF )=43(-)=4 3. ∴EH ∥FG 且|EH |=43|FG |≠|FG |. ∴四边形EFGH 是梯形. 综合运用 10.如右图,平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,11A A =c ,则下列向量中与B 1M 相等的向量是( )

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

空间向量高中数学教案课程

空间向量 考纲导读 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 掌 握 空 间 两 点 间 的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是:

1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量. (2) 向量相等:方向 且长度 . (3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 .(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. 2.线性运算律 (1) 加法交换律:a +b = .

空间向量和立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B . 3 C .3 D .2 3 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为11AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为1111 33 OA AA AB AC =- -,11AB AB AA =+ 2111126 ,,333 OA AB a OA AB ?= == 则1AB 与底面ABC 所成角的正弦值为 111 12 3 OA AB AO AB ?= . 二、填空题: 1 .(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D --M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11 (),22 AN AC AB EM AC AE =+=-, 11()()22AN EM AB AC AC AE ?=+?-=1 2 故EM AN ,所成角的余弦值 1 6 AN EM AN EM ?= 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高中数学空间向量与立体几何单元练习题

《空间向量与立体几何》习题 一、选择题(每小题5分,共50分) 1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a , 11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是 A .- 21a +21b +c B .21a +21b +c C .2 1a - 21b +c D .-21a -2 1 b + c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OC OB OA OM --=23 B.OC OB OA OM 51 3121++= C.0=+++OC OB OA OM D.0=++MC MB MA 3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ?等于 A.41 B.4 1 - C.43 D.43- 4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.1 5.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A. 213 B.253 C.453 D.4 53 6.下列几何体各自的三视图中,有且仅有两个视图相同的是 A .①② B .①③ C .①④ D .②④ 7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ①正方体 ②圆锥 ③三棱台 ④正四棱锥

A .9π B .10π C .11π D .12π 8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1 D 1 D .异面直线AD 与CB 1所成的角为60° 9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A . 6 B .552 C .15 D .10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为 A.5 B.41 C.4 D.52 二、填空题(每小题5分,共20分) 11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy . 12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥, 1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面P AD 的距离为 . 三、解答题(共80分) 俯视图 正(主)视图 侧(左)视图 2 3 2 2

2018届高中数学专题09解密空间向量的运算技巧特色训练新人教A版选修2_1

专题09 解密空间向量的运算技巧 一、选择题 1.【吉林省吉化一中、前郭五中等2017-2018学年高二上学期期中】已知,,,若 且,则点的坐标为() A. B. 或C. D. 或 【答案】B 2.【吉林省吉化一中、前郭五中等2017-2018学年高二上学期期中】已知空间上的两点,, 以为体对角线构造一个正方体,则该正方体的体积为() A. B. C. D. 【答案】D 【解析】∵, ∴ 设正方体的棱长为,由题意可得,解得 ∴正方体的体积为,故选D 3.【重庆市第一中学2018届高三上学期期中】已知直角坐标系中点,向量,,则点的坐标为()

A . B . C . D . 【答案】C 【解析】∵向量,, ∴,又 ∴ ∴点的坐标为 故选:C 4.【贵州省兴义市第八中学2017-2018学年高二上学期期中】已知四棱锥P ABCD -中, ()4,2,3AB =-, ()4,1,0AD =-, ()6,2,8AP =--,则点P 到底面ABCD 的距离为( ) A . 26 B 26 C . 1 D . 2 【答案】D 5.【北京市第四中学(房山分校)2016-2017学年高二上学期期中】若(),1,3a x =-, ()2,,6b y =,且a b ,则( ). A . 1x =, 2y =- B . 1x =, 2y = C . 1 2 x = , 2y =- D . 1x =-, 2y =- 【答案】A 【解析】∵(),1,3a x =-, ()2,,6b y =, a b , ∴存在实数λ,使得a b λ=, 可得2{1 36x y λ λλ =-==,

(完整)空间向量__新高中数学教学教学教案

欢迎阅读 空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距 离公式. 理解空 间向量的夹角的概念;掌握空间向量的数量积的概念、 性质和运算律;了解空间 向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广.本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量.(2) 向量相等:方向 且长度 .(3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 . (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. 基础过关 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直 2.线性运算律 (1) 加法交换律:a +b = . (2) 加法结合律:(a +b )+c = .(3) 数乘分配律:λ(a +b )= .

高二数学空间向量苏教版(文)

高二数学空间向量苏教版(文) 【本讲教育信息】 一. 教学内容: 空间向量 二. 本周教学目标: 1. 运用类比的方法,经历向量及运算由平面向空间推广的过程。 2. 了解空间向量的概念,掌握空间向量的线性运算及其性质.理解空间向量共线的条件。 3. 了解向量共面的含义,理解共面向量定理,能运用共面向量定理证明有关线面平行和点共面的简单问题。 4. 掌握空间向量基本定理及推论,理解空间任意一个向量可以用不共面的三个已知向量线性表示,而且这种表示是唯一的。 5. 能用坐标表示空间向量,掌握空间向量的坐标运算,会根据向量的坐标判断两个空间向量的平行。 6. 掌握空间向量夹角的概念,掌握空间向量的数量积的概念、性质和运算率。了解空间向量的几何意义;掌握空间向量数量积的坐标形式,会用向量的方法解决有关垂直、夹角和距离的简单问题。 三. 本周知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线 向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。

空间向量练习及答案解析

空间向量练习 一、选择题(共15小题,每小题4.0分,共60分) 1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是() A. (4,2,-2) B. (2,0,4) C. (2,-1,-5) D. (4,-2,2) 2.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面AC,若EA=1, 则平面ADE与平面BCE所成的二面角的大小是() A. 120° B. 45° C. 150° D. 60° 3.已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当 ·取得最小值时,点Q的坐标为() A. B. C. D. 4.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论: ①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD所成的角为60°;④AB与CD所成的角为60°.其中错误的结论是() A.① B.② C.③ D.④ 5.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点 E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是() A. 45° B. 60° C. 90° D. 120° 6.已知在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点, 设=a,=b,=c,则等于() A.a+b- c B.-a+b+ c C.a-b+ c D.a+b-c 7.已知在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空 间直角坐标系,则AB1与D1E所成角的余弦值为() A. B. C.- D.- 8.如图所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点, 若∠B1MN=90°,则∠PMN的大小() A.等于90° B.小于90° C.大于90° D.不确定 9.如图,S是正三角形ABC所在平面外一点,M,N分别是AB和SC的中点,SA=SB= SC,且∠ASB=∠BSC=∠CSA=90°,则异面直线SM与BN所成角的余弦值为() A.- B. C.- D. 10.已知平面α内两向量a=(1,1,1),b=(0,2,-1)且c=ma+nb+(4,-4,1).若c为平

空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A. 13 D.2 3 1、解:C.由题意知三棱锥1A ABC -为正四面体,设棱长为a , 则1AB =, 棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =、 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 1OA AB AO AB ?=u u u u r u u u r u u u r u u u r 、 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D -- M N ,分别就是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1、答案: 1 6 、设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----, 1111(,,(,,)222222 M N ---,

3.1空间向量及其运算教案(经典例题及答案详解)

3.1 空间向量及其运算 第一课时 3.1.1 空间向量及其加减运算----3.1.2 空间向量的数乘运 算 教学要求:理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:由平面向量类比学习空间向量. 教学过程: 一、复习引入 1、有关平面向量的一些知识:什么叫做向量?向量是怎样表示的呢? 既有大小又有方向的量叫向量.向量的表示方法有:用有向线段表示;用字母a 、b 等表示; 用有向线段的起点与终点字母:AB .长度相等且方向相同的向量叫相等向量. 2. 向量的加减以及数乘向量运算: 向量的加法: 向量的减法: 实数与向量的积: 实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下:|λa |=|λ||a | (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa =0. 3. 向量的运算运算律:加法交换律:a +b =b +a 4. 三个力都是200N ,相互间夹角为60°,能否提起一块重500N 的钢板? 二、新课讲授 1. 定义:我们把空间中具有大小和方向的量叫做空间向量.向量的大小叫做向量的长度或模. → 举例? 表示?(用有向线段表示) 记法? → 零向量? 单位向量? 相反向量? → 讨论:相等向量? 同向且等长的有向线段表示同一向量或相等的向量. → 讨论:空间任意两个向量是否共面? 2. 空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: OB OA AB =+=a +b , AB OB OA =-(指向被减向量), OP =λa ()R λ∈ (请学生说说数乘运算的定义?) 3. 空间向量的加法与数乘向量的运算律. ⑴加法交换律:a + b = b + a ; ⑵加法结合律:(a + b ) + c =a + (b + c ); ⑶数乘分配律:λ(a + b ) =λa +λb ; ⑶数乘结合律:λ(u a ) =(λu )a . 4. 推广:⑴12233411n n n A A A A A A A A A A -++++=; ⑵122334110n n n A A A A A A A A A A -+++++=;⑶空间平行四边形法则. 5. 出示例:已知平行六面体(底面是平行四边形的四棱柱)''''ABCD A B C D - (如图),化简下列向量表达式,并标出化简结果的向量: AB BC +⑴; 'AB AD AA ++⑵; 1(3)'2AB AD CC ++; 1(')3 AB AD AA ++⑷. 师生共练 → 变式训练 6. 小结:概念、运算、思想(由平面向量类比学习空间向量)

空间向量高中数学教案

空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数 量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广.本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量. (2) 向量相等:方向 且长度 .(3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 . (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 . 基础过关 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直 2.线性运算律 (1) 加法交换律:a +b = . (2) 加法结合律:(a +b )+c = .(3) 数乘分配律:λ(a +b )= .

高中数学选修2-1-空间向量与立体几何

空间向量与立体几何 一、知识网络: 二.典例解析 题型1:空间向量的概念及性质 例1、有以下命题:①如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-,也是空间的一个基底。其中正确的命题是( )。 ()A ①② ()B ①③ ()C ②③ ()D ①②③ 题型2:空间向量的基本运算 例2、如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。若 AB a =,AD b =,1AA c =,则下列向量中与BM 相等的 向量是( ) C1

()A 1122a b c - ++ ()B 11 22a b c ++ ()C 1122 a b c --+ ()D c b a +-21 21 例3、已知:,28)1(,0423p y n m x b p n m a +++=≠--=且p n m ,,不共面.若a ∥b ,求y x ,的值. 例4、底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点,求证:AB 1∥平面C 1BD.(三)强化巩固导练 1、已知正方体ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y AB x AD AF ++=,求x -y 的值. 2、 在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b ,=A 1c ,则下列向量中 与B 1相等的向量是 ( )。A .-2 1a +2 1b +c B .2 1a +2 1b +c C .2 1a -2 1b +c D .-2 1a -2 1b +c 3、(2009四川卷理)如图,已知正三棱柱111ABC A B C -的各条棱长都相等,M 是侧 棱1CC 的中点,则异面直线1AB BM 和所成的角的大是 。 第二课时 空间向量的坐标运算 (一)、基础知识过关 (二)典型题型探析 题型1:空间向量的坐标 例1、(1)已知两个非零向量=(a 1,a 2,a 3),=(b 1,b 2,b 3),它们平行的充要条件是( ) A. :||=:|| B.a 1·b 1=a 2·b 2=a 3·b 3 C.a 1b 1+a 2b 2+a 3b 3=0 D.存在非零实数k ,使=k (2)已知向量=(2,4,x ),=(2,y ,2),若||=6,⊥,则x+y 的值是( )

高中数学-空间向量的线性运算练习题

高中数学-空间向量的线性运算练习题 课后训练 1.已知λ∈R ,a 为非零向量,则下列结论正确的是( ) A .λa 与a 同向 B .|λa |=λ|a | C .λa 可能是0 D .|λa |=|λ|a 2.在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算的结果为向量1AC u u u u r 的共有( ) ①1AB BC CC ++u u u r u u u r u u u u r ②11111AA A D DC ++u u u r u u u u r u u u u r ③111AB BB BC ++u u u r u u u r u u u u r ④11111AA A B BC ++u u u r u u u u r u u u u r A .1个 B .2个 C .3个 D .4个 3.在平行六面体ABCD -A ′B ′C ′D ′中,M 为平面BB ′C ′C 的中心,N 为直线CC ′的中点,则1122 AB AD CC'++=u u u r u u u r u u u u r ( ) A .AC u u u r ’ B .AN u u u r C .AM u u u u r D .2MN u u u u r 4.已知空间四边形ABCD ,连AC ,BD ,设M 是BC 的中点,G 为CD 上一点,则12 AB BC MG ++u u u r u u u r u u u u r 等于( ) A .AG u u u r B .CG u u u r C .BC uuu r D .12 BC u u u r 5.已知点G 是正方形ABCD 的中心,P 为正方形ABCD 所在平面外的一点,则PA PB PC PD +++u u u r u u u r u u u r u u u r 等于( ) A .3PG u u u r B .2PG u u u r C .PG u u u r D .4PG u u u r 6.化简:(AB u u u r -CD uuu r )-(AC u u u r -BD u u u r )=__________. 7.化简:1212(23)+53(2)=23 23??+--+--+ ???a b c a b c a b c __________. 8.在平行六面体ABCD -EFGH 中,AG u u u r =x AC u u u r +y AF u u u r +z AH u u u r ,则x +y +z =

相关文档
最新文档