【优质】课堂导学案九年级答案,广州出版社,数学-实用word文档 (16页)
九年级数学导学案全册

九年级数学导学案全册一、整体介绍九年级数学导学案全册是为了帮助九年级学生系统地学习和掌握数学知识而设计的教学辅助材料。
本导学案旨在以清晰的结构和详细的内容,帮助学生理解和掌握每个知识点,并培养学生的问题解决能力和数学思维。
二、导学目标本导学案的目标是帮助学生在九年级学习阶段掌握以下内容:1. 复习和巩固七、八年级学到的数学知识;2. 学习并理解九年级新引入的数学概念和方法;3. 培养学生的问题解决能力和逻辑思维。
三、具体内容1. 单元一:代数运算本单元将复习和巩固整数、有理数的加减乘除运算,并引入一次、二次方程的解法。
通过练习提高学生的计算能力和代数运算技巧。
2. 单元二:平面几何本单元将复习和巩固平面图形的性质和计算方法,包括三角形、四边形和圆的周长、面积计算。
同时引入椭圆、双曲线等二次曲线的基本性质和计算方法。
3. 单元三:立体几何本单元将复习和巩固立体图形的性质和计算方法,包括球体、圆柱体、圆锥体和棱柱、棱锥的体积和表面积计算。
同时引入三角锥、圆锥、三角棱柱等复杂立体图形的计算方法。
4. 单元四:数据统计与概率本单元将复习和巩固数据统计中的表格、图表的制作和分析方法,同时引入概率的基本概念和计算方法。
通过实际案例和练习,培养学生的数据分析和概率计算能力。
四、学习方法和建议1. 在学习过程中,学生应注意理解每个知识点的定义、性质和计算方法。
2. 学生可以通过课堂讲解、课后习题练习以及自主学习的方式来巩固所学内容。
3. 遇到困难和疑惑时,学生可以寻求老师和同学的帮助,或参考相关的数学学习资料。
五、总结九年级数学导学案全册是九年级学生学习数学的重要辅助材料。
通过学习和掌握本导学案中的知识,学生将能够提高数学思维能力,解决实际问题,并为高中数学的学习打下坚实的基础。
希望本导学案能够帮助九年级学生在数学学习中取得优秀的成绩,为未来的学习和发展打下坚实的基础。
初中数学九年级上册高效课堂导学案全套精典汇编全册练习及测试含答案可编辑

初中数学九年级上册高效课堂导学案全套精典汇编(全册练习及测试含答案)初中数学九年级上册高效课堂导学案全套精典汇编221 二次根式 1学习目标1了解二次根式的概念能判断一个式子是不是二次根式2掌握二次根式有意义的条件3全心投入全力以赴学习重点难点重点二次根式有意义的条件难点二次根式有意义的条件学习过程一温故知新1数3的平方根是算术平方根是2正数a的算术平方根为_______0的算术平方根为_______ 3解下列不等式并回忆解不等式的一般步骤2x-3 3x7二自主预习探究新知1式子表示什么意义2什么叫做二次根式如何判断一个式子是否为二次根式3式子的意义是什么如何确定一个二次根式有无意义尝试训练1试一试判断下列各式哪些是二次根式哪些不是为什么2若有意义则a的取值范围是三学以致用1 下列各式中二次根式有①②③④⑤A 2个B 3个C 4个D 5个4 当x__________时有意义1若有意义则a的值为___________.2若在实数范围内有意义则x为A正数B负数C非负数D非正数3在实数范围内因式分解x2 - 3 x2 - 2 x _____ x- _____4在式子中x的取值范围是_____5已知=0则x-y= _____6已知y=则 ______四反馈检测1 若则2 式子+有意义的条件是A x≥0B x≤0且x≠-2C x≠-2D x≤03当x 时代数式有最小值其最小值是4在实数范围内因式分解1 24a-115 当x__________时有意义有意义的条件是______221二次根式 2学习目标1掌握二次根式的基本性质2能利用上述性质对二次根式进行化简3全力以赴做最好的自己学习重点难点重点二次根式的性质.难点综合运用性质进行化简和计算学习过程一温故知新1二次根式有意义则x2在实数范围内因式分解x2-6 x2 - 2 x ____ x-____二自主预习探究新知1式子表示什么意义如何用来化简二次根式2在化简过程中运用了哪些数学思想尝试训练计算当三学以致用1化简下列各式2下列各式正确的是A 2=2B =-4C =2D =-x3化简下列各式12x<-24化简下列各式12-5abc为三角形的三条边则____________6 把 2-x 的根号外的2-x适当变形后移入根号内得A BC D7实数ab在数轴上的位置如图所示那么化简|a-b|-的结果是A 2a-b B b C -b D -2a+b8若二次根式有意义化简│x-4│-│7-x│四反馈检测1计算下列各式12 2322 42 以下各式中计算正确的是A -=-6B -2=-3C =±16D -2=3化简4已知2<x<3化简222二次根式的乘除法二次根式的乘法一学习目标1掌握二次根式的乘法法则和积的算术平方根的性质2熟练进行二次根式的乘法运算及化简二学习重点难点重点掌握和应用二次根式的乘法法则和积的算术平方根的性质难点正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简三学习过程一复习回顾1计算1× ______ _______2 × _______ _______3 × _______ _______2根据上题计算结果用或填空1×_____2×____3 ×__二提出问题1二次根式的乘法法则是什么如何归纳出这一法则的2如何二次根式的乘法法则进行计算3积的算术平方根有什么性质4如何运用积的算术平方根的性质进行二次根式的化简三自主学习自学课本第56页积的算术平方根前的内容完成下面的题目1用计算器填空1×____ 2×____3×____ 4×____2由上题并结合知识回顾中的结论你发现了什么规律能用数学表达式表示发现的规律吗3二次根式的乘法法则是四合作交流1自学课本6页例1后依照例题进行计算1× 22×33· 4··2自学课本第67页内容完成下列问题1用式子表示积的算术平方根的性质2化简①②③④五展示反馈展示学习成果后请大家讨论对于×的运算中不必把它变成后再进行计算你有什么好办法六精讲点拨1当二次根式前面有系数时可类比单项式乘以单项式法则进行计算即系数之积作为积的系数被开方数之积为被开方数2化简二次根式达到的要求1被开方数进行因数或因式分解2分解后把能开尽方的开出来七拓展延伸1判断下列各式是否正确并说明理由1=2 ab3 6×-24 ==122不改变式子的值把根号外的非负因式适当变形后移入根号内1 -3 2八达标测试A组1选择题1等式成立的条件是A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-12下列各等式成立的是.A.4×2 8 B.5×4 20C.4×3 7 D.5×4 203二次根式的计算结果是A.2 B.-2 C.6 D.122化简1 23计算1 2B组1选择题1若则A.4 B.2 C.-2 D.1 2下列各式的计算中不正确的是A. -2×-4 8B.C.D.2计算16×-2 2二次根式的除法一学习目标1掌握二次根式的除法法则和商的算术平方根的性质2能熟练进行二次根式的除法运算及化简二学习重点难点重点掌握和应用二次根式的除法法则和商的算术平方根的性质难点正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简三学习过程一复习回顾1写出二次根式的乘法法则和积的算术平方根的性质2计算 13×-4 23填空 1 ________ _________2 ________ ________3 ________ _________二提出问题1二次根式的除法法则是什么如何归纳出这一法则的2如何二次根式的除法法则进行计算3商的算术平方根有什么性质4如何运用商的算术平方根的性质进行二次根式的化简三自主学习自学课本第7页第8页内容完成下面的题目1由知识回顾3题可得规律______ ______ _______2利用计算器计算填空1 _________2 _________3 ______规律______ _______ _____3根据大家的练习和解答我们可以得到二次根式的除法法则把这个法则反过来得到商的算术平方根性质四合作交流1 自学课本例3仿照例题完成下面的题目计算1 22自学课本例4仿照例题完成下面的题目化简1 2五精讲点拨1当二次根式前面有系数时类比单项式除以单项式法则进行计算即系数之商作为商的系数被开方数之商为被开方数2化简二次根式达到的要求1被开方数不含分母2分母中不含有二次根式六拓展延伸阅读下列运算过程数学上将这种把分母的根号去掉的过程称作分母有理化利用上述方法化简 1 _________ 2 _________3 _____ ___ 4 ___ ___七达标测试A组1选择题1计算的结果是.A. B. C. D.2化简的结果是A.- B.- C.- D.-2计算1 23 4B组用两种方法计算1 2最简二次根式一学习目标1理解最简二次根式的概念2把二次根式化成最简二次根式.3熟练进行二次根式的乘除混合运算二学习重点难点重点最简二次根式的运用难点会判断二次根式是否是最简二次根式和二次根式的乘除混合运算三学习过程一复习回顾1化简1 22结合上题的计算结果回顾前两节中利用积商的算术平方根的性质化简二次根式达到的要求是什么二提出问题1什么是最简二次根式2如何判断一个二次根式是否是最简二次根式3如何进行二次根式的乘除混合运算三自主学习自学课本第9页内容完成下面的题目1满足于的二次根式称为最简二次根式2化简1 23 4四合作交流1计算2比较下列数的大小1与 23如图在Rt△ABC中∠C 90°AC 3cmBC 6cm求AB的长.五精讲点拨1化简二次根式的方法有多种比较常见的是运用积商的算术平方根的性质和分母有理化2判断是否为最简二次根式的两条标准1被开方数不含分母2被开方数中所有因数或因式的幂的指数都小于2.六拓展延伸观察下列各式通过分母有理化把不是最简二次根式的化成最简二次根式同理可得从计算结果中找出规律并利用这一规律计算的值.七达标测试A组1选择题1如果y 0是二次根式化为最简二次根式是.A.y 0 B.y 0 C.y 0 D.以上都不对2化简二次根式的结果是A B- C D-2填空1化简 _________.x≥02已知则的值等于__________3计算1 2B组1计算 a 0b 02若xy为实数且y 求的值223二次根式的加减法二次根式的加减法一学习目标1了解同类二次根式的定义2能熟练进行二次根式的加减运算二学习重点难点重点二次根式加减法的运算难点快速准确进行二次根式加减法的运算三学习过程一复习回顾1什么是同类项2如何进行整式的加减运算3计算12x-3x5x 2二提出问题1什么是同类二次根式2判断是否同类二次根式时应注意什么3如何进行二次根式的加减运算三自主学习自学课本第1011页内容完成下面的题目1试观察下列各组式子哪些是同类二次根式1 23 4从中你得到2自学课本例1例2后仿例计算1 22333-93通过计算归纳进行二次根式的加减法时应四合作交流展示反馈小组交流结果后再合作计算看谁做的又对又快限时6分钟1 23 4五精讲点拨1判断是否同类二次根式时一定要先化成最简二次根式后再判断2二次根式的加减分三个步骤①化成最简二次根式②找出同类二次根式③合并同类二次根式不是同类二次根式的不能合并六拓展延伸1如图所示面积为48cm2的正方形的四个角是面积为3cm2的小正方形现将这四个角剪掉制作一个无盖的长方体盒子求这个长方体的高和底面边长分别是多少2已知4x2y2-4x-6y10 0求y2-x2-5x的值.七达标测试A组1选择题1二次根式①②③④中与是同类二次根式的是.A.①和② B.②和③ C.①和④ D.③和④2下列各组二次根式中是同类二次根式的是.A.与 B.与C.与 D.与2计算1 2B组1选择已知最简根式是同类二次根式则满足条件的 ab的值A.不存在 B.有一组C.有二组 D.多于二组2计算1 2二次根式的混合运算一学习目标熟练应用二次根式的加减乘除法法则及乘法公式进行二次根式的混合运算二学习重点难点重点熟练进行二次根式的混合运算难点混合运算的顺序乘法公式的综合运用三学习过程一复习回顾1填空1整式混合运算的顺序是2二次根式的乘除法法则是3二次根式的加减法法则是4写出已经学过的乘法公式①②2计算1·· 23二合作交流1探究计算1× 22自学课本11页例3后依照例题探究计算1 2三展示反馈计算限时8分钟1 23 4---四精讲点拨整式的运算法则和乘法公式中的字母意义非常广泛可以是单项式多项式也可以代表二次根式所以整式的运算法则和乘法公式适用于二次根式的运算五拓展延伸同学们我们以前学过完全平方公式你一定熟练掌握了吧现在我们又学习了二次根式那么所有的正数包括0都可以看作是一个数的平方如3 25 2下面我们观察反之∴∴ -1仿上例求12你会算吗3若则mn与ab的关系是什么并说明理由.六达标测试A组1计算1 23a 0b 042已知求的值B组1计算122母亲节到了为了表达对母亲的爱小明做了两幅大小不同的正方形卡片送给妈妈其中一个面积为8cm2另一个为18cm2他想如果再用金彩带把卡片的边镶上会更漂亮他现在有长为50cm的金彩带请你帮忙算一算他的金彩带够用吗《二次根式》复习一学习目标1了解二次根式的定义掌握二次根式有意义的条件和性质2熟练进行二次根式的乘除法运算3理解同类二次根式的定义熟练进行二次根式的加减法运算4了解最简二次根式的定义能运用相关性质进行化简二次根式二学习重点难点重点二次根式的计算和化简难点二次根式的混合运算正确依据相关性质化简二次根式三复习过程一自主复习自学课本第13页小结的内容记住相关知识完成练习1.若a>0a的平方根可表示为___________a的算术平方根可表示________2.当a______时有意义当a______时没有意义3.4.5.二合作交流展示反馈1式子成立的条件是什么2计算 1 23. 1 2三精讲点拨在二次根式的计算化简及求值等问题中常运用以下几个式子12345四拓展延伸1用三种方法化简解第一种方法直接约分第二种方法分母有理化第三种方法二次根式的除法2已知mm为实数满足求6m-3n的值五达标测试A组1选择题1化简的结果是A 5B -5C 士5D 25 2代数式中x的取值范围是A BC D3下列各运算正确的是ABCD4如果是二次根式化为最简二次根式是A BC D.以上都不对5化简的结果是2计算.1 23 43已知求的值B组1选择1则A ab互为相反数B ab互为倒数C D a b2在下列各式中化简正确的是A BC D3把中根号外的移人根号内得2计算1 233归纳与猜想观察下列各式及其验证过程1 按上述两个等式及其验证过程的基本思路猜想的变化结果并进行验证.2 针对上述各式反映的规律写出n n为任意自然数且n≥2 表示的等式并进行验证.参考答案二次根式一五拓展延伸1 12 32 12六达标测试A组一填空题1 21x2 - 9 x2 -32 x3 x-32x2 - 3 x2 - 2 x x- 二选择题1D 2C 3DB组一选择题1 B 2A二填空题1 12 30二次根式二五展示反馈112x 2 212七拓展延伸1 2a2 D 3八达标测试A组 112 2 21B组 12x 2222二次根式的乘除法二次根式的乘法七拓展延伸11错2错3 错4错2 1 - 2八达标检测A组11 A 2 D 3 A21 231 2B组11 B 2 A21 2二次根式的除法六拓展延伸1 234七达标测试A组11 A2C21 2 32 4B组1 2最简二次根式四合作交流113AB .六拓展延伸2008.七达标测试A组11 C 2 B 2124 3 1 2 -B组1 2223二次根式的加减法二次根式的加减法四合作交流展示反馈1 23 4六拓展延伸1高底面边长 2七达标测试A组11 C 2D21 2B组1B 21 2二次根式的混合运算三展示反馈1 2五拓展延伸1 23六达标测试A组11 23 42624B组112 2够用《二次根式》复习一自主复习1. 2.3. 4. 25.二合作交流展示反馈1 2 1 23. 1 2四拓展延伸1 25五达标测试A组11A 2 B 3 B 4 C 5C2 1 23 43B组11 D 2C 3D21 2 3363 12第二十三章一元二次方程231 一元二次方程1课时学习目标1会根据具体问题列出一元二次方程体会方程的模型思想提高归纳分析的能力2理解一元二次方程的概念知道一元二次方程的一般形式会把一个一元二次方程化为一般形式会判断一元二次方程的二次项系数一次项系数和常数项重点由实际问题列出一元二次方程和一元二次方程的概念难点由实际问题列出一元二次方程准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项导学流程自学课本导图走进一元二次方程分析现设长方形绿地的宽为x米则长为米可列方程x 去括号得①你知道这是一个什么方程吗你能求出它的解吗想一想你以前学过什么方程它的特点是什么探究新知例1小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形再折合成一个无盖的长方体盒子如果要求长方体的底面积为81cm那么剪去的正方形的边长是多少设剪去的正方形的边长为xcm你能列出满足条件的方程吗你是如何建立方程模型的合作交流动手实验一下并与同桌交流你的做法和想法列出的方程是②自主学习做一做根据题意列出方程1一个正方形的面积的2倍等于50这个正方形的边长是多少2一个数比另一个数大3且这两个数之积为这个数求这个数3一块面积是150cm长方形铁片它的长比宽多5cm则铁片的长是多少观察上述三个方程以及①②两个方程的结构特征类比一元一次方程的定义自己试着归纳出一元二次方程的定义展示反馈挑战自我判断下列方程是否为一元二次方程我学会了1只含有个未知数并且未知数的最高次数是这样的方程叫做一元二次方程2一元二次方程的一般形式其中二次项是一次项是常数项二次项系数一次项系数例 2 将下列一元二次方程化为一般形式并分别指出它们的二次项一次项和常数项及它们的系数12巩固练习教材第19页练习归纳小结1本节课我们学习了哪些知识2学习过程中用了哪些数学方法3确定一元二次方程的项及系数时要注意什么达标测评A1判断下列方程是否是一元二次方程1 23 42将下列方程化为一元二次方程的一般形式并分别指出它们的二次项系数一次项系数和常数项13x2-x 2 27x-3 2x23 2x-1 -3x x-2 0 42x x-1 3 x+5 -43判断下列方程后面所给出的数那些是方程的解1 ±1 ±22 ±2 ±4B1把方程化成一元二次方程的一般形式再写出它的二次项系数一次项系数及常数项2要使是一元二次方程则k _______3已知关于x的一元二次方程有一个解是0求m的值拓展提高1已知关于x的方程问1当k为何值时方程为一元二次方程2当k为何值时方程为一元一次方程2思考题你能给出一元三次方程的概念及一般形式吗232 一元二次方程的解法5课时第1课时学习目标1初步掌握用直接开平方法解一元二次方程会用直接开平方法解形如 a a≥0 或mxnx2=4 2x2-1=0解x ____ 解左边用平方差公式分解因式得x ____ ______________=0必有 x-1=0或______=0得x1=___x2=_____精讲点拨1 这种方法叫做直接开平方法2 这种方法叫做因式分解法合作交流方程x2=4能否用因式分解法来解要用因式分解法解首先应将它化成什么形式方程x2-1=0能否用直接开平方法来解要用直接开平方法解首先应将它化成什么形式课堂练习反馈调控1试用两种方法解方程x2-900=01 直接开平方法2 因式分解法2解下列方程1x2-2=0 216x2-25=0解1移项得x2=2 2 移项得_________直接开平方得方程两边都除以16得______所以原方程的解是直接开平方得x=___所以原方程的解是 x1=___x2=___3解下列方程13x2+2x 0 2x2=3x解1方程左边分解因式得_______________所以__________或____________原方程的解是x1=______x2=______2原方程即_____________ 0方程左边分解因式得____________=0所以 __________或________________原方程的解是x1=_____x2=_________总结归纳以上解方程的方法是如何使二次方程转化为一次方程的用直接开平方法和因式分解法解一元二次方程的步骤分别是什么巩固提高解下列方程1x+12-4=0 2122-x2-9=0分析两个方程都可以转化为 2=a的形式从而用直接开平方法求解解1原方程可以变形为_____2=____2原方程可以变形为________________________有________________________所以原方程的解是x1=________x2=_________课堂小结你今天学会了解怎样的一元二次方程步骤是什么它们之间有何联系与区别学生思考整理达标测评A 1解下列方程1x2=169 245-x2=0 312y2-25=04x2-2x=0 5t-2t 1 06xx+1-5x=07 x3x+2-6 3x+2 =0B 2小明在解方程x2=3x时将方程两边同时除以x得x 3这样做法对吗为什么会少一个解拓展提高1解下列方程12x-3 0 2 -50x225 0教师引导学生用十字相乘法分解因式2构造一个以2为根的关于x 的一元二次方程第 2 课时学习目标1掌握用配方法解数字系数的一元二次方程2理解解方程中的程序化体会化归思想重点用配方法解数字系数的一元二次方程难点配方的过程导学流程自主学习自学教科书例4完成填空精讲点拨上面我们把方程x2-4x+3=0变形为 x-2 2=1它的左边是一个含有未知数的________式右边是一个_______常数这样就能应用直接开平方的方法求解这种解一元二次方程的方法叫做配方法练一练配方填空1x2+6x+=x+ 22x2-8x+=x- 23x2+x+=x+ 2从这些练习中你发现了什么特点1 ________________________________________________2 ________________________________________________合作交流用配方法解下列方程1x2-6x-7=0 2x2+3x+1=0解1移项得x2-6x=____方程左边配方得x2-2·x·3+__2=7+___即 ______2=____所以 x-3=____原方程的解是x1=_____x2=_____2移项得x2+3x=-1方程左边配方得x2+3x+ 2=-1+____即 _____________________所以 ___________________原方程的解是 x1=______________x2=___________总结规律用配方法解二次项系数是1的一元二次方程有哪些步骤深入探究用配方法解下列方程1 2这两道题与例5中的两道题有何区别请与同伴讨论如何解决这个问题请两名同学到黑板展示自己的做法课堂小结你今天学会了用怎样的方法解一元二次方程有哪些步骤学生思考后回答整理达标测评A用配方法解方程1x2+8x-2=0 2x2-5x-6=0 32x2-x 644x2+px+q=0 p2-4q≥054x2-6x+=4x- 2=2x- 2拓展提高已知代数式x2-5x7先用配方法说明不论x取何值这个代数式的值总是正数再求出当x取何值时这个代数式的值最小最小值是多少第 3 课时学习目标1经历推导求根公式的过程加强推理技能训练进一步发展逻辑思维能力2会用公式法解简单系数的一元二次方程3进一步体验类比转化降次的数学思想方法重点用公式法解简单系数的一元二次方程难点推导求根公式的过程导学流程复习提问1用配方法解一元二次方程的步骤有哪些2用配方法解方程3x2-6x-8 03你能用配方法解下列方程吗请你和同桌讨论一下ax2+bx+c=0 a≠0推导公式用配方法解一元二次方程ax2+bx+c=0 a≠0因为a≠0方程两边都除以a得_____________________=0移项得 x2+x=________配方得 x2+x+______=______-即 ____________ 2=___________因为 a≠0所以4 a2>2-4 ac≥0时直接开平方得_____________________________所以 x=_______________________即 x=_________________________由以上研究的结果得到了一元二次方程ax2 +bx+c=0的求根公式精讲点拨利用这个公式我们可以由一元二次方程中系数abc的值直接求得方程的解这种解方程的方法叫做公式法合作交流b2-4 ac为什么一定要强调它不小于0呢如果它小于0会出现什么情况呢展示反馈学生在合作交流后展示小组学习成果当b2-4ac>0时方程有__个________的实数根填相等或不相等当b2-4ac=0时方程有___个____的实数根x1=x2=________当b2-4ac<0时方程______实数根巩固练习1做一做1 方程2x-3x1 0中a b c2 方程 2x-1 -4中a b c3 方程3x-2x4 0中则该一元二次方程实数根4 不解方程判断方程x-4x4 0的根的情况2应用公式法解下列方程1 2 x2+x-6=0 2 x2+4x=23 5x2-4x-12=04 4x2+4x+10=1-8x解 1 这里a=___b=___c=______b2-4ac=____________ =_________所以x==_________=____________即原方程的解是 x1=_____x2=_____2 将方程化为一般式得_________________=0因为 b2-4ac=_________所以 x=_____________=_______________原方程的解是 x1=________x2=_____3 因为 ___________________所以 x=____________=__________=__________ 原方程的解是 x1=________x2=__________4 整理得_______________=0因为 b2-4ac=_________所以 x1=x2=________课堂小结1一元二次方程的求根公式是什么2用公式法解一元二次方程的步骤是什么达标测评A1应用公式法解方程1 x2-6x+1=02 2x2-x=63 4x2-3x-1=x-24 3x x-3 =2 x-1 x+15x-2x5=8 6x+12=2x+1B2某农场要建一个矩形的养鸭场养鸭场的一边靠墙墙长25m另三边用篱笆围成篱笆长为40m1 养鸭场的面积能达到150m吗能达到200 m吗2 能达到250 m吗拓展提高m取什么值时关于x的方程2x2- m+2 x+2m-2=0有两个相等的实数根第4课时一元二次方程根的判别式选学学习目标了解什么是一元二次方程根的判别式知道一元二次方程根的判别式的应用重点如何应用一元二次方程根的判别式判别方程根的情况难点根的判别式的变式应用导学流程复习引入一元二次方程ax2+bx+c=0a≠0只有当系数abc满足条件b2-4ac___0时才有实数根观察上式我们不难发现一元二次方程的根有三种情况当b2-4ac>0时方程有__个________的实数根填相等或不相等②当b2-4ac=0时方程有___个____的实数根x1=x2=________③当b2-4ac<0时方程______实数根精讲点拨这里的b2-4ac叫做一元二次方程的根的判别式通常用△来表示用它可以直接判断一个一元二次方程是否有实数根如对方程x2-x+1=0可由b2-4ac=_____0直接判断它____实数根合作交流方程根的判别式应用1不解方程判断方程根的情况1x2+2x-8=0 23x2=4x-13x3x-2-6x2=0 4x2++1 x=05xx+8=16 6x+2x-5=12.说明不论m取何值关于x的方程x-1x-2=m2总有两个不相等的实数根解把化为一般形式得___________________Δ=b2-4ac=______________=___________________=______________拓展提高应用判别式来确定方程中的待定系数1m取什么值时关于x的方程x2-2x+m-2=0有两个相等的实数根求出这时方程的根解因为Δ=b2-4ac=_______________=______因为方程有两个相等的实数根所以Δ=b2-4ac___0即__________解得m_________________这时方程的根x=2m取什么值时关于x的方程x2- 2m+2 x+m2-2m-2=0没有实数根课堂小结使用一元二次方程根的判别式应注意哪些事项列举一元二次方程根的判别式的用途达标测评A1方程x2-4x+4=0的根的情况是A有两个不相等的实数根B有两个相等的实数根C有一个实数根 D没有实数根2下列关于x的一元二次方程中有两个不相等的实数根的方程是A.x2+1=0 B x2x-1=0 C x22x+3=0 D 4x2-4x+1=03若关于x的方程x2-x+k=0没有实数根则Ak< Bk > C k≤ D k≥4关于x的一元二次方程x2-2x+2k=0有实数根则k得范围是Ak< Bk > C k≤ D k≥B5k取什么值时关于x的方程4x2- k+2 x+k-1=0有两个相等的实数根求出这时方程的根6说明不论k取何值关于x的方程x2+ 2k+1 x+k-1=0总有两个不相等的实根第 5 课时习题课学习目标能结合具体问题选择合理的方法解一元二次方程培养探究问题的能力和解决问题的能力重点选择合理的方法解一元二次方程使运算简便难点理解四种解法的区别与联系复习提问1我们已经学习了几种解一元二次方程的方法2请说出每种解法各适合什么类型的一元二次方程精讲点拨观察方程特点寻找最佳解题方法一元二次方程解法的选择顺序一般为直接开平方法因式分解法公式法若没有特殊说明一般不采用配方法其中公式法是一把解一元二次方程的万能钥匙适用于任何一元二次方程因式分解法和直接开平方法是特殊方法在解符合某些特点的一元二次方程时非常简便。
人教版九年级数学下册导学案26-2 实际问题与反比例函数(第二课时)【含答案】

人教版九年级数学下册导学案 第二十六章 反比例函数 26.2 实际问题与反比例函数(第二课时)【学习目标】1.掌握反比例函数在其他学科中的运用,提高运用代数方法解决实际问题的能力.2.进一步体会数学与现实生活的紧密性,体会数形结合的数学思想,增强应用意识.【课前预习】1.1888年,海因里希•鲁道夫•赫兹证实了电磁波的存在,这成了后来大部分无线科技的基础.电磁波波长λ(单位:米)、频率f (单位:赫兹)满足函数关系λf =3×108,下列说法正确的是( )A .电磁波波长是频率的正比例函数B .电磁波波长20000米时,对应的频率1500赫兹C .电磁波波长小于30000米时,频率小于10000赫兹D .电磁波波长大于50000米时,频率小于6000赫兹2.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p (Pa)是气球体积V (m 3)的反比例函数,且当V =1.5m 3时,p =16000Pa ,当气球内的气压大于40000Pa 时,气球将爆炸,为确保气球不爆炸,气球的体积应( )A .不小于0.5m 3B .不大于0.5m 3C .不小于0.6m 3D .不大于0.6m 33.如图,将质量为10kg 的铁球放在不计重力的木板OB 上的A 处,木板左端O 处可自由转动,在B 处用力F 竖直向上抬着木板,使其保持水平,已知OA 的长为1m ,OB 的长为xm ,g 取10N/kg ,则F 关于x 的函数解析式为( )A .100F x =B .90F x =C .9F x =D .10F x= 4.在压力一定的情况下,压强()P pa 与接触面积S (2m )成反比例,某木块竖直放置与地面的接触面积20.3S m =时,20000P pa =,若把木块横放,其与地面的接触面积为22m ,则它能承受的压强为( )A .1000paB .2000paC .3000paD .4000pa5.某密闭容器内装有一定质量的某种气体,当改变容积V 时,气体的密度ρ是容积V 的反比例函数.当容积为53m 时,密度是31.4kg /m ,则ρ与V 之间的函数表达式为( )A .7V ρ=B .7V ρ=C .7V ρ=D .17Vρ= 6.随着私家车的增多,交通也越来越拥挤,通常情况下,某段公路上汽车的行驶速度y (千米/时)与路上每百米拥有车的数量x (辆)的关系如图所示,当8x 时,y 与x 成反比例关系,当车速低于20千米/时时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x 应该满足的范围是( )A .032x <B .032xC .32x >D .32x .7.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积V (3m )的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将会爆炸,为了安全起见,气球的体积应( )A .不小于35m 4B .大于35m 4C .不小于35m 4D .小于35m 48.定义新运算:(0)(0)p q q p q p q q⎧>⎪⎪⊕=⎨⎪<⎪⎩,例如:3355⊕=,33(5)5⊕-=,则2(0)y x x =⊕≠的图象是( ) A . B . C . D .9.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬根撬动一块石头,已知阻力和阻力臂分别是1200N 和0.5m ,则动力F (单位:N )关于动力臂l (单位:m )的函数解析式正确的是( )A.1200Fl=B.600Fl=C.500Fl=D.0.5Fl=10.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应( )A.不小于4.8ΩB.不大于4.8ΩC.不小于14ΩD.不大于14Ω【学习探究】自主学习阅读课本,完成下列问题1.某打印店要完成一批电脑打字任务,每天完成75页,需8天完成任务.①则每天完成的页数y与所需天数x之间是什么函数关系?②要求5天完成,每天应完成几页?2.某蓄水池的排水管道每小时排水8 m3,6 h可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到Q(m3),将满池水排空所需时间为t(h),求Q与t之间的函数关系式. (3)如果准备在5 h内将满池水排空,那么每小时排水量至少为多少?(4)已知排水管的最大排水量为每小时12 m 3,那么最少多长时间可将满池水排空?3.物理中的杠杆定律:阻力⨯阻力臂=动力⨯动力臂.(1)当阻力和阻力臂分别是1200牛和0.5米时动力F 和动力臂L 有何关系?(2)力臂为1.5米时,撬动石头至少要用多大的力?(3)当想使动力F 不超过(2)中所用力的一半时,你如何处理? 4.在某一电路中,电流I 、电压U 、电阻R 三者之间满足关系R U I = (1)当哪个量一定时,另两个量成反比例函数关系?(2)若I 和R 之间的函数关系图象如图,试猜想这一电路的电压是______伏.互学探究【例1】某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x 元与日销售量y 之间有如下关系:x(元)3 4 5 6 y(个) 20 15 12 10(1)根据表中的数据在平面直角坐标系中描出实数对(x ,y)的对应点;(2)猜测并确定y与x之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为W元,试求出w与x之间的函数关系式,若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?【例2】码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?【例3】小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂,分别为1 200 N和0.5 m,(1)动力F与动力臂l有怎样的函数关系式?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,动力臂至少要加长多少?思路点拨:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.【例4】一个用电器的电阻是可调节的,其范围为110~220 Ω,已知电压为220 V,这个用电器的电路图如图所示.(1)输出功率P与电阻R有怎样的函数关系?(2)用电器的输出功率的范围是多少?思路点拨:(1)根据物理知识可得U 2=P ·R ,故当U=220时,P ,R成反比例,故有P=2202R ; (2)根据题意,将数据代入可进一步求解得到答案. 变式训练1.在压力不变的情况下,某物体承受的压强p (Pa)是它的受力面积S (m 2)的反比例函数,其图象如图所示.(1)求p 与S 之间的函数关系式;(2)求当S=0.5 m 2时物体承受的压强p ;(3)当1 000<p<4 000时,求受力面积S 变化的范围.2.一封闭电路中,当电压是6 V 时,回答下列问题:(1)写出电路中的电流I (A)与电阻R (Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻是5 Ω,其最大允许通过的电流为1 A,那么只把这个用电器接在这个封闭电路中,会不会烧坏?试通过计算说明理由.【课后练习】1.今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=9668x-3000B.y=9668x+3000C.y=3000xD.y=6688x2.如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数kyx(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是A.1B.2C.3D.43.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位,kg/m3,与体积V(单位,m3,之间满足函数解析式ρ,kV,k为常数,k≠0,,其图象如图所示,则k的值为(,A.9B.,9C.4D.,44.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的A.7:20B.7:30C.7:45D.7:505.如图所示,已知A,12,y1,,B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(,A.(12,0)B.(1,0)C.(32,0)D.(52,0)6.物理学知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为P=FS.当一个物体所受压力为定值时,那么该物体所受压强P与受力面积S之间的关系用图象表示大致为()A.B.C.D.7.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y,℃)和时间x,min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟8.我们常用“y 随x 的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A 经过路灯C 的正下方沿直线走到点B ,他与路灯C 的距离y 随他与点A 之间的距离x 的变化而变化.下列函数中y 与x 之间的变化关系,最有可能与上述情境类似的是( )A .y =3xB .y =-x +3C .y =-(x -3)2+3D .y =(x -3)2+39.已知:力F 所做的功是15焦(功=力×物体在力的方向上通过的距离),则力F 与物体在力的方向上通过的距离S 之间的函数关系图象大致是下列选项中的( )A .B .C .D .10.一块砖所受的重力为14.7N ,它的长、宽、高分别为20cm 、10cm 、5cm ,将砖平放时对地面的压强是( )A .735PaB .753PaC .73.5PaD .75.3Pa11.某产品的进价为50元,该产品的日销量y (件)是日销价x (元)的反比例函数,且当售价为每件100元时,每日可售出40件,为获得日利润为1500元,售价应定为________,12.在△ABC 中,BC 边的长为x ,BC 边上的高为y ,△ABC 的面积为2.y 关于x 的函数关系式是________,x 的取值范围是________;13.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________.(无需确定x 的取值范围)14.山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一.将一定体积的面团做成拉面,面条的总长度()y cm 与粗细(横截面面积)()2x cm 之间的变化关系如图所示(双曲线的一支).如果将这个面团做成粗为20.16cm 的拉面,则做出来的面条的长度为__________cm .15.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压()p kPa 是气体体积3()V m 的反比例函数,其图象如图所示.当气体体积为31m 时,气压是__________kPa .【课前预习】1.D 2.C 3.A 4.C 5.C 6.B 7.C 8.D 9.B10.A 【课后练习】1.D 2.B 3.A 4.A 5.D 6.C 7.C 8.D 9.B 10.A 11.80元12.4y x = x >013.100y x =14.80015.96。
最新华师大版九年级数学数学导学案(全册 附答案 共257页)

3、计算:
(1) ; (2) ;
(3)
当 堂 检 测
答案:
1、判断下列各式是否正确。
①×;②√;③×.
2.化简,使被开方数不含完全平方的因式(或因数):
; ; ; .
3、计算:
(1) ; (2) ;(3) .
21.2二次根式的乘除法
第二课时
教学目标
1、理解二次根式的除法公式及其逆用,并能利用他们进行计算
类型四:实践应用题
例5、生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的 ,则梯子最稳定.如图,现有一长度为6米的梯子,当梯子稳定摆放时,他的顶端能达到5.6米高的墙头吗?( )
【解题思路】由已知可得当AB=6时,BC= AB=2,由勾股定理求得 AC的值即可比较出结果.
【解】能.当BC= AB时,∵AB=6,∴BC=2.在R △ABC中,由勾股定理得:
3、对于任意两个二次根式相乘是否都可以这样算?
猜想:
请解释说明你的结论:
三、归纳一下:
(a≥0,b≥0).
文字语言:两个二次根式相乘,.
注意,在上式中,a、b都表示非负数.在本章中,如果没有特别说明,字母都表示正数.
四、试一试
1、口答下列各题:
=; =
= =
2、计算:
(1) ; (2) .
(3) · · (4) 2 ×3
三、练一练
(1)化简:
(2)计算下列各式,并将所得的结果化简:
; . ;
;
课堂小结:
1、通过今天的学习你有什么 收获?
2、化简二次根式的方法以及公式的准确运用。
当 堂 检 测
1、判断下列各式是否正确。
① = * ( )② =ab Nhomakorabea )③ × =4* × =4×3=12 ( )
九年级上数学导学案实际问题与二次函数应用共3课时教师用教案含配套课时作业有答案含答案解析

实际问题与二次函数(第1课时)【教学目标】1.能分析和表示实际问题中变量之间的二次函数关系;2.会运用二次函数的知识求出实际问题的最(小)值.【复习引入】1.求出下列二次函数的最值:(1)223y x x =+-;(2)216y x x =+-.答案:解:(1)4)1(2-+=x y当x=-1时,y 的最小值为-4;(2)10)3(2+--=x y当x=3时,y 的最大值为10;2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件.要想获得6000元的利润,该商品应定价为多少元?答案:解:设涨价x 元,则每件的利润为(60-40)+x=20+x,每星期销售的件数为300-10x,设获得利润为y ,根据题意,得y=(20+x)(300-10x),获得利润为6000,则(20+x)(300-10x)=6000,解得x 1=0,x 2=10.因此,当售价定位60元或70元,都能获得6000元的利润。
【探究新知】探究一 已知某商品的进价为每件40元.现在的售价是每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.如何定价才能使利润最大?答案:解:当涨价时,设涨价x 元,则每件的利润为(60-40)+x=20+x,每星期销售的件数为300-10x,设获得利润为y ,根据题意,得y=(20+x)(300-10x), y=-10(x-5)2+6250,当涨价时,涨价5元,也就是定价为65元时,最大利润为6250元;当降价时,设降价x 元,则每件的利润为(60-40)-x=20-x,每星期销售的件数为300+20x,设获得利润为y ,根据题意,得y=(20-x)(300+20x),y=-20(x-2.5)2+6125,这时,不管怎样最大利润不会超过6125元。
【人教版】九年级数学上册全册导学案(含答案,93页)

第二十一章一元二次方程21.1一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟)问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为__(100-2x)cm__,宽为__(50-2x)cm__.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x2-75x+350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__437=28__.设应邀请x个队参赛,每个队要与其他__(x-1)__个队各赛1场,所以全部比赛共x(x-1)2__场.列方程__x(x-1)2=28__,化简整理,得__x2-x-56=0__.②探究:(1)方程①②中未知数的个数各是多少?__1个__.(2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)- 1 -。
2106新教材广东九年级数学下册全册导学案

D. x3 > x1 > x2
四.课后反思;这节课学到了什么,还有什么困惑?
26.2.1 实际问题与反比例函数
一.温故知新
1.
称为反比例
函数.
2. 反比例函数 y 4 的图象的两个分支分别在第 x
象限,在每个象限,y 随 x 的增大
而
. 反比例函数 y 4 的图象的两个分支分别在第
x
的增大而
.
象限。
课后反思;这节课学到了什么,还有什么困惑?
26.1.3 反比例函数的图象和性质
一.温故知新
1. 反比例函数的图象都有 个分支,我们将反比例函数的图象称为
.
2. 当 k>0 时,反比例函数的图象的两个分支位于第
象限,且在每个象限内 y 值随
x 的增大而
;当 k<0 时,反比例函数的图象的两个分支位于第
9
5.想一想:在例 2 的条件下,图中有哪些线段成比例? 练习:等腰直角三角形 ABC 与等腰直角三角形 A´B´C´相似,相似比为 3∶1,已知斜边 AB =5cm,求△ A´B´C´斜边 A´B´上的高.
(第 2 课时)
【自学指导】第二节
1、 相似多边形的定义: 两个多边形大小不等,但各角
而
.
5. 已知 y 是 x 的反比例函数,当 x=3 时,y=-6,则 y 与 x 的函数关系式是:
;
当 x=-2 时,y=
;当 y=4 时,x=
.
二.学习新知
例 3、已知反比例函数的图象经过点 A(2,6)。 (1)这个函数的图象位于哪些象限?y 随 x 的增大如何变化? (2)点 B(3,4),C(2,5)是否在这个函数的图象上?
例 1.函数 y=-kx+k 与 y=- k (k≠0)在同一坐标系中的图象可能是:(
九年级数学导学案答案.doc

九年级数学导学案答案相似三角形教学目标:使学生掌握相似三角形的判定与性质教学重点:相似三角形的判定与性质教学过程:一知识要点:1、相似形、成比例线段、黄金分割相似形:形状相同、大小不一定相同的图形。
特例:全等形。
相似形的识别:对应边成比例,对应角相等。
成比例线段:对于四条线段a、b、c、d,如果其中两条线ac段的长度的比与另两条线段的长度的比相等,即?,那bd么,这四条线段叫做成比例线段,简称比例线段。
黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0・618?。
这种分割称为黄金分割,点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
例1:放大镜下的图形和原来的图形相似吗?哈哈镜中的形象与你本人相似吗?你能举出生活中的一些相似形的例子吗/例2:判断下列各组长度的线段是否成比例:2厘米,3厘米,4厘米,1厘米1. 5厘米,2. 5厘米,4. 5厘米,6. 5厘米1. 1厘米,2. 2 厘米,3. 3厘米,4. 4厘米1厘米,厘米,2厘米,4厘米。
例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋?例4:等腰三角形都相似吗?矩形都相似吗?正方形都相似吗?、相似形三角形的判断:a两角对应相等b两边对应成比例且夹角相等c三边对应成比例3、相似形三角形的性质:1a对应角相等b对应边成比例c对应线段之比等于相似比d周长之比等于相似比e面积之比等于相似比的平方4、相似形三角形的应用:计算那些不能直接测量的物体的高度或宽度以及等份线段例题1ABCD中,G是BC延长线上一点,AG交BD于点E,交DC 于点F,试找出图中所有的相似三角形C B G2如图在正方形网格上有6个斜三角形:a :ABC; b: BCD c: BDE d: BFG e: FGH f: EFK,试找出与三角形a相似的三角形ABC中,AB=8厘米,BC-16厘米,点P从点A开始沿AB 边向点B以2厘米每秒的速度移动,点Q从点B开始沿BC 向点C以4厘米每秒的速度移动,如果P、Q分别从B经几秒钟PBQ与ABC相似?C、某房地产公司要在一块矩形ABCD±地上规划建设一个矩形GHCK小区公园,为了使文物保2A N EH B护区AEF不被破坏,矩形公园的顶点G不能在文物保护区内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! == 课堂导学案九年级答案,广州出版社,数学
篇一:最新人教版九年级数学上册全册导学案(含答案)
第二十一章一元二次方程
21.1 一元二次方程
1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.
2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.
3.会进行简单的一元二次方程的试解;理解方程解的概念.
重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.
难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.
一、自学指导.(10分钟)
问题1:
如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?
分析:设切去的正方形的边长为x cm,则盒底的长为__(100-2x)cm__,宽为__(50-__.列方程,化简整理,得2-75x+350=0__.①
问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?
分析:全部比赛的场数为__437=28__.
设应邀请x个队参赛,每个队要与其他__(x-1)__个队各赛1场,所以全部比赛共场.列方程28__,化简整理,得__x2-x-56=0__.② 探究:
(1)方程①②中未知数的个数各是多少?.
(2)它们最高次数分别是几次?.
归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个
__未知数(一元),并且未知数的最高次数是__2__的方程.
1.一元二次方程的定义
等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是二次)的方程,叫做一元二次方程.
2.一元二次方程的一般形式
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:
ax2+bx+c=0(a≠0).
这种形式叫做一元二次方程的一般形式.其中__ax2是二次项,是二次项系数,是一次项,是一次项系数,是常数项.
点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项
系数a≠0是一个重要条件,不能漏掉.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)
1.判断下列方程,哪些是一元二次方程?
(1)x3-2x2+5=0; (2)x2=1;
13(3)5x2-2x-x2-2x+; 45
(4)2(x+1)2=3(x+1);
(5)x2-2x=x2+1; (6)ax2+bx+c=0.
解:(2)(3)(4).
点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含
有未知数,这样的方程仍然是整式方程.
2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二
次项系数、一次项系数及常数项.
解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其
中二次项系数是3,一次项系数是-8,常数项是-10.
点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)
1.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,无论m取何值,该方程都是一元二次方程.
证明:m2-8m+17=(m-4)2+1,
∵(m-4)2≥0,
∴(m-4)2+1>0,即(m-4)2+1≠0.
∴无论m取何值,该方程都是一元二次方程.
点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m +17≠0即可.
2.下面哪些数是方程2x2+10x+12=0的根?
-4,-3,-2,-1,0,1,2,3,4.
解:将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.
点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)
1.判断下列方程是否为一元二次方程.
(1)1-x2=0; (2)2(x2-1)=3y;
12(3)2x2-3x-1=0; (4)=0; xx
(5)(x+3)2=(x-3)2; (6)9x2=5-4x.
解:(1)是;(2)不是;(3)是;
(4)不是;(5)不是;(6)是.
2.若x=2是方程ax2+4x-5=0的一个根,求a的值.
解:∵x=2是方程ax2+4x-5=0的一个根,
∴4a+8-5=0,
3 解得a=-. 4
3.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;
(2)一个长方形的长比宽多2,面积是100,求长方形的长x.
解:(1)4x2=25,4x2-25=0;(2)x(x-2)=100,x2-2x-100=0.
学生总结本堂课的收获与困惑.(2分钟)
1.一元二次方程的概念以及怎样利用概念判断一元二次方程.
2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0.
3.要会判断一个数是否是一元二次方程的根.
学习至此,请使用本课时对应训练部分.(10分钟)
21.2 解一元二次方程
21.2.1 配方法
(1)
1. 使学生会用直接开平方法解一元二次方程.
2. 渗透转化思想,掌握一些转化的技能.
重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、自学指导.(10分钟)
问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?
设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:。