空间几何向量求二面角专项练习
专题求二面角含答案

1、如图,在直三棱柱 ABC-A1B1C1 中,AC=3,BC=4,AB=5,AA1 =4,点 D 是 AB 的中点C1B1A1CBDA(1)求证:AC BC 1 ;(2)求证:AC 1 //平面 CDB 1 ; (3)求二面角 B-DC-B1 的余弦值.2、如图,在长方体 ABCD 一 A1B1C1D1 中,AA1=2, AD = 3, E 为 CD 中点,三棱 锥 A1-AB1E 的体积是 6. (1) 设 P 是棱 BB1 的中点,证明:CP//平面 AEB1; (2) 求 AB 的长; (3)求二面角 B—AB1-E 的余弦值.试卷第 1 页,总 3 页3、如图,正方形 与梯形 所在的平面互相垂直,,,,, 为 的中点.(1)求证: 平面 ;(2)求证:平面平面 ;(3)求平面 与平面 所成锐二面角的余弦值.4、如图所示,三棱柱 ABC﹣A1B1C1 的底面是边长为 2 正三角形,D 是 A1C1 的中点,且 AA1⊥平面 ABC,AA1=3. (Ⅰ)求证:A1B∥平面 B1DC; (Ⅱ)求二面角 D﹣B1C﹣C1 的余弦值.试卷第 2 页,总 3 页5 、 如 图 , 在 四 棱 锥 P-ABCD 中 ,PA⊥ 底 面 ABCD, 底 面 ABCD 为 直 角 梯 形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过 AD 的平面分别交 PB,PC 于 M,N 两点.(1)求证:MN∥BC; (2)若 M,N 分别为 PB,PC 的中点, ①求证:PB⊥DN; ②求二面角 P-DN-A 的余弦值.6、如图,在正三棱柱 ABC A1B1C1 中,点 D 是棱 AB 的中点,BC 1, AA1 3 .AD CBA1 C1B1(1)求证: BC1 // 平面 A1DC ; (2)求二面角 D A1C A 的平面角的正弦值.试卷第 3 页,总 3 页1、【答案】(1)AC BC 1 ;参考答案(2)AC //平面 CDB ;113 34 (3)二面角 B-DC-B1 的余弦值为 34试题分析:(1)考虑到第三问要求二面角的大小,故需要在空间直角坐标系中用法向量 的方法求解,因此可提前建系,(1)(2)问也可方便证明,因为是直三棱柱可以以 C 为 坐标原点,直线 CA,CB,CC1 分别为 x 轴、y 轴、z 轴建立空间直角坐标系,利用向量证明 AC • BC1 0 即可得证;(2)要证明线面平行,必须证明线线平行;(3)分别求出平面 BDC 和平面 DCB1 的法向量,求出法向量的夹角的余弦值即为二面角 B-DC-B1 的余弦 值(注意值的正负判断) 试题解析:因为直三棱柱的底面三边长分别为 3、4、5 所以 AC, BC,CC1 两两垂直,以 C 为坐标原 点,直线 CA,CB,CC1 分别为 x 轴、y 轴、z 轴建立空间直角坐标系(1)因为 AC 3,0,0, BC1 0, 4, 4 ,所以 AC • BC1 0 ,即 AC BC1(2)设CB1C1BE,则E 0, 2,2,故DE 3 2, 0,2 ,AC13, 0,4所以DE1 2AC1,即DE//AC1因为 DE 平面 CDB1 , AC1 平面 CDB1 ,所以 AC 1 //平面 CDB 1(3)可求得平面 CDB1 的一个法向量为 n1 4,3,3 ,取平面 CDB 的一个法向量为n2 0,0,1 ,则 cosn1, n2 3 343 3434 ,由图可知,二面角 B-DC-B1 的余弦值为 34考点:1.直线与平面平行的判定及性质;2.利用空间直角坐标系求二面角的求法;答案第 1 页,总 9 页2、【答案】3、【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3) . 试题分析:本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、 二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作答案第 2 页,总 9 页出辅助线 MN,N 为 中点,在 中,利用中位线得到,且,结合已知条件,可证出四边形 ABMN 为平行四边形,所以,利用线面平行的判定,得 ∥平面 ;第二问,利用面面垂直的性质,判断 面 ,再利用已知的边长,可证出,则利用线面垂直的判定得 平面 BDE,再利用面面垂直的判定得平面平面 ;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法 建立空间直角坐标系,求出平面 BEC 和平面 ADEF 的法向量,利用夹角公式计算即可.(1)证明:取 中点 ,连结.在△ 中, 分别为 的中点,所以 ∥ ,且.由已知 ∥ ,,所以∥ ,且.所以四边形 为平行四边形,所以 ∥ .又因为 平面 ,且 平面 ,所以 ∥平面 .4 分(2)证明:在正方形 中,.又因为平面平面 ,且平面平面,所以 平面 .所以.6 分在直角梯形 中,, ,可得.答案第 3 页,总 9 页在△ 中,,所以.7 分所以 平面 .8 分又因为 平面 ,所以平面平面 .9 分(3)(方法一)延长 和 交于 .在平面内过 作于 ,连结 .由平面∥,,平面平面 = ,得,于是.又, 平面 ,所以,于是 就是平面 与平面 平面角.12 分所成锐二面角的平面 ,由,得.又,于是有.在中,.所以平面 与平面 所成锐二面角的余弦值为 .14 分答案第 4 页,总 9 页(方法二)由(2)知 平面 ,且.以 为原点,所在直线分别为 轴,建立空间直角坐标系.易得.平面 的一个法向量为的一个法向量,因为,所以所以为平面 的一个法向量.12分设平面 与平面 所成锐二面角为 ..设为平面,令 ,得.则.所以平面 与平面 所成锐二面角的余弦值为. 【考点】中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角. 4、【答案】 证明:(1)连结 BC1,B1C,交于点 O,连结 OD, ∵三棱柱 ABC﹣A1B1C1 的底面是边长为 2 正三角形,D 是 A1C1 的中点, ∴OD∥A1B, ∵A1B?平面 B1DC,OD?平面 B1DC, ∴A1B∥平面 B1DC. (2)∵三棱柱 ABC﹣A1B1C1 的底面是边长为 2 正三角形,D 是 A1C1 的中点,且 AA1⊥平面 ABC,AA1=3. ∴以 D 为原点,DC1 为 x 轴,DB1 为 y 轴,过 D 作平面 A1B1C1 的垂线为 z 轴,建立空间直 角坐标系, 则 D(0,0,0),B1(0, ,0),C(1,0,3),C1(1,0,0),答案第 5 页,总 9 页=(﹣1, ,﹣3), =(﹣1,0,﹣3), 设平面 B1DC 的法向量 =(x,y,z),=(0,0,﹣3),则,取 z=1,得 =(﹣3,0,1),设平面 B1CC1 的法向量 =(a,b,c),则,取 b=1,得 =(),设二面角 D﹣B1C﹣C1 的平面角为 θ,则 cosθ===.∴二面角 D﹣B1C﹣C1 的余弦值为.5、【答案】(1)见解析;(2)见解析, 试题分析:(1)先证明 BC∥平面 ADNM,再证明 MN∥BC.(2)①先证明 PB⊥平面 ADNM, 再证明 PB⊥DN.②以 A 为坐标原点,直线 AB 为 x 轴,直线 AD 为 y 轴,直线 AP 为 z 轴,建立 空间直角坐标系 A-xyz,利用向量法求二面角 P-DN-A 的余弦值. 【详解】 (1)证明因为底面 ABCD 为直角梯形,所以 BC∥AD.因为 BC 平面ADNM, AD 平面ADNM ,所以 BC∥平面 ADNM. 因为 BC 平面 PBC,平面 PBC∩平面 ADNM=MN,所以 MN∥BC. (2)①证明因为 M,N 分别为 PB,PC 的中点,PA=AB,所以 PB⊥MA. 因为∠BAD=90°,所以 DA⊥AB.答案第 6 页,总 9 页因为 PA⊥底面 ABCD,所以 DA⊥PA. 因为 PA∩AB=A,所以 DA⊥平面 PAB. 所以 PB⊥DA. 因为 AM∩DA=A,所以 PB⊥平面 ADNM. 因为 DN 平面 ADNM,所以 PB⊥DN.②如图,以 A 为坐标原点,直线 AB 为 x 轴,直线 AD 为 y 轴,直线 AP 为 z 轴,建立空间直角 坐标系 A-xyz, 则 A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),P(0,0,2).由①知,PB⊥平面 ADNM,所以平面 ADNM 的法向量为 =(-2,0,2). 设平面 PDN 的法向量为 n=(x,y,z),因为 =(2,1,-2), =(0,2,-2),所以令 z=2,则 y=2,x=1. 所以 n=(1,2,2),所以 cos<n, >=.所以二面角 P-DN-A 的余弦值为 . 【点睛】 (1)本题主要考查二面角的向量求法,考查空间线面位置关系的证明,意在考查学生对 该知识的掌握水平和空间想象分析推理转化能力.(2)二面角的求法方法一:(几何法)找 作(定义法、三垂线法、垂面法) 证(定义) 指 求(解三角形).方法二:(向量法)首先求出两个平面的法向量 ;再代入公式(其中 分别是两个平面的法向量, 是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“ ” 号).6、【答案】(1)证明见解析;(2) 2 13 . 13答案第 7 页,总 9 页试题分析:(1)连结1AC 交1A C 于点G ,连结DG ,利用四边形11ACC A 是平行四边形,进而证明出DG ∥1BC ,即可利用线面平行的判定定理,证得//1BC 平面DC A 1;(2)分别以,,CB OE OA 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,分别求解平面1DA C 和平面1A CA 的一个法向量,利用向量的夹角公式,即可求解二面角1DAC A的平面角的余弦值,进而求解其正弦值.试题解析:(Ⅰ)证明:连结1AC 交1A C 于点G ,连结DG . 在正三棱柱111C B A ABC -中,四边形11ACC A 是平行四边形,∴1AG GC =. ∵AD DB =,∴DG ∥1BC .∵DG ⊂平面1A DC ,1BC ⊄平面1A DC ,∴1BC ∥平面1A DC . (2)过点A 作AO BC ⊥交BC 于O ,过点O 作OE BC ⊥交11B C 于E .因为平面ABC ⊥平面11CBB C ,所以AO ⊥平面11CBB C .分别以,,CB OE OA 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.因为11,3BCAA ,ABC ∆是等边三角形,所以O 为BC 的中点.则()0,0,0O ,B 0,0) (Ⅰ)设平面1A DC 的法向量为(),,n x y z =,则10,0.n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩ ∵3(,0,CD =,11(A C =-⎪⎩,得平面1A DC 的一个法向量为(3,1,n =-1BC =(10)1BC ·n =0∴∴1BC ∥平面1A DC .(Ⅱ)可求平面1ACA 的一个法向量为(13,0,n =设二面角1D AC A 的大小为θ,则16,n n <>∵()0,θπ∈,213sin 13DEDFEDF 考点:直线与平面平行的判定与证明;二面角的求解.。
向量法解二面角例题与练习题

§向量法求二面角例1(2010江西卷20)如图,BCD ∆与MCD ∆都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,23AB =.(1)求直线AM 与平面BCD 所成的角的大小; (2)求平面ACM 与平面BCD 所成的二面角的正弦值.练习:1..若二面角的两个半平面的法向量分别为(4,2,0)和(3,-6,5),则这个二面角的余弦值是( ) A.0 B.32 C.12D. 22 2.(2011年全国新课标)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(Ⅰ)证明:PA ⊥BD ; (Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。
课后作业:1. .如图,四棱锥P —ABCD 中,P A ⊥底面ABCD .底面ABCD 为边长是1的正方形,P A =1,求平面PCD 与平面P AB 夹角的大小为____________.2. 如图,正方体的棱长为1,O BC C B 11 ,求:(1)AO 与11C A 所成的角; (2)AO 与平面AC 所成角的正切值; (3)平面AOB 与平面AOC 所成的角.4. (2011·辽宁)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.5. (2012·天津改编)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,PA =AD =2,AC =1.(1)证明:PC ⊥AD ; (2)求二面角A-PC-D 的正弦值.6.1111111111112(1)(2)(3)ABCD A B C D AD CD a AA AB aAC B C AC BCC C AB A -∠∠====--O 1为直四棱柱,底面ABCD 是直角梯形,DAB=ADC=90,,求异面直线和所成角;求和底面B 所成角;求二面角的大小。
二面角专项训练

二面角专项训练1、已知正方体1111D C B A ABCD -中,O 1、O 是上下底面正方形的中心,E 是AB 棱上一点,且AE :EB=1:2,求二面角A 1-O 1O-E 的大小。
2、 如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,已知AB = 3,AD = 2,PA = 2,︒=∠=60,22PAB PD . (1)证明:AD ⊥平面PAB ; (2)求二面角P —BD —A 的大小.3、如图,在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,二面角V-AD-B 是直二面角.(1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的大小.PAB CEOO 1ADDC 1BACB4、如图,AB ⊥平面BCD ,DC ⊥CB ,AD 与平面BCD 成30°的角,且AB=BC.(1)求AD 与平面ABC 所成的角的大小;(2)求二面角C-AD-B 的大小;5、 如图,ABCD 是直角梯形,∠ABC=900,SA ⊥底面ABCD ,SA=AB=BC=1,AD=0.5,求面SCD 与面SBA 所成二面角的大小。
6、如图,在底面为平行四边形的四棱锥P-ABCD中,AC AB ⊥,PA ⊥平面ABCD ,且AB PA =,点E 是PD 的中点。
(1)证明:PB AC ⊥; (2)证明:PB//平面AEC ; (3)求二面角E-AC-B 的大小。
EPDCBASDCBADCBA。
二面角求法及经典题型归纳

二面角求法归纳18题,通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。
以下是求二面角的五种方法总结,及题形归纳。
定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG FGFG∴二面角S AM B --的大小为)36arccos(-例2. (2010全国I 理,19题,12分)如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 . (Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD=133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又.故ADE ∆为等腰三角形.取ED 中点F,连接AF,则226,3AF DE AF AD DF ⊥=-=. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角. 连接AG,A G=2,2263FG DG DF =-=, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°.例3(2010浙江省理,20题,15分)如图, 在矩形ABCD 中,点,E F 分别 在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将 AEF 翻折成'A EF ,使平面'A EF BEF ⊥平面.(Ⅰ)求二面角'A FD C --的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM 的长.练习(2008山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,P A⊥平面ABCD,60ABC∠=︒,E,F分别是BC, PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面P AD所成最大角的正切值为62,求二面角E—AF—C的余弦值.分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二面角的余弦值。
空间向量与立体几何向量法求二面角(二

D
AB CD
面面角:
②法向量法n1,n2源自 n1,n2n2
n1,n2
n2
n1,n2
n1
n1
l
l
cos cos n1, n2 cos cos n1, n2
注意法向量的方向:一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角
(2)求证:PB⊥平面EFD
(2)证明:依题意得B(1,1,0),PB (1,1,1)
又DE (0, 1 , 1),故PB DE 0 1 1 0
22
所以PB DE
2 2Z
由已知EF PB,
P
且EF DE E,
所以PB 平面EFD
E F
D
C Y
A B
X
BC SO,BC AO,SO AO O BC 平面SOA, BC SA
(2)求直线SD与平面SAB所成角的正弦值。 z
解:由(1)知SO,OA,BC两两垂直。
S
故以OA、OB、OS为正交基底建立
空间直角坐标系如图。则 S(0,0,1),D( 2,- 2 2,0),
C O By
四边形,侧面SBC 底面ABCD。已知 ABC 450
AB=2,BC= 2 2 ,SA=SB= 3 .
(1)求证 SA BC.
(2)求直线SD与平面SAB所成角的正弦值。
S
C
OB
D
A
证明:(1)取BC中点O,连接OA、OS。 S
则由BC 2 2得OB 2,
又AB 2,ABC 450, 得OA 2
依题意得A(1, 0, 0), P(0, 0,1), P
高中数学第二章空间向量与立体几何夹角的计算空间向量求二面角的方法素材

空间向量求二面角的方法方法一:先作出二面角的平面角,再利用向量的内积公式求解:设∠AOB 是二面角l αβ--的一个平面角,则向量OA 与OB 所成的角就是所求的二面角的大小.例1 正四面体ABCD 中,求相邻两个面所成的二面角.解析:如图1,取BC 边的中点E,连结AE 、DE ,则AE⊥BC,DE⊥BC,所以∠AED 就是正四面体的两个相邻面ABC 与DBC 所成二面角的平面角,且BC⊥平面ADE ,∴BC⊥AD,∴0EC DA =.设正四面体棱长为1.∵()()ED EA EC CD EC CD DA =+++ =222EC EC CD EC DA CD DA CD ++++ 11121cos120011cos1201424=+⨯⨯⨯++⨯⨯+=. 又在△ABC 与△BCD 中,可求得32ED EA ==, ∴cos ED EAED EA ED EA =,11433322==⨯. 故正四面体的两个相邻面所成的二面角大小为1arccos3.方法二:利用法向量求解:设1n 是平面α的法向量,2n 是平面β的法向量.①若两个平面的二面角如图2所示的示意图,则1n 与2n 之间的夹角θ就是欲求的二面角;②若两个平面的二面角如图3所示的示意图,设1n 与2n 之间的夹角为θ.则两个平面的二面角为πθ-. 例2 如图4,△ABC 是以∠B 为直角的直角三角形,SA⊥平面ABC ,SA=BC=2,AB=4,D 、N 分别是BC 、AB 的中点.求二面角S —ND-A 的余弦值.解析:平面ABC 的法向量是AS ,设平面SND 的法向量为BC AB AS λμ=++n .∵SA⊥平面ABC ,∴SA⊥BC,SA⊥AB,∴0AS BD =,0AS BN =,0AS BC =,0AS AB = 又AB⊥BC,∴0BC BN =,0AB BD =,0BC NA =. 由()()ND BC AB AS BD BN λμ=++-n 280BC BD AB BN λμλμ=-=+=。
向量法解二面角例题与练习题

§向量法求二面角例1(2010江西卷20)如图,BCD ∆与MCD ∆都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,23AB =.(1)求直线AM 与平面BCD 所成的角的大小; (2)求平面ACM 与平面BCD 所成的二面角的正弦值.练习:1..若二面角的两个半平面的法向量分别为(4,2,0)和(3,-6,5),则这个二面角的余弦值是( ) A.0 B.32 C.12D. 22 2.(2011年全国新课标)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(Ⅰ)证明:PA ⊥BD ; (Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。
课后作业:1. .如图,四棱锥P —ABCD 中,P A ⊥底面ABCD .底面ABCD 为边长是1的正方形,P A =1,求平面PCD 与平面P AB 夹角的大小为____________.2. 如图,正方体的棱长为1,O BC C B 11 ,求:(1)AO 与11C A 所成的角; (2)AO 与平面AC 所成角的正切值; (3)平面AOB 与平面AOC 所成的角.4. (2011·辽宁)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.5. (2012·天津改编)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,PA =AD =2,AC =1.(1)证明:PC ⊥AD ; (2)求二面角A-PC-D 的正弦值.6.1111111111112(1)(2)(3)ABCD A B C D AD CD a AA AB aAC B C AC BCC C AB A -∠∠====--O 1为直四棱柱,底面ABCD 是直角梯形,DAB=ADC=90,,求异面直线和所成角;求和底面B 所成角;求二面角的大小。
二面角习题及答案

二面角1.如图三棱锥 P-ABC 中,PC ⊥平面ABC ,PC =32 ,D 是 BC 的中点,且△ADC 是边长为 2的正三角形,求二面角 P-AB -C 的大小。
解2.如图在三棱锥 S-ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直平分SC ,且分别交 AC 、SC 于D 、E ,又SA =AB ,BS =BC , 求以BD 为棱,BDE 与BDC 为面的二面角的度数。
解:3. 如图:ABCD 是矩形,AB =8,BC =4,AC 与 BD 相交于O 点,P 是平面 ABCD 外一点,PO ⊥面ABCD ,PO =4,M 是 PC 的中点,求二面角 M-BD-C 大小。
解:4.如图△ABC 与△BCD 所在平面垂直,且AB =BC =BD ,∠ABC =∠DBC =0120,求二面角 A-BD-C 的余弦值。
解:DPCABEDBASCSR N MO BDPACBAEC5.已知正方体 AC',M 、N 分别是BB',DD'的中点,求截面 AMC'N 与面ABCD ,CC'D'D 所成的角。
解:6.如图 AC ⊥面BCD ,BD ⊥面ACD ,若AC =CD =1,∠ABC =30°,求二面角D AB C --的大小。
解:7. 三棱锥 A-BCD 中,∠BAC =∠BCD =90°,∠DBC =30°,AB =AC =6,AD =4,求二面角 A-BC-D 的度数。
解:9. 如图所示,四棱锥P —ABCD 的底面是边长为a 的菱形,∠A =60°,PC ⊥平面ABCD ,PC =a,E 是PA 的中点.(1)求证平面BDE ⊥平面ABCD.(2)求点E 到平面PBC 的距离.(3)求二面角A —EB —D 的平面角大小. 解析:D ’B ’DAC ’BA ’CMNB F EACDDO ABC10. 如图,已知正方体ABCD —A1B1C1D1的棱长为1,E 、F 分别在棱AB 、BC 上,G 在对角线BD1上,且AE =41,BF =21,D1G ∶GB =1∶2,求平面EFG 与底面ABCD 所成的二面角的大小.11. 如图,设ABC —A1B1C1是直三棱柱,E 、F 分别为AB 、A1B1的中点,且AB =2AA1=2a,AC =BC =3a.(1)求证:AF ⊥A1C(2)求二面角C —AF —B 的大小12.如图1111D C B A ABCD -是长方体,AB=2,11==AD AA ,求二平面C AB1与1111D C B A 所成二面角的大小.13. 在正方体1111D C B A ABCD -中,1BB K ∈,1CC M ∈,且141BB BK =,143CC CM =..求:平面AKM 与ABCD 所成角的大小.14. 如图,将边长为a 的正三角形ABC 按它的高AD 为折痕折成一个二面角C AD C --'. (1)若二面角C AD C --'是直二面角,求C C '的长; (2)求C A '与平面CD C '所成的角;(3)若二面角C AD C --'的平面角为120°,求二面角D C C A -'-的平面角的正切值.参考答案解:由已知条件,D 是BC 的中点∴ CD =BD =2 又△ADC 是正三角形 ∴ AD =CD =BD =2∴ D 是△ABC 之外心又在BC 上 ∴ △ABC 是以∠BAC 为直角的三角形, ∴ AB ⊥AC , 又 PC ⊥面ABC∴ PA ⊥AB (三垂线定理)∴∠PAC 即为二面角 P-AB-C 之平面角, 易求 ∠PAC =30°2、解:∵ BS =BC ,又DE 垂直平分SC∴ BE ⊥SC ,SC ⊥面BDE ∴ BD ⊥SC ,又SA ⊥面ABC ∴ SA ⊥BD ,BD ⊥面SAC ∴ BD ⊥DE ,且BD ⊥DC 则 ∠EDC 就是所要求的平面角 设 SA =AB =a ,则 BC =SB =2a 且 AC = 3 易证 △SAC ∽△DEC ∴ ∠CDE =∠SAC =60° 3、解:取OC 之中点N ,则 MN ∥PO ∵ PO ⊥面ABCD∴ MN ⊥面ABCD 且 MN =PO/2 =2, 过 N 作 NR ⊥BD 于 R ,连MR ,则 ∠MRN 即为二面角 M-BD-C 的平面角 过 C 作 CE ⊥BD 于S 则 RN =21CE 在 Rt △BCD 中,CD ·BC =BD ·CE ∴ 58BD BC CD CE =⋅=DPCABEDBASCSR NMOBDP AC∴ 54RN =25RN MN MRN tan ==∠ ∴ 25arctanMRN =∠ 4. 解:过 A 作 AE ⊥CB 的延长线于E , 连结 DE , ∵ 面ABC ⊥面BCD ∴ AE ⊥面BCD∴ E 点即为点A 在面BCD 内的射影∴ △EBD 为△ABD 在面BCD 内的射影设 AB =a 则AE =DE =ABsin60°=a 23 ∴ AD =41ABD cos 26=∠, ∴ sin ∠ABD =415∴ 22ABD a 815415a 21S =⨯=∆ 又 a 21BE =∴ 2BDE a 83a 21a 2321S =⋅⋅=∆ ∴ 55S S cos ABD BDE ==θ∆∆ 5. 解:设边长为a ,易证 ANC'N 是菱形 且MN =a 2,A'C =a 3∴S□AMC'N = 2a 26'AC 21MN =⋅由于AMC'N 在面ABCD 上的射影即 为正方形ABCD ∴ S□ABCD =2aD ’ B ’DAC ’BA ’C MN∴ 36a 26a cos 221==θ ∴ 36arccos1=θ 取CC'的中点M',连结DM'则平行四边形DM'C'N 是四边形AMC'N 在CC'D'D 上的射影,S□DM'C'M =2a 21 ∴ 66a 26a21cos 222==θ ∴66arccos2=θ 6. 解:作DF ⊥AB 于F ,CE ⊥AB 于E , ∵ AC =CD =1 ∠ABC =30° ∴ AD =2,BC =3 , AB =2, BD =2 在Rt △ABC 中, 23231AB BC AC CE =⨯=⋅=, 同理 1222ABBDAD DF =⨯=⋅= ∴ 1DF BD BF 22=-=21CE AC AE 22=-= ∴ 212112EF =--= ∴ θ⋅-++=cos DF EF 2EF DF CE CD 2222∴ 33cos =θ BFEACD即所求角的大小为33arccos。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 如图,四棱锥中,底面为矩形,底面,
,点M 在侧棱上,=60°
(I )证明:M 在侧棱的中点 (II )求二面角的大小。
2. 如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,
60ABC ∠=︒,E ,F 分别是BC , PC 的中点.
(Ⅰ)证明:AE ⊥PD ;
(Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为6
2
,求二面角E —AF —C 的余弦值.
3.如图,在直四棱柱ABCD-A B C D 中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA
=2, E 、E 、F 分别是棱AD 、AA 、AB 的中点。
(1) 证明:直线EE //平面FCC ;求二面角B-FC -C 的余弦
值。
4.如图,在四棱锥ABCD P -中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ;
(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.
S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --11111
11111E A
B
C
F
E 1
A 1
B 1
C 1
D 1 D
5.如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,
E 是CD 的中点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ;
(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. 6.如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,
AP BP AB ==,PC AC ⊥.
(Ⅰ)求证:PC AB ⊥;
(Ⅱ)求二面角B AP C --的大小;
6. 已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
(1)求证:AC 1⊥BC ;
(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。
7. 如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值.
8.如图,在五面体ABCDEF 中,FA 平面ABCD, AD//BC//FE ,AB AD ,M 为EC 的中点,AF=AB=BC=FE=
AD (I) 求异面直线BF 与DE 所成的角的大小;
⊥⊥1
2
A
B
C
E
D
P
A B
B 1
C 1
A 1
L A
C
B
P
A
D B
C E D
B
A
图5
(II) 证明平面AMD 平面CDE ; 求二面角A-CD-E 的余弦值
9. 如图,在直三棱柱111ABC A B C -中,平面ABC ⊥侧面11A ABB . (Ⅰ)求证:AB BC ⊥;
(Ⅱ)若直线AC 与平面1A BC 所成的角为θ,二面角1A BC A --的大小为ϕ,试判断θ与ϕ的大小关系,并予以证明.
10,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,
S A ⊥面A BCD ,S A =21,A B=BC=1,A D=21。
求侧面SCD 与面SB A
所成的二面角的大小。
11.如图,正三棱柱111ABC A B C -的所有棱长都为
2,D 为1CC 中点.
(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小;
12.如图,已知四棱锥P ABCD -,底面ABCD 为菱形,
PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,的中点. (1)证明:AE PD ⊥;
(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为
6
,求二面角E AF C --的余弦值.
⊥ A z
y
x
D
C B
S
A
B
C
D
1
A
1
C
1
B
P
B E
C
D
F
A
D
P
B
A
C
E
13.如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (1)证明PA ⊥平面ABCD ;
(2)求以AC 为棱,EAC 与DAC 为面的二面角 的大小
14.如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=AA 1=1,,AB 1
与A 1B 相交于点D ,M 为B 1C 1的中点. (1)求证:CD ⊥平面BDM ;
(2)求平面B 1BD 与平面CBD 所成二面角的大小.
15.如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,且PD=AB=a ,E 为PB 的中点.
(1)求异面直线PD 与AE 所成的角的大小;
(2)在平面PAD 内求一点F ,使得EF ⊥平面PBC ; (3)在(2)的条件下求二面角F —PC —E 的大小.
16. 如图,正方体ABCD —A 1B 1C 1D 1的棱长为1, E 、F 、M 、N 分别是A 1B 1、BC 、C 1D 1、B 1C 1 的中点.
(1)用向量方法求直线EF 与MN 的夹角; (2)求直线MF 与平面ENF 所成角的余弦值; (3)求二面角N —EF —M 的平面角的正切值.。