五种插值法的对比研究开题报告
关于多元插值和插值空间维数问题的研究的开题报告

关于多元插值和插值空间维数问题的研究的开题报告1. 研究背景和意义插值是一种数据处理的方法,它可以通过已知数据点,推算出未知数据点的取值。
插值在工程、科学、计算机视觉和地理信息系统等领域广泛应用。
随着数据的增多和数据点的分布变得愈加复杂,多元插值的需求也越来越大。
因此,对多元插值理论和算法的研究具有重要的理论和应用意义。
多元插值中一个关键的问题是插值空间维数的问题,即数据点数与变量数之间的关系。
当变量数较小而数据点数较多时,插值空间维数较高,将导致计算复杂度的增加,同时也可能造成过拟合或欠拟合现象。
因此,如何对不同的数据分布合理选择插值空间维数是多元插值的一个热门研究课题。
2. 研究主要内容和方法本文将研究多元插值和插值空间维数问题。
主要包括以下几个方面:(1)多元插值的基本理论:该部分主要介绍多元插值的基本原理、类别和常用算法。
其中,将重点介绍基于径向基函数的多元插值算法,并对其进行改进和优化。
(2)插值空间维数的选择方法:该部分将介绍不同数据分布下的插值空间维数的选择方法,并对比不同方法的性能和适用范围。
(3)多元插值在实际应用中的应用:该部分将结合实际应用案例,证明多元插值在实际应用中的可行性和有效性。
具体来说,将以地理信息系统为例,比较不同插值算法和空间维数选择方法在地形高程插值和排放污染物扩散模拟中的应用效果。
本论文在研究方法上将采用数学建模和计算机模拟相结合的方式,充分利用MATLAB等数学软件和地理信息系统软件进行实验验证。
3. 预期研究成果本研究的预期成果包括:(1)对多元插值和插值空间维数问题的深入理解和系统总结。
(2)在径向基函数插值算法的基础上,提出适用于不同数据分布的插值空间维数选择方法。
(3)通过实际应用的案例,证明多元插值在地理信息系统中的应用效果,并与其他插值方法和空间维数选择方法进行比较。
(4)具体实现和应用程序的开发,提供实用和可行的解决方案。
4. 研究意义和应用价值本研究对多元插值和插值空间维数问题的探究,为提高多元插值的准确性和效率提供了理论和实用基础。
不同数据集气温空间插值比较研究的开题报告

不同数据集气温空间插值比较研究的开题报告
一、研究背景
随着气候变化和全球变暖,气温是人们关注的热点问题之一。
为了更好地了解和研究气温分布规律,数据插值技术十分重要。
然而,不同数据集的气温插值方法可能
导致不同的结果。
因此,对于不同数据集中气温插值方法的比较研究有着重要的意义。
二、研究内容
本研究将选择不同数据集,分别采用不同的气温插值方法进行比较研究,重点分析其精度和适用性。
具体内容包括:
1. 气温插值方法的分类和介绍;
2. 不同数据集的选择和介绍;
3. 对比分析不同数据集之间的温度变化;
4. 结果比较和分析。
三、研究意义
本研究将探究不同数据集中气温插值方法的差异和各自优缺点,为气温空间插值方法的选择提供科学依据。
在气候变化和全球变暖背景下,该研究对于探究气温分布
规律以及提高气温预测精度具有重要意义。
四、研究方法
本研究将采用文献综述法和数学统计方法进行研究。
通过查阅相关文献,归纳总结气温插值方法的分类、优缺点和适用范围。
同时,通过对不同数据集之间的气温变
化进行统计分析,量化和比较不同插值方法的效果并进行比较分析。
五、研究预期结果
本研究预期可以比较分析不同数据集中气温插值方法的异同,并找出最优插值方法。
同时,还可以为温度变化的研究和气温预测提供科学依据,推动气候变化和全球
变暖的研究进程。
各种插值法的对比研究

各种插值法的对比研究插值法是指通过已知数据点来估计两个数据点之间的未知数值。
在实际生活和科学研究中,经常会遇到需要插值的情况,例如气象预测、金融分析、图像处理等。
本文将对比介绍几种常见的插值方法,包括线性插值、多项式插值、样条插值和逆距离加权插值。
1.线性插值:线性插值是最简单的插值方法,假设两个数据点之间的值变化是线性的。
根据已知数据点的坐标和对应的值,通过线性方程推断两个数据点之间的值。
优点是计算简单快速,但缺点是对数据变化较快的情况下估计效果较差。
2.多项式插值:多项式插值假设两个数据点之间的值变化是一个多项式函数。
通过已知数据点的坐标和对应的值,使用多项式拟合方法求解多项式函数的系数,再根据该多项式求解两个数据点之间的值。
多项式插值可以准确拟合已知数据点,但在插值点较多时容易出现振荡现象,且对数据点分布敏感。
3.样条插值:样条插值是一种平滑的插值方法,通过构建分段连续的多项式函数来逼近整个数据集。
根据已知数据点的坐标和对应的值,通过求解一组多项式函数的系数,使得在相邻区间之间函数值连续,导数连续。
样条插值可以减少振荡现象,对于插值点密集的情况能更好地逼近原始数据。
4.逆距离加权插值:逆距离加权插值是一种基于距离的加权插值方法,根据已知数据点与插值点之间的距离,对每个已知数据点进行加权平均得到插值点的值。
该方法认为距离较近的数据点对插值结果的影响更大。
逆距离加权插值简单易用,对数据点的分布不敏感,但对于距离较远的数据点容易受到较大的干扰。
在实际应用中,选择合适的插值方法需要根据数据的特点和要求来决定。
若数据变化较简单、平滑,可以选择线性插值或多项式插值;若数据变化复杂,存在振荡现象,可以选择样条插值;若数据点分布较稀疏,可以选择逆距离加权插值。
此外,还有一些其他的插值方法,如Kriging插值、径向基函数插值等,它们根据不同的假设和模型进行插值,具有一定的特点和适用范围。
综上所述,对于选择合适的插值方法,需要根据具体问题和数据特点来综合考虑,结合不同方法的优缺点进行比较研究,以得到更准确和可靠的插值结果。
图像处理中插值与检索算法研究的开题报告

图像处理中插值与检索算法研究的开题报告一、选题背景随着数字图像处理技术的发展,插值与检索算法在图像处理中扮演着重要的角色。
插值算法能够根据一定的规则,在离散的图像数据中填补缺失的像素点,从而实现图像的放大、缩小、旋转等操作。
在数字图像处理领域,插值算法被广泛应用于图像的重构、特征提取等方面。
而检索算法是图像处理中比较热门的研究方向,也是数字媒体检索领域的核心问题之一。
通过检索算法,可以在大量的图像库中快速地搜索匹配的图像,为图像处理和图像识别领域提供了非常有力的支持。
二、研究目的和意义本课题将研究数字图像处理领域中的插值与检索算法,旨在深入了解数字图像处理技术的原理和应用,提高图像处理的速度和精度,提高图像识别的准确率和效率。
具体的研究目的和意义包括:1. 研究数字图像的插值算法,探索不同插值算法的优缺点和适应范围,寻找最优插值算法,提高图像重构的质量和效率。
2. 研究数字图像的检索算法,深入探究不同检索算法的原理和应用,寻找最优检索算法,提高图像的检索速度和准确度,为数字媒体检索领域提供更多有力的支持。
3. 利用所研究的插值和检索算法,开发高效的图像处理软件和图像识别系统,满足不同领域的需求,为数字图像处理领域的发展做出更大的贡献。
三、研究内容和方法本课题将研究数字图像处理中的插值和检索算法,主要研究内容包括:1. 插值算法的原理、种类和实现方法,分析各种插值算法的优缺点和应用场景,研究如何在不同图像处理场合下选择适当的插值算法,以提高图像处理的精度和效率。
2. 检索算法的原理、种类和实现方法,分析各种检索算法的优缺点和应用场景,研究如何在大规模的图像库中快速地找到匹配的图像,以提高图像识别的准确率和效率。
3. 利用 Matlab、Python 和 C++ 等编程语言,实现所研究的插值和检索算法,并结合实际案例,对算法的效果进行验证和测试,以评估算法的优劣和适用性。
四、预期成果和总结本课题的预期成果包括:1. 研究报告,总结和分析所研究的插值和检索算法的优缺点和应用场景,提出对未来图像处理领域的展望和建议。
各种插值法的对比研究

各种插值法的对比研究插值法是一种利用已知数据点推算缺失数据点的方法,常用于信号处理、图像处理和数据分析等领域。
在实际应用中,选择合适的插值方法非常重要,因为它直接影响到结果的准确性和可靠性。
本文将对常见的插值方法进行对比研究。
线性插值是最简单和最常用的插值方法之一、它假设数据点之间的变化是线性的,根据已知数据点之间的斜率和距离,可以推算出缺失数据点的值。
线性插值的优点是计算简单,适用于等间距的数据点。
然而,线性插值可能会导致插值曲线不光滑,并且在非等间距数据点或缺失数据点较多的情况下效果不佳。
拉格朗日插值是一种基于多项式插值的方法。
它通过构造一个满足已知数据点的多项式函数,然后根据该函数求解出缺失数据点的值。
拉格朗日插值的优点是可以精确地通过所有已知数据点,适用于非等间距和较稀疏的数据。
然而,拉格朗日插值存在“龙格现象”,即在数据点较多或高次插值时,插值函数会出现大幅度振荡。
牛顿插值与拉格朗日插值相似,也是基于多项式插值的方法。
不同之处在于,牛顿插值使用被称为“差商”的系数来构建插值多项式。
牛顿插值的优点是计算简单,可以实时更新插值多项式以适应新的数据点。
然而,牛顿插值也存在“龙格现象”。
样条插值是通过连接已知数据点来构建平滑的插值曲线的方法。
它通过选择适当的插值函数和控制点,保持插值曲线在已知数据点间的连续、光滑性。
样条插值的优点是可以抑制龙格现象,产生更平滑的插值曲线,并且适用于非线性变化的数据。
然而,样条插值的缺点是计算复杂度较高,可能导致过度拟合和过度平滑的问题。
Kriging 插值是一种基于地理空间的插值方法,它利用已知数据点的空间关联性来推算未知数据点的值。
Kriging 插值的优点是可以利用数据点之间的空间自相关性,适用于地理信息系统和地质学等领域的数据插值。
然而,Kriging 插值的缺点是计算复杂度高,并且对数据点的空间分布和空间自相关性的假设要求较高。
总的来说,选择合适的插值方法需要综合考虑数据的特点、插值精度和计算复杂度等因素。
各种插值法的对比研究

各种插值法的对比研究目录1.引言 (1)2.插值法的历史背景 (1)3.五种插值法的基本思想 (2)3.1拉格朗日插值 (2)3.2牛顿插值 (3)3.3埃尔米特插值 (3)3.4分段线性插值 (4)3.5三次样条插值 (5)4.五种插值法的对比研究 (5)4.1拉格朗日插值与牛顿插值的比较 (5)4.2多项式插值法与埃尔米特插值的比较 (6)4.3多项式插值法与分段线性插值的比较 (6)4.4 分段线性插值与样条插值的比较 (6)5.插值法在实际生活中的应用 (6)6.结束语 (6)致谢 (7)参考文献 (7)各种插值法的对比研究摘要:插值法是一种古老的数学方法,也是数值计算中的一个算法.插值法不仅是微分方程、数值积分、数值微分等计算方法的基础,而且在医学、通讯、精密机械加工等领域都涉及到了它.本文首先介绍了插值的背景以及常用的五种插值法的基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应的算法与MATLAB 程序,根据已学的知识对五种插值方法与被插函数的逼近程度进行对比研究,找出不同方法间的联系与区别,分析出它们的优缺点,最后在此基础上进一步研究插值法的实际应用,以提高插值法的实用性,从而能让我们在以后的应用中看到一个问题,就知道哪种方法更适合于它,然后大大地快速的提高效率.关键词:多项式插值;样条函数插值;MATLAB 程序;应用1.引言在很多解题以及应用生活中,常常需要用数量关系来反映问题,但是有时没有办法通过数学语言准确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数的表达式表示出来.比如,)(x f 在某个区间上[]b a ,是存在某种数量关系的,但是根据观察和测量或者实验只能得到有限个函数值,我们可以利用这几点来确定函数表达式.或者有一些函数表达式是已经知道的,但是它们的计算是十分繁琐复杂的,不容易发现它的本质,而且它的使用方法也比较局限.函数是表达数与数之间的联系,为了能很好地用数学语言表达出函数的关系,一般通过给定的数据构造一个函数)(x P ,这样既能反映函数)(x f 的特点,又方便计算,用)(x P 近似)(x f .通常选一个简单的函数)(x P ,而且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候的)(x P ,从要表达的函数规律来看,就是我们需要的插值函数[1].所用方法就是插值法,由于所选用的)(x P 的多样化,得到不同的插值法.2.插值法的历史背景插值法的历史源远流长,在很早的时候就涉及到了它.它是数值计算中一个古老的分支,它来源于生产实践.因为牛顿力学的物理理论知识在一千年前没有出现,所以我们的祖先没有办法用很准确的数学解析式来表达日月五星的运行规律.后来,古代的人们有着聪慧的头脑,想出了插值方法,然后发现了日月五星的运行规律.例如唐朝数学家张遂提出了插值法的概念以及不等距节点的插值,并将其应用在天文历法观测中.现代工业革命以后欧洲著名的数学家拉格朗日给出了拉格朗日插值法的概念以及应用.微积分产生后,插值法的基本理论和结果进一步得到改善.3.五种插值法的基本思想如果一个函数)(x f y =在区间[]b a ,上有定义,且已知在点b x x x a n ≤<<<≤...10上的值0y ,1y ,2y , ,n y ,若存在一简单函数)(x P ,使得成立,)(x P 为插值函数,点0x ,1x ,2x , ,n x 称为插值节点,插值节点的区间[]b a ,称为插值区间,求插值函数)(x P 的方法称为插值法.若)(x P 的多项式次数不超过n ,即有)(x P n n x a x a x a a ++++= (2210)3.1拉格朗日插值拉格朗日插值是n 次多项式插值,它是用构造插值基函数的办法来解决n 次多项式插值的问题.拉格朗日插值多项式可以表示为=)(x L n ∑=n k k k x ly 0)(,)(x l k 为插值基函数,表达式为=)(x l k ))...()()...(())...()()...((110110n k k k k k k n k k x x x x x x x x x x x x x x x x --------+-+-,n k ,,1,0 = 截断误差为)()()(x L x f x R n n -=,也是插值余项.关于插值余项,估计有以下定理[2]:设)(x f n 在[]b a ,上连续,)(1x f n +在()b a ,内存在,节点b x x x x a n≤<<<<≤ 210,)(x L n 是满足条件(1.4)的插值多项式,则对任何[]b a x ,∈,插值余项)()!1()()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ 余项表达式的应用有它的局限性,一般只适合于)(x f 高阶导数存在的情况下.若设1)1()(max ++≤≤=n n b x a M x f ,则误差为)()!1()(11x w n M x R n n n +++≤.3.2牛顿插值牛顿插值的基本思想是对n 次插值多项式)(x P n 进行逐次生成,然后用插值条件求出)(x P n 系数[3].因此,提出了均差(即差商)的概念.设 称有函数)(x f ,1x ,2x ,3x , ,n x 是一系列不相等的点,则[]=k x x f ,000)()(x x x f x f k k --为函数)(x f 关于点0x ,2x 的一阶均差; []=k x x x f ,,10[]1100],[,x x x x f x x f k k -- 称为)(x f 的二阶均差; []=k x x x f ,...,,10[][]1110210,...,,,,...,,-----k k k k k x x x x x f x x x x f 为)(x f )的k 阶均差. 我们先求出1次多项式,2次多项式,然后类推出n 次多项式,构造出n 次代数插值多项式的另外一种表达形式—牛顿插值多项式=)(x P n +)(0x f []10,x x f +-)(0x x []210,,x x x f )(0x x -+-)(1x x … []n x x x x f ,...,,,210+)(0x x -))...((11---n x x x x ,=)(x R n []n x x x x x f ,...,,,,210)(0x x -))...((1n x x x x --, =)(x f +)(x P n )(x R n . )(x P n 为牛顿插值多项式,)(x R n 为余项.3.3埃尔米特插值有的时候解决函数)(x f 的问题,不仅要在某些点上知道函数值,而且已知在一些点上的导数值.那么这时插值函数)(x P ,它在某些点处的导数值和函数值与原表达式的值相等的.那么我们从几何这个方面来思考这个问题,求出插值多项式的曲线,不但通过已知点组,而且在这些点处与原曲线"相切"[4].(一)、泰勒插值定义 [][])(,lim ,0'0000x f x x f x x f x x ==→为一阶重节点均差;[][])(21,,lim ,,0''2100000201x f x x x f x x x f x x x x ==→→为二阶重节点均差; 则n 阶重节点均差为[][])(!1,,,lim ,,,0100000x f n x x x f x x x f n n x x i ==→ . 当0x x i →时,牛顿插值公式的极限为=)(x P n +)(0x f )(0'x f +-)(0x x ...!n x f n )(0)(nx x )(0-. 称为泰勒插值多项式.它满足条件=)(0)(x P k n )(0)(x f k ,),...,2,1,0(n k =(二)、两点三次埃尔米特插值若)(x f 在k x ,1+k x 的函数值为k y ,1+k y ,k k m x f =)(',11')(++=k k m x f ,我们可以构造出一个次数不超过3的多项式,)(3x H 为插值函数.设=)(3x H +k k y x a )(+++11)(k k y x a +k k m x )(β11)(++k k m x β,k a ,1+k a ,k β,1+k β为插值基函数.可得结果 =)(3x H 2111))(21(+++----+k k k k k k x x x x x x x x k y 2111))(21(kk k k k k x x x x x x x x ----+++++++1k y )(k x x -+--++k k k k m x x x x 211)(121)(++--k k k k m x x x x , =)(3x R 2124)())((41+--k k x x x x f ξ!,),(1+∈k k x x ξ. 3.4分段线性插值分段线性插值:一般描述,如给定[]上b a ,1+n 个节点b x x x x a n =<<<<= 210和相应的函数值)(i f f i =),...,2,1,0(n i =,记k k k x x h -=+1,k kh h max =. 构造)(x I h 满足:(1)[]b a C x I h ,)(∈;(2)k k h f x I =)(),,2,1,0(n k =;(3))(x I h 在每个小区间[]1,+k k x x 上是线性函数.由以上条件直接可得)(x I h 在小区间[]1,+k k x x 上的表达式为=)(x I h +--++k k k k f x x x x 1111++--k kk k f x x x x , )1,,2,1,0(-=n k 误差估计 -)(x f =)(x I h ))((!2)(1)(''+--k k k x x x x x f ξ))((max 2121+≤≤--≤+k k x x x x x x x M k k . 当∞→h 时,0)()()(→-=x I x f x R h ,)(x I h 在[]b a ,上一致收敛到)(x f .3.5三次样条插值三次样条插值(Spline 插值)的具体要求是:函数[]b a C x S ,)(2∈,并在每个小区间[]1,+j j x x 上是一个三次多项式,其中b x x x x a n =<<<<=...210是给定节点,如果对给定的节点函数值有j y )(j x f =),...,2,1,0(n j =,并且=)(j x S j y ,),...,2,1,0(n j =成立,这时我们就把)(x S 称为三次样条插值函数.4.五种插值法的对比研究通过讨论插值法的相关内容,可以让我们更好的了解插值法.现在我们先从插值多项式的形式上、用途上、计算方法上、精确度上等进行对比研究,比较各自优缺点,然后再通过实例验证之.4.1拉格朗日插值与牛顿插值的比较(一)拉格朗日插值多项式步骤衔接紧密,条理清晰,在理论中十分重要.但是计算比较复杂,因为每添加一个点,所以的公式都要重新计算,这样计算步骤较多会导致计算量变大,反而会导致出现误差与原来的目的背道而驰.(二)牛顿插值多项式的计算量小,步骤简洁.当添加一个节点时,它仍然可以使用,即具有“承袭性”也叫“继承”,所以此类方法应用灵活.但是我们根据正常的想象和观察插值余项,我们一般局部地总是认为当原函数给出的点是越来越多时,我们借助的辅助函数的次数越高,它就和原函数越来越近,误差越来越小.然而事实并非如此,当遇到插值节点等距分布的情况时,只要求函数点值相等不能够充分反映插值函数的性质[5].4.2多项式插值法与埃尔米特插值的比较多项式插值要求在插值节点上函数值相等,计算简单,条件不怎么苛刻.但是如果有的时候一方面要在节点处函数值相等,另一方面要导数值相等,这时多项式插值否则不满足此类情况.埃尔米特插值不仅算法简单而且它具有强烈收敛性.但是它的光滑度不高,而且它的使用条件,也有局限性.在一些特定的限制条件下,有时函数的导数值在这点是完全没有必要知道的.因此,知道节点处的导数的插值函数成为能否运用Hermite插值的一个重要因素[6].4.3多项式插值法与分段线性插值的比较多项式插计算简单,比较方便,但是节点增加的同时就会出现龙格现象,图形波动较大[7].分段线性插值能够克服龙格现象,有收敛性,但是在区间内有转折点,光滑性不好.4.4 分段线性插值与样条插值的比较样条插值的插值函数算法稳定,而且插值函数光滑,收敛性强,误差小.但是它不能局部确定,常常需要解线性方程组.5.插值法在实际生活中的应用插值法是数值逼近中一个非常重要的部分,其次它在实际生活中起着不容小觑的作用,比如天文学以及数学.6.结束语插值法在解决实际问题中有很大的应用.插值方法是各种各样的,它包含拉格朗日插值法、牛顿插值法、Hermite插值法、分段线性插值法以及三次样条插值法等.我们不论使用哪个插值法,它的原理都是一样的.本课题首先介绍了插值的背景以及各类方法的基本思想;然后通过解题、画图、一道题用几种不同方法来解答,让我们哪种方法适合解答哪种类型的题,再然后进行对比,探讨出它们的优缺点,最后文章举个例子来说明插值法有很大的作用,它和我们是相连的,同时利用MATLAB给出了模拟图,通过这种数与形的结合,更好地了解各类插值法的应用于特征.致谢本论文在苏晓琴老师的悉心指导下完成的,同样也是我第一次写这样的文章。
插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
数值分析实验报告(插值法)

武汉理工大学学生实验报告书实验课程名称数值分析开课学院计算机科学与技术学院指导老师姓名学生姓名学生专业班级2010—2010学年第一学期实验课程名称:数值分析第二部分:实验调试与结果分析(可加页)一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)(1)用拉格朗日插值法计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(2)利用二次插值计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(3)用艾尔米特插值法计算时,f(x)的插值多项式H5(x)=(1+4*x)*(x-0.5)*(x-0.5)*(x-2)*(x-2)+(3.90807-6.03838*x)*(x-2)*(x-2)*x*x+(2.34573-4.16674*x)*x*x*(x-0.5)*(x-0.5)(4)各插值算法的精度差异比较经过比较,拉格朗日插值法要比牛顿插值法算法的计算量多一些,拉格朗日插值法后一次计算时用到了前一次计算的结果,提高了运算的效率,但拉格朗日插值法在构造艾尔米特插值法时很方便,将坐标点和对应的导数结合起来的精度比线性插值的精度又要高一些。
但从实验数据来看,在坐标不是很多的情况下,已知的点越多精度也就相对较高。
对于实验要求的第二组数据用拉格朗日插值法(或者牛顿插值法)实验结果如下:一下分别是二阶、三阶、四阶、五阶插值得到的结果以上只是实验结果的一部分,改变插值的位置时,得到的实验结果精度也是有所不同的。
由以上结果分析可知,插值次数并不是越多越好,多了反而会让结果更加偏离真实结果,这充分说明了高次插值存在“病态性质”,在已知点很多的情况下应该采用分段低次插值,将拉格朗日插值法和牛顿插值法运用到分段低次插值法当中,这样得到的结果可能胡更加精确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
———————————————————————————————— 作者:
———————————————————————————————— 日期:
五种插值法的对比研究
1.选题依据
1.1 选题背景
插值法是一种古老的数学方法,插值法历史悠久。据考证,在公元六世纪时, 我国刘焯(zhuo) 已经把等距二次插值法应用于天文计算。十七世纪时,Newton和 Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。 而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。许多库函数的计算实际上归结于对逼近函数的计算。
多项式插值是最常见的一种函数插值.在一般插值问题中,由插值条件可以唯一确定一个次数不超过n 的插值多项式满足上述条件.从几何上看可以理解为:已知平面上n+1 个不同点,要寻找一条次数不超过n 的多项式曲线通过这些点.插值多项式一般有两种常见的表达形式,一个是拉格朗日(Lagrange)插值多项式,另一个是牛顿(Newton)插值多项式. 且Lagrange 插值公式恒等于Newton 插值公式.
设已知函数f(x)在插值区间[a,b]上n+1个互异的节点 处的函数值 及一阶导数值 ,若存在函数H(x)满足条件:
H(x)是一个次数不超过2n+1次的多项式;
2. 研究的Байду номын сангаас法
从具体实例入手并结合Matlab在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。
3. 论文结构
3.1 论文的总体结构
第一部分 导言
主要介绍选题的背景、目的及意义、研究现状、文献综述等。
第二部分 五种插值法的基本思想、性质及特点
在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。
表(1)中的n次Lagrange 插值多项式Ln(x)的数学公式为: 。
其中, (i=0,1,2,3...,n)是插值基函数,且 。
Lagrange 插值多项式的余项为R(x)= ,其中 。
(2)牛顿插值
Newton插值也是n次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。
(4)分段三次Hermite插值
对于函数f(x),常常不仅知道它在一些点的函数值,而且还知道它在这些点的导数值。这时的插值函数P(x),自然不仅要求在这些点等于f(x)的函数值,而且要求P(x)的导数在这些点也等于f(x)的导数值。这就是埃尔米特插值问题,也称带导数的插值问题。从几何上看,这种插值要寻找的多项式曲线不仅要通过平面上的一直点组,而且在这些点(或者其中一部分)与原曲线“密切”,即它们有相同的斜率。
Newton插值的方法:由表(1)构造的牛顿插值多项式为
用它插值时,首先要计算各阶差商,而各阶差商的计算可归结为一阶差商的逐次计算,一般的
其余项为: 。
(3)分段线性插值
分段线性插值函数,记为y(x),y(x)具有下列性质:
①y(x) 可以分段表示,在每个小区间 上,它是线性函数` ;
② ,(i=0,1,2,3...,n).
有了这n+1个n次插值基函数,n次Lagrange插值多项式就容易写出来了,具体表达式为 。
表1 插值数值表
...
...
Lagrange插值的方法是:对给定的n个插值节点, ,...., 及对应的函数值 ,利用n次Lagrange插值多项式,则对插值区间任意的x的函数值y可以通过下式Ln(x)来求解。
分段线性插值与样条插值可以避免高次插值可能出现的大幅度波动现象,在实际应用中通常采用分段低次插值来提高近似程度,比如可用分段线性插值或分段三次埃尔米特插值来逼近已知函数,但它们的总体光滑性较差.为了克服这一缺点,一种全局化的分段插值方法———三次样条插值成为比较理想的工具.
(1)拉格朗日插值
Lagrange插值是n次多项式插值,其成功地利用构造插值基函数的方法解决了求n次多项式插值函数问题。对Lagrange n次插值多项式,首先构造n+1个插值点 ,...., 上的n次插值基函数 ,
③ 在整个区间[a,b]上,y(x) 连续.
作分段线性插值的目的在于克服Lagrange 插值方法可能发生的不收敛性缺点.所谓分段线性插值就是利用每两个相邻插值基点作线性插值,即可得如下分段线性插值函数: , ,i=0,1,...n.其中 , .
特点:插值函数序列具有一致收敛性,克服了高次Lagrange 插值方法的缺点,故可通过增加插值基点的方法提高其插值精度. 但存在基点处不光滑、插值精度低的缺点.从几何上看所谓分段线性插值就是通过插值基点用折线段连接起来逼近原曲线,这也是计算机绘制图形的基本原理.
1.2 研究的目的和意义
插值法是数值分析中最基本的方法之一。 在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时, 要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值, 按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。 在实际应用中选用不同类型的插值函数,逼近的效果也不同。在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange插值、Newton插值、分段线性插值、分段三次Hermite插值、样条插值函数。所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用范围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。
插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点 , ,… 处的函数值是f( ),f( ),…,f( ),这时我们简单的说f(x)有n+1 个离散数据对 .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插值,即寻找一个相对简单的函数y(x),使其满足下列插值条件:y( )=f( ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。