开关电源中IGBT损耗简单测量方法

合集下载

开关电源中IGBT损耗简单测量方法

开关电源中IGBT损耗简单测量方法

开关电源中IGBT 损耗简单测量方法摘要: 文中介绍的损耗测量分析方法简单而有效,可以使设计者对IGBT 的选择和热设计作到心中有数,以利于得出最优的设计方案。

需要提请注意的是,测量工具及辅助电路的标准是非常必要的,否则可能导致较大的误差。

在任何装置中使用IGBT 都会遇到IGBT 的选择及热设计问题。

当电压应力和电流应力这2 个直观参数确定之后,最终需要根据IGBT 在应用条件下的损耗及热循环能力来选定IGBT。

通常由于使用条件不同,通过IGBT 数据手册给出的参数不能确切得出应用条件下IGBT 的损耗。

比较好的方法是通过测量行业确定IGBT 数据手册中参数的测量条件与实际应用环境的差别,并介绍IGBT 的损耗的简单测量方法。

IGBT 参数的定义厂商所提供的IGBT 开关参数通常是在纯感性负载下测量的,图1 和图2 分别是IR 公司和TOSHIBA 公司测量开关时间的电路和定义开关时间的波形。

其共同特点是:开通处于续流状态的纯感性负载;关断有箝位二极管的纯感性负载。

有些数据手册还给出了开关过程的能量损失,也是在同样条件下测量的。

对于PWM 方式工作并使用变压器的开关电源,其工作情况则与之区别很大。

图3 是11 kW 半桥型电路及其工作波形,使用的IGBT 为GA75TS120U。

由波形可见,电流上升时间tr 约为500 ns,下降时间t f 约为300 ns。

但在数据手册中,GA75TS120U 的电流升降时间分别为t r=100 ns,t f=80 ns,与实际工作情况差异较大。

其原因主要在于以下2 个方面:(1)开通时,图3 中由于变压器漏感的存在,IGBT 实际上开通了1 个零电流感性负载,近似于零电流开通,电流上升率受漏感充电速度的限制,因而实际电流上升时间tr 不完全取决于IGBT。

而数据手册中给出开通处于续流状态的纯感性负载,开通瞬间,IGBT 既要承受电感中的电流,还要承受续流二极管的反向恢复电流,电流上升率则完全取决于IGBT 的开通速度。

检测绝缘栅极双极型晶体管(IGBT)好坏的办法

检测绝缘栅极双极型晶体管(IGBT)好坏的办法

检测绝缘栅极双极型晶体管(IGBT)好坏的办法1、判断极性首先将万用表拨在R×1KΩ挡,用万用表测量时,若某一极与其它两极阻值为无穷大,调换表笔后该极与其它两极的阻值仍为无穷大,则判断此极为栅极(G)。

其余两极再用万用表测量,若测得阻值为无穷大,调换表笔后测量阻值较小。

在测量阻值较小的一次中,则判断红表笔接的为集电极(C);黑表笔接的为发射极(E)。

2、判断好坏将万用表拨在R×10KΩ挡,用黑表笔接IGBT的集电极(C),红表笔接IGBT的发射极(E),此时万用表的指针在零位。

用手指同时触及一下栅极(G)和集电极(C),这时IGBT被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。

然后再用手指同时触及一下栅极(G)和发射极(E),这时IGBT被阻断,万用表的指针回零。

此时即可判断IGBT是好的。

3、任何指针式万用表皆可用于检测IGBT。

注意判断IGBT好坏时,一定要将万用表拨在R×10KΩ挡,因R×1KΩ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT导通,而无法判断IGBT的好坏。

此方法同样也可以用于检测功率场效应晶体管(P-MOSFET)的好坏。

一、静态测试变1、测试整流电路找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。

相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。

将红表棒接到N端,重复以上步骤,都应得到相同结果。

如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。

B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。

2、测试逆变电路变频器供应:将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。

将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障二、动态测试变在静态测试结果正常以后,才可进行动态测试,即上电试机。

开关电源变压器损耗量测试方法

开关电源变压器损耗量测试方法

开关电源变压器损耗量测试方法
开关电源变压器损耗量测试方法包括以下步骤:
1.接线:将测试仪器的测试钳分别夹在被试变压器的高压侧和低压侧,按照对应的颜色,将粗线接到仪器面板上容量测试端子对应颜色的电流端子,细线接到仪器面板上容量测试端子对应颜色的电压端子。

然后测试钳子按照对应的颜色,夹在被试变压器的高压侧,变压器低压侧做好短接。

2.设置参数:设定当前温度,要求设定的尽量准确。

然后设定高压侧的额定电压,选择"高额定电压”,调节额定电压档。

再设置变压器的类型,选择与其铭牌相符的即可。

最后设置分接挡位,一般分接打到2分接位置,如有其他分接位置,则按相对应的进行选择。

3.测试过程:在做好接线,设置好所有参数后,给被试品做好编号之后,就可以开始按下测试键,仪器自动进行检测。

在测试过程中,仪器可自动计算出变压器的阻抗电压百分比,折算到额定温度、额定电流下的负载损耗,自动判断出油浸式或干式配电变压器的铁芯型号。

测试结束后,可以选择保存或打印试验结果。

4.结束测试:关闭电源,进行拆线工作即可。

注意,在进行测试时,-定要确保操作正确,以免造成不必要的损失。

IGBT常规测量四招必杀技

IGBT常规测量四招必杀技

IGBT 常规测量四招必杀技看了很多的IGBT 测量方法,其中不乏极具精髓的,但不怎么的全面。

现在我总结介绍四招,有这四招,足以应付日常工作中的要求了。

但这是在简单工具的前提下,只能说是常规测量吧。

下面先摆出四大装备(排名不分先后):下面按图示一一介绍各型武器的威力,如下所述:数字万用表:虽然,用它来测量有太多的局限性,但它却是我们最常用和普遍的工具之首。

用它测量二极管的管压降,不仅能在一定程度上判断其好坏,还能判定它们的离散性。

数字电容表:这个可能是很多人用的比较少吧,其实我们都知道,IGBT 的容量大小是有规律的,容量大它的各种等效电容容量也将同比加大,如最重要的Cies 就是我们的测量对象。

但是,官方给出的多是VGE=0V VCE=10V f=1MHZ 时的参考数值,我们根本没有条件来做直接对比。

我们使用的数字电容表多在800HZ 的测试频率。

但这不并不影响我们的测量,我们只要总结规律,以我们现有的这种简单测试仪表也还是具有非常大的可靠性的,而且在一定程度上能判断各个IGBT 管的同一性。

现在很多奸商以小充大来赚取暴利,所以这是一个很好的方法。

万一你用上了“来历不明”的模块而爆机时有可能就是这种情况,不是你技术不好或是你维修的不够仔细,而是你碰上了李鬼模块。

模拟表:这个很多人都知道,用它来测量IGBT 的触发开通性能及关断性能。

除此之外,也是可以测试IGBT 的好坏的,如果并联二极管完好而IGBT 开路了就会触发不起来的。

晶体管直流参数测试表:耐压是IGBT 最重要的关键参数之一,但是,使用它测试IGBT 时,也是这四种测量手段中最具危险性的一种。

弄不好会报废IGBT 的。

我只是点明一下,在有限的条件下做最大可靠性的测试分析,具体的操作有赖于各位大侠们的剑锋所指,内力所及了。

干货 一文搞懂IGBT的损耗与结温计算

干货  一文搞懂IGBT的损耗与结温计算

与大多数功率半导体相比,IGBT 通常需要更复杂的一组计算来确定芯片温度。

这是因为大多数IGBT 都采用一体式封装,同一封装中同时包含IGBT 和二极管芯片。

为了知道每个芯片的温度,有必要知道每个芯片的功耗、频率、θ 和交互作用系数。

还需要知道每个器件的θ 及其交互作用的psi 值。

本应用笔记将简单说明如何测量功耗并计算二极管和IGBT 芯片的温升。

损耗组成部分根据电路拓扑和工作条件,两个芯片之间的功率损耗可能会有很大差异。

IGBT 的损耗可以分解为导通损耗和开关(开通和关断)损耗,而二极管损耗包括导通和关断损耗。

准确测量这些损耗通常需要使用示波器,通过电压和电流探针监视器件运行期间的波形。

测量能量需要用到数学函数。

确定一个开关周期的总能量后,将其除以开关周期时间便可得到功耗。

图 1. TO−247 封装,显示了IGBT 芯片(左)和二极管芯片(右)图 2. IGBT 开通损耗波形将开通波形的电压和电流相乘,即可计算出该周期的功率。

功率波形的积分显示在屏幕底部。

这就得出了IGBT 开通损耗的能量。

功率测量开始和结束的时间点可以任意选择,但是一旦选定了一组标准,测量就应始终遵循这些标准。

IGBT导通损耗图 3. IGBT 传导损耗波形导通损耗发生在开通损耗区和关断损耗区之间。

同样应使用积分,因为该周期内的功率并不是恒定的。

图 4. IGBT 关断损耗波形开通、导通和关断损耗构成了IGBT 芯片损耗的总和。

关断状态损耗可以忽略不计,不需要计算。

为了计算IGBT 的总功率损耗,须将这三个能量之和乘以开关频率。

IGBT 损耗必须使用阻性负载或在负载消耗功率的部分周期内进行测量。

这样可消除二极管导通。

图 5. 二极管导通损耗波形FWD反向恢复图 6. 二极管反向恢复波形图 5 和图 6 显示了二极管在整流器或电抗模式下工作期间的电流和电压波形。

二极管损耗的计算类似于IGBT 损耗。

需要了解的是,损耗以半正弦波变化。

IGBT及IPM的工作原理和检测方法

IGBT及IPM的工作原理和检测方法

IGBT及IPM的⼯作原理和检测⽅法l 、判断极性⾸先将万⽤表拨在R×1K 。

挡,⽤万⽤表测量时,若某⼀极与其它两极阻值为⽆穷⼤,调换表笔后该极与其它两极的阻值仍为⽆穷⼤,则判断此极为栅极(G )。

其余两极再⽤万⽤表测量,若测得阻值为⽆穷⼤,调换表笔后测量阻值较⼩。

在测量阻值较⼩的⼀次中,则判断红表笔接的为集电极( C ) :⿊表笔接的为发射极( E )。

2 、判断好坏将万⽤表拨在R×10KQ 档,⽤⿊表笔接IGBT 的集电极(C ) ,红表笔接IGBT 的发时极( E ) ,此时万⽤表的指针在零位。

⽤⼿指同时触及⼀下栅极(G )和集电极(C ) ,这时⼯GBT 被触发导通,万⽤表的指针摆向阻值较⼩的⽅向,并能站们指⽰在某⼀位置。

然后再⽤⼿指同时触及⼀下栅极(G )和发射极( E ) ,这时IGBT 被阻断,万⽤表的指针回零。

此时即可判断IGBT 是好的。

3 、注意事项任何指针式万⽤表铃可⽤于检测IGBT 。

注意判断IGBT 好坏时,⼀定要将万⽤表拨在R×IOK挡,因R×IKQ 档以下各档万⽤表内部电池电压太低,检测好坏时不能使IGBT 导通,⽽⽆法判断IGBT 的好坏。

此⽅法同样也可以⽤护检测功率场效应晶体管( P ⼀MOSFET )的好坏。

电磁炉上的⼤功率管IGBT的检测⽅法IGBT管的好坏可⽤指针万⽤表的Rxlk挡来检测,或⽤数字万⽤表的“⼆极管”挡来测量PN结正向压降进⾏判断。

检测前先将IGBT管三只引脚短路放电,避免影响检测的准确度;然后⽤指针万⽤表的两枝表笔正反测G、e两极及G、c两极的电阻,对于正常的IGBT管(正常G、C两极与G、c两极间的正反向电阻均为⽆穷⼤;内含阻尼⼆极管的IGBT管正常时,e、C极间均有4kΩ正向电阻),上述所测值均为⽆穷⼤;最后⽤指针万⽤表的红笔接c极,⿊笔接e极,若所测值在3.5kΩl左右,则所测管为含阻尼⼆极管的IGBT管,若所测值在50kΩ左右,则所测IGBT管内不含阻尼⼆极管。

IGBT损耗的计算步骤与方法

IGBT损耗的计算步骤与方法

IGBT损耗的计算步骤与方法IGBT损耗的计算步骤与方法作者:微叶科技时间:2015-09-08 17:50 国内外有很多专家学者对IGBT器件的损耗模型进行了较深入的研究,还将损耗模型主要分为两大类:基于物理结构的IGBT损耗模型和基于数学结构的IGBT损耗模型。

基于物理结构的损耗模型通过分析IGBT/DIODE的物理结构和内部载流子的工作情况,采用电容、电阻、电感、电流源、电压源等一些相对简单的元件模拟出IGBT的特性,利用仿真软件仿真IGBT在各种工作情况下的电压、电流波形。

从而计算得到IGBT的损耗。

基于数学方法的IGBT损耗模型与器件的具体类型无关,它是基于大量数据的测量,试图寻找出功耗与各个因素的数量关系。

然而,在工程实践中工程师一般不会消耗大量的时间来进行计算,所以本文就是在介绍基本原理的基础上,参考相应的资料结合实践给出合适的计算方法。

IGBT 典型的电压/电流曲线(VCE/ICE)如图1所示。

这个曲线可以用门限电压加电阻电压叠加的方法来进行线性化,即(1)式中,ICN和VCEN为额定电流下的额定电压(由制造商提供,不同的IGBT模块略有不同)。

二极管的正向导通电压满足指数规律,但在工作范围内,也可以近似为一线性方程:(2)式中,VFN为额定电流下的二极管电压降;为VFO 为门槛电压,典型值为0.7V。

图1 IGBT模块IGBT典型的电压/电流曲线(VCE/ICE)1. 损耗计算由于二极管的计算方法与IGBT基本相同,所以下文主要分析的是IGBT部分。

假设电源的开关波形如图2所示。

图2 电源开关波形(1)功率损耗计算IGBT的功率损耗,首先来计算1个脉冲中的损耗,单个脉冲中包括导通损耗和开关损耗,如图3所示。

图3 单个脉冲IGBT的功率损耗1)使用VCE(sat),VSIC特性曲线计算导通损耗,一般采用TJ=25℃时的特性曲线。

(3)2)开关损耗开关损耗可用实际电压电流波形在开通和关断时间内的积分来求得。

IGBT功率模块封装失效机理及监测方法综述

IGBT功率模块封装失效机理及监测方法综述

IGBT功率模块封装失效机理及监测方法综述IGBT(Insulated Gate Bipolar Transistor)功率模块是一种集成了功率MOSFET和双极晶体管结构的半导体器件,广泛应用于高功率和高频率开关电源和电力电子应用中。

IGBT功率模块的性能和可靠性对电力系统的稳定运行起着至关重要的作用。

然而,由于工作环境的恶劣以及运行的高电流和高温度等因素,IGBT功率模块容易出现封装失效,影响其性能和寿命。

1.焊接疲劳:由于功率模块在工作过程中会不可避免地受到温度循环的作用,焊接接点易受到热应力的影响,导致焊接疲劳和裂纹的产生,从而引起焊点脱落和模块间隙增大。

2.焊接接触不良:焊接接点的不良接触会导致接触电阻升高,并在高功率运行时产生局部过热,导致接触界面松动,增加电阻和损耗。

3.热膨胀不匹配:由于功率模块中不同材料的热膨胀系数不同,工作过程中温度变化引起的热膨胀不匹配会导致模块内部应力的积累,从而损坏封装材料。

4.熔敷金属扩散:在高温环境下,熔敷金属会发生扩散,导致金属间的相互渗透和细化,降低导电和导热性能。

为了监测和评估IGBT功率模块的封装失效,可采用以下方法:1.热循环试验:通过将功率模块置于高温和低温交替的环境中,模拟实际工作条件下的热循环,以评估模块封装对温度变化的适应性和寿命。

2.压力测试:通过施加一定的机械压力,并在高温、高湿环境下测试,检测模块封装是否存在裂纹、脱落等问题,评估其可靠性。

3.红外热像仪:使用红外热像仪可以检测模块工作过程中的温度分布和局部过热现象,及时发现模块的温度异常情况。

4.电流监测:通过在模块输入和输出端接入电流传感器,实时监测电流波形和变化,以判断IGBT功率模块的工作状态和性能。

5.静电放电检测:静电放电是导致功率模块损坏的重要因素之一,可使用相关设备对模块进行静电放电测试,评估其抗静电能力。

综上所述,IGBT功率模块封装失效机理主要包括焊接疲劳、焊接接触不良、热膨胀不匹配和熔敷金属扩散等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源中IGBT 损耗简单测量方法
摘要: 文中介绍的损耗测量分析方法简单而有效,可以使设计者对IGBT 的选择和热设计作到心中有数,以利于得出最优的设计方案。

需要提请注意的是,测量工具及辅助电路的标准是非常必要的,否则可能导致较大的误差。

在任何装置中使用IGBT 都会遇到IGBT 的选择及热设计问题。

当电压应力和电流应力这2 个直观参数确定之后,最终需要根据IGBT 在应用条件下的损耗及热循环能力来选定IGBT。

通常由于使用条件不同,通过IGBT 数据手册给出的参数不能确切得出应用条件下IGBT 的损耗。

比较好的方法是通过测量行业确定IGBT 数据手册中参数的测量条件与实际应用环境的差别,并介绍IGBT 的损耗的简单测量方法。

IGBT 参数的定义
厂商所提供的IGBT 开关参数通常是在纯感性负载下测量的,图1 和图2 分别是IR 公司和TOSHIBA 公司测量开关时间的电路和定义开关时间的波形。

其共同特点是:开通处于续流状态的纯感性负载;关断有箝位二极管的纯感性负载。

有些数据手册还给出了开关过程的能量损失,也是在同样条件下测量的。

相关文档
最新文档