正弦函数、余弦函数的性质优秀教学设计

合集下载

正弦函数余弦函数的性质教学设计

正弦函数余弦函数的性质教学设计

正弦函数余弦函数的性质教学设计教学设计题目:正弦函数和余弦函数的性质一、教学目标:1.理解正弦函数和余弦函数的定义和图像特点;2.掌握正弦函数和余弦函数的周期、振幅、相位等性质;3.能够利用正弦函数和余弦函数的性质解决实际问题。

二、教学内容:1.正弦函数和余弦函数的定义和图像特点;2.正弦函数和余弦函数的周期、振幅、相位等性质;3.正弦函数和余弦函数在实际问题中的应用。

三、教学流程:【导入】(5分钟)1.利用实物或幻灯片展示一个周期性的物体(如钟摆、运动员腕表);2.引导学生思考:你能观察出这个物体有哪些规律性的变化吗?3.引导学生回忆中学过的函数,提到是否有一些函数能够描述这种规律性的变化?【探究】(20分钟)1.引导学生尝试利用直尺、铅笔在纸上标出正弦函数和余弦函数的图像;2.让学生观察图像,找出正弦曲线和余弦曲线的相似之处和不同之处;3.分组讨论并总结正弦函数和余弦函数的定义和图像特点。

【归纳】(15分钟)1.教师引导学生对上述内容进行归纳总结,将正弦函数和余弦函数的定义和图像特点整理成导学笔记;2.教师对学生的总结进行点评,给予肯定和指导。

【深化】(15分钟)1.教师拿出钟表,让学生观察时针的运动;2.引导学生思考:时针的运动是否具有周期性?有什么规律性的变化?是否可以用函数来描述?3.通过时针的运动,引入正弦函数和余弦函数的周期概念。

【拓展】(20分钟)1.教师引导学生观察不同振幅、不同相位的正弦函数和余弦函数的图像;2.教师解释振幅和相位的概念,并给出具体的定义;3.引导学生思考振幅和相位对函数图像的影响。

【展示】(15分钟)1.教师运用课件或黑板展示正弦函数和余弦函数的定义和图像特点,以及周期、振幅、相位等性质;2.教师通过示例演示如何求解正弦函数和余弦函数的周期、振幅、相位等具体数值。

【练习】(30分钟)1.学生进行练习题的训练,巩固对于正弦函数和余弦函数性质的掌握;2.教师巡视指导,及时给予反馈和纠正。

《正弦函数、余弦函数的性质》教学设计

《正弦函数、余弦函数的性质》教学设计

《正弦函数、余弦函数的性质》教学设计一、教材分析1.教材的内容和地位《正弦函数、余弦函数的性质》是人教A版数学必修4的第一章三角函数的内容,是学习了正弦函数、余弦函数的定义和图像之后,进一步学习正弦函数、余弦函数的性质。

该内容共两课时,这里讲的是第一课时,主要是探究正弦、余弦函数的定义域、值域(最值)和周期性,而对奇偶性、对称性和单调性的探究则放在第二节课。

正弦函数、余弦函数的图象和性质是三角函数里的重要内容,也是高考热点考察的内容之一。

本节课的学习过程中,数形结合的思想方法贯穿了本节内容的始终,利用图像研究性质,反过来再根据性质进一步地认识函数的图象,充分体现了数形结合的数学思想方法。

2.教学目标根据《新课标》的具体要求,结合学生现有的认知水平,确定教学目标如下:(1)知识与技能:通过观察正弦、余弦函数图像得到正弦函数、余弦函数的性质,并灵活应用性质解题;(2)过程与方法:培养学生分析、探索、类比和数形结合等数学思想方法在解决问题中的应用能力,培养学生自主探究的能力,深化研究函数性质的思想方法;(3)情感、态度与价值观:让学生亲身经历数学的研究过程,感受数学的魅力。

3. 教学重点和难点重点:通过观察正弦、余弦函数的图像研究正弦、余弦函数的性质;难点:周期函数、最小正周期的意义。

二、学情分析本课之前,学生已经学习了《必修一》,学习了函数的性质和研究函数的一般方法,学习了正弦函数、余弦函数的概念、图像以及诱导公式,这些都为本节课的学习打好了基础。

函数的定义域、(最值)值域、奇偶性、单调性等性质,学生类比指数函数、对数函数、幂函数的研究方法不难由观察图像得出结论,但对于函数的周期性,学生是第一次接触,对概念的理解可能会有困难。

三、教法学法分析1.教法分析本节课以学生为主体,教师引导学生通过观察正弦函数图像,自主探究,总结规律,再类比正弦函数得到余弦函数的相应结论,并能应用规律分析问题,解决问题。

在教学中以引导启发为主,在学生观察比较的基础上,师生以问答形式共同研究探讨,让学生经历知识再发现、再创造的过程。

正弦函数、余弦函数的性质区公开课教案

正弦函数、余弦函数的性质区公开课教案

正弦函数、余弦函数的性质区公开课教案第一章:正弦函数的定义与性质1.1 教学目标了解正弦函数的定义及图像特点掌握正弦函数的单调性、奇偶性、周期性等基本性质1.2 教学内容正弦函数的定义及表达式正弦函数的图像特点正弦函数的单调性、奇偶性、周期性等基本性质1.3 教学方法通过多媒体展示正弦函数的图像,引导学生观察并总结性质利用数学软件或模型演示正弦函数的单调性和奇偶性举例说明正弦函数在不同区间上的性质变化1.4 教学活动引入正弦函数的定义,引导学生理解正弦函数的概念让学生自主探究正弦函数的图像特点,分组讨论并汇报成果教师讲解正弦函数的单调性、奇偶性、周期性等基本性质学生进行习题训练,巩固所学知识第二章:余弦函数的定义与性质2.1 教学目标了解余弦函数的定义及图像特点掌握余弦函数的单调性、奇偶性、周期性等基本性质2.2 教学内容余弦函数的定义及表达式余弦函数的图像特点余弦函数的单调性、奇偶性、周期性等基本性质2.3 教学方法通过多媒体展示余弦函数的图像,引导学生观察并总结性质利用数学软件或模型演示余弦函数的单调性和奇偶性举例说明余弦函数在不同区间上的性质变化2.4 教学活动引入余弦函数的定义,引导学生理解余弦函数的概念让学生自主探究余弦函数的图像特点,分组讨论并汇报成果教师讲解余弦函数的单调性、奇偶性、周期性等基本性质学生进行习题训练,巩固所学知识第三章:正弦函数与余弦函数的图像与性质对比3.1 教学目标理解正弦函数与余弦函数的图像与性质的异同能够运用图像与性质解决实际问题3.2 教学内容正弦函数与余弦函数的图像与性质对比运用正弦函数与余弦函数的图像与性质解决实际问题3.3 教学方法通过多媒体展示正弦函数与余弦函数的图像,引导学生观察并总结异同利用数学软件或模型演示正弦函数与余弦函数的单调性和奇偶性举例说明正弦函数与余弦函数在不同区间上的性质变化3.4 教学活动引导学生对比正弦函数与余弦函数的图像与性质,分组讨论并汇报成果教师讲解正弦函数与余弦函数的图像与性质的异同学生进行习题训练,巩固所学知识第四章:正弦函数、余弦函数在实际问题中的应用4.1 教学目标理解正弦函数、余弦函数在实际问题中的应用能够运用正弦函数、余弦函数解决实际问题4.2 教学内容正弦函数、余弦函数在实际问题中的应用运用正弦函数、余弦函数解决实际问题4.3 教学方法通过多媒体展示实际问题,引导学生观察并运用正弦函数、余弦函数解决利用数学软件或模型演示正弦函数、余弦函数的实际应用举例说明正弦函数、余弦函数在不同场景下的应用4.4 教学活动引导学生运用正弦函数、余弦函数解决实际问题,分组讨论并汇报成果教师讲解正弦函数、余弦函数在实际问题中的应用学生进行习题训练,巩固所学知识第五章:总结与拓展5.1 教学目标总结正弦函数、余弦函数的性质及其应用提高学生的思维拓展能力5.2 教学内容对正弦函数、余弦函数的性质及其应用进行总结进行相关拓展知识的介绍5.3 教学方法通过多媒体展示总结性的图表,引导学生总结正弦函数、余弦函数的性质及其应用引导学生进行拓展思考,举例说明正弦函数、余弦函数在其他领域的应用5.4 教学活动第六章:正弦函数、余弦函数的辅助角公式6.1 教学目标理解正弦函数、余弦函数的辅助角公式能够运用辅助角公式进行函数的化简和求解6.2 教学内容正弦函数、余弦函数的辅助角公式介绍辅助角公式的推导过程运用辅助角公式进行函数的化简和求解6.3 教学方法通过多媒体展示辅助角公式的推导过程,引导学生理解并记忆公式利用数学软件或模型演示辅助角公式的应用举例说明如何运用辅助角公式进行函数的化简和求解6.4 教学活动引导学生学习和理解辅助角公式,分组讨论并汇报成果教师讲解辅助角公式的推导过程和应用方法学生进行习题训练,巩固所学知识第七章:正弦函数、余弦函数的积分与微分7.1 教学目标理解正弦函数、余弦函数的积分与微分公式能够运用积分与微分公式进行函数的求解和证明7.2 教学内容正弦函数、余弦函数的积分与微分公式介绍积分与微分的推导过程运用积分与微分公式进行函数的求解和证明7.3 教学方法通过多媒体展示积分与微分的推导过程,引导学生理解并记忆公式利用数学软件或模型演示积分与微分的应用举例说明如何运用积分与微分公式进行函数的求解和证明7.4 教学活动引导学生学习和理解积分与微分公式,分组讨论并汇报成果教师讲解积分与微分公式的推导过程和应用方法学生进行习题训练,巩固所学知识第八章:正弦函数、余弦函数的复合函数理解正弦函数、余弦函数的复合函数概念能够运用复合函数的性质进行函数的求解和分析8.2 教学内容正弦函数、余弦函数的复合函数概念介绍复合函数的性质和规律运用复合函数的性质进行函数的求解和分析8.3 教学方法通过多媒体展示复合函数的图像和性质,引导学生理解并记忆概念利用数学软件或模型演示复合函数的应用举例说明如何运用复合函数的性质进行函数的求解和分析8.4 教学活动引导学生学习和理解复合函数的概念和性质,分组讨论并汇报成果教师讲解复合函数的性质和应用方法学生进行习题训练,巩固所学知识第九章:正弦函数、余弦函数在物理、工程等领域的应用9.1 教学目标了解正弦函数、余弦函数在物理、工程等领域的应用能够运用正弦函数、余弦函数解决实际问题9.2 教学内容正弦函数、余弦函数在物理、工程等领域的应用案例运用正弦函数、余弦函数解决实际问题通过多媒体展示正弦函数、余弦函数在物理、工程等领域的应用案例,引导学生观察并运用所学知识解决实际问题利用数学软件或模型演示正弦函数、余弦函数在实际问题中的应用举例说明正弦函数、余弦函数在不同领域中的具体应用9.4 教学活动引导学生运用正弦函数、余弦函数解决实际问题,分组讨论并汇报成果教师讲解正弦函数、余弦函数在物理、工程等领域的应用学生进行习题训练,巩固所学知识第十章:总结与评价10.1 教学目标总结正弦函数、余弦函数的性质、图像及其应用对学生的学习情况进行评价和反思10.2 教学内容对正弦函数、余弦函数的性质、图像及其应用进行总结学生学习情况的评价和反思10.3 教学方法通过多媒体展示总结性的图表,引导学生总结正弦函数、余弦函数的性质、图像及其应用教师对学生的学习情况进行评价和反馈,引导学生进行自我反思10.4 教学活动引导学生总结本节课所学内容,分组讨论并汇报成果教师对学生的学习情况进行第十一章:正弦函数、余弦函数的进一步探究11.1 教学目标深入理解正弦函数、余弦函数的周期性、对称性等性质能够运用正弦函数、余弦函数的性质解决复杂问题11.2 教学内容正弦函数、余弦函数的周期性、对称性等性质的深入探讨运用正弦函数、余弦函数的性质解决复杂问题11.3 教学方法通过多媒体展示正弦函数、余弦函数的图像,引导学生观察并总结性质利用数学软件或模型演示正弦函数、余弦函数的单调性和奇偶性举例说明正弦函数、余弦函数在不同区间上的性质变化11.4 教学活动引导学生深入理解正弦函数、余弦函数的性质,分组讨论并汇报成果教师讲解正弦函数、余弦函数的周期性、对称性等性质的深入探讨学生进行习题训练,巩固所学知识第十二章:正弦函数、余弦函数在现代科技领域的应用12.1 教学目标了解正弦函数、余弦函数在现代科技领域的应用能够运用正弦函数、余弦函数解决实际问题12.2 教学内容正弦函数、余弦函数在现代科技领域的应用案例运用正弦函数、余弦函数解决实际问题12.3 教学方法通过多媒体展示正弦函数、余弦函数在现代科技领域的应用案例,引导学生观察并运用所学知识解决实际问题利用数学软件或模型演示正弦函数、余弦函数在实际问题中的应用举例说明正弦函数、余弦函数在不同领域中的具体应用12.4 教学活动引导学生运用正弦函数、余弦函数解决实际问题,分组讨论并汇报成果教师讲解正弦函数、余弦函数在现代科技领域的应用学生进行习题训练,巩固所学知识第十三章:正弦函数、余弦函数与日常生活13.1 教学目标了解正弦函数、余弦函数在日常生活中的应用能够运用正弦函数、余弦函数解决生活中的问题13.2 教学内容正弦函数、余弦函数在日常生活中的应用案例运用正弦函数、余弦函数解决生活中的问题13.3 教学方法通过多媒体展示正弦函数、余弦函数在日常生活中的应用案例,引导学生观察并运用所学知识解决生活中的问题利用数学软件或模型演示正弦函数、余弦函数在日常问题中的应用举例说明正弦函数、余弦函数在不同生活场景中的具体应用13.4 教学活动引导学生运用正弦函数、余弦函数解决生活中的问题,分组讨论并汇报成果教师讲解正弦函数、余弦函数在日常生活中的应用学生进行习题训练,巩固所学知识第十四章:正弦函数、余弦函数的综合应用14.1 教学目标掌握正弦函数、余弦函数的综合应用方法能够运用正弦函数、余弦函数解决复杂问题14.2 教学内容正弦函数、余弦函数的综合应用案例运用正弦函数、余弦函数解决复杂问题14.3 教学方法通过多媒体展示正弦函数、余弦函数的综合应用案例,引导学生观察并运用所学知识解决复杂问题利用数学软件或模型演示正弦函数、余弦函数的综合应用举例说明正弦函数、余弦函数在不同场景中的综合应用14.4 教学活动引导学生掌握正弦函数、余弦函数的综合应用方法,分组讨论并汇报成果教师讲解正弦函数、余弦函数的综合应用方法学生进行习题训练,巩固所学知识第十五章:总结与反思15.1 教学目标总结正弦函数、余弦函数的学习过程及收获对学习情况进行反思和总结15.2 教学内容对正弦函数、余弦函数的学习过程及收获进行总结对学习情况进行反思和总结15.3 教学方法通过多媒体展示总结性的图表,引导学生总结正弦函数、余弦函数的学习过程及收获教师对学生的学习情况进行评价和反馈,引导学生进行自我反思15.4 教学活动引导学生重点和难点解析本文主要介绍了正弦函数和余弦函数的性质及其在各个领域的应用,重点包括正弦函数和余弦函数的定义、图像特点、单调性、奇偶性、周期性等基本性质,以及辅助角公式、积分与微分、复合函数等高级性质。

《正弦函数余弦函数的性质》教学设计

《正弦函数余弦函数的性质》教学设计

《正弦函数余弦函数的性质》教学设计教学目标:1.掌握正弦函数和余弦函数的定义和性质;2.能够根据给定的函数关系图表示出正弦函数和余弦函数;3.能够正确分析并解决与正弦函数和余弦函数相关的实际问题。

教学准备:课件、黑板、白板、草图纸、极坐标图纸、小磁铁、线圈、电源、示波器。

教学过程:Step 1 引入:(10分钟)在黑板或白板上画出正弦曲线和余弦曲线的图形,引导学生观察并思考如下问题:1.从图中可以看出正弦曲线和余弦曲线之间的关系吗?2.正弦曲线和余弦曲线的特点是什么?Step 2 导入:(20分钟)1.引导学生回顾三角函数的定义,让学生给出正弦函数和余弦函数的定义。

2.使用极坐标图纸,给学生展示正弦函数和余弦函数的定义。

3.让学生观察并分析正弦函数和余弦函数的周期、幅度、对称轴等性质。

Step 3 特点探究:(30分钟)1.让学生根据给定的函数关系图表示出正弦函数和余弦函数,并进一步分析函数的周期、幅度、对称轴等性质。

2.提供一些计算题目,让学生通过计算验证正弦函数和余弦函数的性质。

3.让学生画出正弦函数和余弦函数的周期函数图形,并找出函数的最大值、最小值。

Step 4 分组讨论:(20分钟)将学生分成小组,每组选择一个有关于正弦函数和余弦函数的实际问题,并进行讨论。

每个小组选取一个代表进行展示,并得到其他小组的评价。

Step 5 拓展应用:(20分钟)1.配备小磁铁、线圈、电源、示波器等实验仪器,让学生进行实验探究。

Step 6 总结归纳:(10分钟)1.学生自主进行总结,并将同学们的思路罗列在黑板或白板上。

2.教师进行总结提炼,并要求学生记录在笔记本或草图纸上。

Step 7 作业布置:(5分钟)要求学生在课本上的相关练习题上进行巩固。

教学反思:。

正弦函数余弦函数的图象与性质教案

正弦函数余弦函数的图象与性质教案

一、教案基本信息正弦函数与余弦函数的图象与性质课时安排:2课时教学目标:1. 理解正弦函数和余弦函数的定义和基本性质。

2. 学会绘制正弦函数和余弦函数的图象。

3. 能够运用正弦函数和余弦函数的性质解决实际问题。

教学重点:1. 正弦函数和余弦函数的定义和基本性质。

2. 正弦函数和余弦函数的图象绘制方法。

教学难点:1. 正弦函数和余弦函数的图象绘制方法。

2. 运用正弦函数和余弦函数的性质解决实际问题。

教学准备:1. 教学PPT。

2. 教学黑板。

3. 粉笔。

4. 学生用书。

教学过程:第一课时:一、导入(5分钟)教师通过复习正弦函数和余弦函数的定义,引导学生回顾初中阶段学习的三角函数知识,为新课的学习做好铺垫。

二、新课内容(15分钟)1. 讲解正弦函数的定义和性质。

2. 讲解余弦函数的定义和性质。

3. 引导学生通过数学软件或手绘图象,绘制正弦函数和余弦函数的图象。

4. 分析正弦函数和余弦函数图象的特点。

三、课堂练习(10分钟)教师给出一些练习题,让学生独立完成,巩固所学知识。

第二课时:一、复习导入(5分钟)教师通过复习上节课所学内容,检查学生对正弦函数和余弦函数的定义、性质以及图象的掌握情况。

二、深入学习(15分钟)1. 讲解正弦函数和余弦函数的图象绘制方法。

2. 讲解如何运用正弦函数和余弦函数的性质解决实际问题。

3. 引导学生通过实例,运用正弦函数和余弦函数的性质解决问题。

三、课堂练习(10分钟)教师给出一些练习题,让学生独立完成,巩固所学知识。

四、总结与反思(5分钟)教师引导学生总结本节课所学内容,反思自己的学习过程,为课后复习做好规划。

教学评价:通过课堂讲解、练习题以及课后作业,评估学生对正弦函数和余弦函数的定义、性质、图象以及应用的掌握情况。

对学生在学习过程中遇到的问题进行针对性的辅导,提高学生的学习效果。

六、教学案例分析本节课以一道实际问题为例,让学生运用正弦函数和余弦函数的性质解决问题。

案例:某城市一条道路的路灯间隔为5米,路灯的高度为10米。

正弦函数、余弦函数的图象和性质的一等奖说课稿3篇

正弦函数、余弦函数的图象和性质的一等奖说课稿3篇

1、正弦函数、余弦函数的图象和性质的一等奖说课稿一、教材分析1. 地位与重要性“正弦函数、余弦函数的图象和性质”一节是高中《数学》第一册(下)的重要内容,这一节共分为四个课时。

本课为第二课时,其主要内容是通过观察正弦线、余弦线及正、余弦曲线研究正、余弦函数性质中最基本的定义域与值域。

通过对这一节课的学习,既可加深学生对单位圆、正弦线、余弦线及正、余弦函数图象的认识,又可加强学生对三角函数概念的理解,还为后面其它性质的学习作好准备,起到承上启下的重要作用。

2. 教学目标:(1)能力目标:①培养学生的观察能力、分析能力、归纳能力、表达能力;②培养学生数形结合、类比等思想方法;③培养学生进行数学交流,获得数学知识的能力。

(2)情感目标:培养学生勇于探索,勤于思考的精神。

(3)知识目标:①使学生正确理解正、余弦函数的定义域、值域的意义;②会求简单函数的定义域、值域。

3. 教学重、难点:重点:正弦、余弦函数的定义域和值域。

理解并掌握正、余弦函数的定义域、值域是高中数学的重要内容,也是大纲的明确要求。

复习好三角函数定义及正弦线、余弦线等有关知识是解决问题的关键。

难点:有关函数定义域、值域的求解。

解三角函数问题时,学生普遍存在会而不对,对而不全,造成失误的很大原因来自定义域和值域问题,往往不注意角的范围,在求最值方面更为突出。

二、教法分析:根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化教学改革,确定本课主要的教法为:(1)讨论式教学:通过学生对图形的观察,让学生分组讨论、交流、总结,并发表意见,说出正弦、余弦函数的定义域与值域。

(2)讲议结合教学:教师适时指导、分析、讲解和提问,并及时对学生的意见进行肯定与评价。

(3)电脑多媒体辅助教学:借助电脑多媒体引导学生观察图形,使问题变得直观,易于突破;同时其灵活多样的形式可以极大地提高学生的学习兴趣;其软件交互功能可以帮助教师更好地实施教学,加大一堂课的信息量,使教学目标更好的实现。

《正弦函数余弦函数的性质》教学设计

《正弦函数余弦函数的性质》教学设计

《正弦函数余弦函数的性质》教学设计教学设计:正弦函数、余弦函数的性质【教学目标】1.知识与能力目标a.了解正弦函数和余弦函数的定义及其性质;b.掌握正弦函数和余弦函数的图像特点;c.理解正弦函数和余弦函数的周期性和对称性;d.熟练利用性质解决与正弦函数和余弦函数相关的问题。

2.过程与方法目标a.通过多种形式的讲解和演示,提高学生对正弦函数和余弦函数的概念的理解;b.引导学生进行小组合作和交流讨论,培养学生的合作学习意识和能力;c.鼓励学生进行思考和探究,培养学生的自主学习和问题解决能力;d.利用图像和实例帮助学生加深对正弦函数和余弦函数的理解。

【教学重点】正弦函数和余弦函数的定义及其性质。

【教学准备】教师:课堂教学设计、教学PPT、黑板、彩色粉笔、实物模型等。

学生:学习笔记、教材。

【教学过程】Step 1 导入与引入(10分钟)1.教师先介绍正弦函数和余弦函数的概念,并通过实际生活中的例子,比如海浪起伏、摆动等,引导学生了解正弦函数和余弦函数的特点和应用。

2.教师再通过黑板写出正弦函数和余弦函数的定义,引导学生思考函数的定义与图像的关系。

Step 2 讲解正弦函数和余弦函数的性质(15分钟)1.教师通过PPT或者黑板,讲解正弦函数和余弦函数的性质,如定义域、值域、周期、对称性等,并通过图像和实例加深学生的理解。

2.教师提问学生:正弦函数和余弦函数的定义域是什么?取值范围是什么?周期是多少?能否找到其他满足这些性质的函数?引导学生思考函数图像的特点。

Step 3 利用性质解决问题(15分钟)1.教师引导学生通过性质解决实际问题,比如:已知一个函数的定义域是[-π/2,π/2],值域是[-1,1],且函数是奇函数,能否确定这个函数是正弦函数?怎样确定?等。

2.教师安排学生小组活动,给出一些问题,要求学生根据性质解答,并交流讨论解题思路和方法。

Step 4 总结与拓展(10分钟)1.教师带领学生总结正弦函数和余弦函数的性质,并强调重点。

正弦函数、余弦函数的图象和性质教案

正弦函数、余弦函数的图象和性质教案

正弦函数、余弦函数的图象和性质教案第一章:正弦函数的定义与图象1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图象1.2 教学内容正弦函数的定义:正弦函数是直角三角形中,对于一个锐角,其对边与斜边的比值。

正弦函数的图象:正弦函数的图象是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。

1.3 教学活动讲解正弦函数的定义,并通过实际例子进行解释。

使用图形计算器或者绘图软件,让学生自己绘制正弦函数的图象,并观察其特点。

1.4 作业与练习让学生完成一些关于正弦函数的练习题,包括选择题和解答题。

第二章:余弦函数的定义与图象2.1 教学目标了解余弦函数的定义能够绘制余弦函数的图象2.2 教学内容余弦函数的定义:余弦函数是直角三角形中,对于一个锐角,其邻边与斜边的比值。

余弦函数的图象:余弦函数的图象也是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。

2.3 教学活动讲解余弦函数的定义,并通过实际例子进行解释。

使用图形计算器或者绘图软件,让学生自己绘制余弦函数的图象,并观察其特点。

2.4 作业与练习让学生完成一些关于余弦函数的练习题,包括选择题和解答题。

第三章:正弦函数和余弦函数的性质3.1 教学目标了解正弦函数和余弦函数的性质3.2 教学内容正弦函数和余弦函数的周期性:正弦函数和余弦函数都是周期函数,它们的周期都是2π。

正弦函数和余弦函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数。

正弦函数和余弦函数的单调性:正弦函数和余弦函数在一个周期内都是先增后减。

3.3 教学活动讲解正弦函数和余弦函数的性质,并通过实际例子进行解释。

让学生通过观察图象,总结正弦函数和余弦函数的性质。

3.4 作业与练习让学生完成一些关于正弦函数和余弦函数性质的练习题,包括选择题和解答题。

第四章:正弦函数和余弦函数的应用4.1 教学目标能够应用正弦函数和余弦函数解决实际问题4.2 教学内容正弦函数和余弦函数在物理学中的应用:正弦函数和余弦函数可以用来描述简谐运动,如弹簧振子的运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,2

为其单
调递增区间,
2
轴的垂线,可以得到对应于

0,




,…, 2
角的正弦线.
632
c.找横坐标:把 x 轴上从 0 到 2 ( 2 6.18 )这一段分成 12 等分.
d.找纵坐标:将正弦线对应平移,即可指出相应 12 个点.
e.连线:用平滑的曲线将 12 个点依次从左到右连接起来,即得 y sin x ,
x

x

R

y

sin x


是同一个函数,即余弦函数的图像可以通过正弦曲线向左平移
个长度单
2
2
位角得到,余弦函数的图像叫做余弦曲线,如图 2,师:请同学们说出在函数 y cos x ,
x 0,2 的图像上,起关键作用的五个点的坐标.
图 2
生:(0,1), ,0 , ,1 , 3 ,0 , 2,1
了,以后我们常先找出这五个关键点,然后用光滑的曲线将它们连结起来,就得到函数的 简图,这种作图的方法称为“五点法”作图.
④用变换法作余弦函数 y cos x , x R 的图像
因为
y

cos
x

cos
x

sin 2


x

sin
x

2

,所以
y

cos
C ,sin ? 3 3
教师引导学生用图 2 的方法画出点 C .
我们能否借助上面作点 C 的方法在直角坐标系中作出正弦函数 y sin x , x R 的图
像呢?

①用几何方法作 y sin x , x 0,22 的图像
我们知道,作函数的图像的步骤是:列表、描点、连结;如果我们用列表法得出各点 的坐标,就会因各点的纵坐标都是查三角函数表得到的数值不够精确,使得描点后画出的
生:它们的图像关于 x 轴对称.
练习:
(1)说出 f x sin x , x 0,2 的单调区间; (2)说出 f x cos x , x , 的奇偶性.
参考答案:(1)由
f
x
cos
x,
x
0、2
图像知、
0,2


3 2
正弦函数、余弦函数的图像和性质
(第一课时)
(一)教学具准备 直尺、圆规、投影仪. (二)教学目标 1.了解作正、余弦函数图像的四种常见方法.
2.掌握五点作图法,并会用此方法作出 0,2 上的正弦曲线、余弦曲线.
3.会作正弦曲线的图像并由此获得余弦曲线图像. (三)教学过程(可用课件辅助教学) 1.设置情境
生:函数 y 1 sin x , x 0,2 的图像可由 y sin x , x 0,2 的图像向上平移
1 个单位得到.
(2)按五个关键点列表
x

0

3
2
2
2
cos x
1
0
-1
0
1
cos x -1
0
1
0
-1
利用五点法作出简图 4
图4
师: y cos x , x 0,2 与 y cos x , x 0,2 的图像有何联系?
键作用的是函数 y sin x , x 0,2 与 x 轴的交点及最高点和最低点这五个点,你能依
次它们的坐标吗?
生:(0,0), ,1 , ,0, 2 ,1 , 2,0
2
3
师:事实上,只要指出这五个点, y sin x , x 0,2 的图像的形状就基本确定
度),就可以得到正弦函数数 y sin x , x R 的图像,如图 1.

正弦函数 y sin x , x R 的图像叫做正1 弦曲线.
③五点法作 y sin x , x 0,2 的简图
师:在作正弦函数 y sin x , x 0,2 的图像时,我们描述了 12 个点,但其中起关
引进弧度制以后, f x sin x 就可以看做是定义域为 , 的实变量函数.作
为函数,我们首先要关注其图像特征.本节课我们一起来学习作正、余弦函数图像的方 法.
2.探索研究 (1)复习正弦线、余弦线的概念 前面我们已经学习过三角函数线的概念及作法,请 同学们回忆一下什么叫正弦线?什么叫余弦线?(师画 图 1)
设任意角 的终边与单位圆相交于点 Px,y ,
过点作 x 轴的垂线,垂足为 M ,则有向线段 MP 叫做 角 的正弦线,有向线段 OM 叫做角 的余弦线.
(2)在直角坐标系中如何作点 ,sin
图1
由单位圆中的正弦线知识,我们只要已知一个角 的大小,就能用几何方法作出对应 的正弦值 sin 的大小来,请同学们思考一下,如何用几何方法在直角坐标系中作出点
x 0,2 的图像.
②作正弦曲线 y sin x , x R 的图像.
图为终边相同的角的三角函数值相等,所以函数 y sin x , x 2k,2k 1 , k Z 且 k 0 的图像与函数 y sin x , x 0,2 的图像的形状完全一样,只是位置不 同,于是我们只要将函数 y sin x , x 0,2 的图像向左、右平移(每次 2 个单位长
2
2
3.例题分析 【例 1】画出下列函数的简图:
(1) y 1 sin x , x 0,2 ;
(2) y cos x , x 0,2 .
解:(1)按五个关键点列表
x

0

2
sin x 1
2
1
利用五点法作出简图 3
3
2
2
-1
0
0
1

师:请说出函数 y 1 sin x 与 y sin3x 的图像之间有何联系?
图像误差也大,为克服这一不足,我们用前面作点 C ,sin 的几何方法来描点,从而 3 3
使图像的精确度有了提高.
(边画图边讲解),我们先作 y sin x 在 0,2 上的图像,具体分为如下五个步骤:
a.作直角坐标系,并在直角坐标系中 y 轴左侧画单位圆.
b.把单位圆分成 12 等份(等份越多,画出的图像越精确).过单位圆上的各分点作 x
相关文档
最新文档