非线性回归分析常见曲线及方程)

非线性回归分析常见曲线及方程)
非线性回归分析常见曲线及方程)

非线性回归分析

回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理 两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S 型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的 回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析

常见非线性规划曲线

1. 双曲线1b a y x =+

2.

二次曲线 3.

三次曲线 4.

幂函数曲线 5.

指数函数曲线(Gompertz) 6.

倒指数曲线y=a /e b x 其中a>0, 7.

S 型曲线(Logistic) 1e x y a b -=+ 8.

对数曲线 y=a+b log x,x >0 9. 指数曲线y =a e bx 其中参数a >0

1.回归:

(1)确定回归系数的命令

[beta ,r ,J]=nlinfit (x,y,’model’,beta0)

(2)非线性回归命令:nlintool (x ,y ,’model’, beta0,alpha )

2.预测和预测误差估计:

[Y ,DELTA]=nlpredci (’model’, x,beta ,r ,J )

求nlinfit 或lintool 所得的回归函数在x 处的预测值Y 及预测值的显著性水平为1-alpha 的置信区间Y ,DELTA.

例2 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s

关于t 的回归方程2?ct bt a s

++=. 解:

1. 对将要拟合的非线性模型y=a /e b x ,建立M 文件volum.m 如下:

function yhat=volum(beta,x)

yhat=beta(1)*exp(beta(2)./x);

2.输入数据:

x=2:16;

y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59

10.60 10.80 10.60 10.90 10.76];

beta0=[8 2]';

3.求回归系数:

[beta,r ,J]=nlinfit(x',y','volum',beta0); beta

即得回归模型为:

1.0641

11.6036e x y-

=

4.预测及作图:

[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')

2.非线性函数的线性化

求曲线方程的几种常用方法

求曲线方程的几种常用方法 求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有: 1.直接法:就是课本中主要介绍的方法。若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。 解法一:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的有中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则A (,0)a -,B (,0)a 。 设动点C 为(,)x y , ∵222||||||AC BC AB +=, ∴2 224a +=, 即222x y a +=. 由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。 解法二:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,C (,)x y ∵1AC BC k k =-, (1) ∴1y y x a x a =-+- , (2) 化简得:222 x y a += , (3) 由于在x a ≠±时方程(2)与(3)不等价,故所求轨迹方程为222x y a +=(x a ≠±)。 解法三:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,且设动点C (,)x y 。 ∵1||||2 CO AB =, a =,即222x y a +=。 轨迹中应除去A 、B 两点(理由同解法一),故所求轨迹方程为222x y a +=(x a ≠±)。 说明:利用这种方法求曲线方程的一般方法步骤:

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

简单曲线的极坐标方程

极坐标方程 简单曲线的极坐标方程 【教学目标】 1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力. 2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法. 3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力. 【教学重难点】 简单曲线的极坐标方程的求法 【教学过程】 一、复习、预习自学: 基础知识梳理问题导引 1.极坐标系的概念(P9) 如图,在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及正方向(通常取逆时针方向),这样就建立了一个极坐标系 设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径记为;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为.有序实数对叫做点M 的极坐标记为. 2.极坐标和直角坐标的互化(P11) (1)极坐标化为直角坐标 , (2)直角坐标化为极坐标 , 3.曲线和方程(平面直角坐标系中(P12)) 曲线C上的点的坐标都是方程的解; 以方程的解为坐标的点都在曲线C上. (1)极坐标系和以前所学的平面直角坐标系有什么区别和联系? (2)那些只是是我们应该掌握的? (3)极坐标系中如何用方程表示曲线? 【复习、预习自测】 1.极坐标化为直角坐标:________,________ 2. 直角坐标化为极坐标: ________,________ 二、合作探究 探究点一:圆的极坐标方程(P12-13)

如图,半径为a的圆的圆心坐标为C(a0)(a>0).你能用一个等式表示圆上任意一点的极坐标满 足的条件吗? 探究点1图拓展1图 小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程叫做曲线C的极 坐标方程: (1) (2) 拓展1(P13):已知圆O的半径为r,建立怎样的极坐标系,可以使圆的极坐标方程更简单?并将所得结果与直角坐标方程进行比较. 探究点二:直线的极坐标方程(P13) 如图,直线l经过极点,从极轴到直线l的角是,求直线l的极坐标方程. 探究点2图拓展2图拓展3图 拓展2(P14):求过点A(a0)(a>0)且垂直于极轴的直线l的极坐标方程. 拓展3(P14):设P点的极坐标为直线l过点P且与极轴所成的角为,求直线l的极坐标方程. 【课堂小结】 1.知识方面_____________________________________________________________________ 2.数学思想方面_________________________________________________________________ 探究点三:圆锥曲线的极坐标方程 已知椭圆C的焦距为2c,长轴长为2a,离心率为e(0

求曲线方程的常用方法

求曲线方程的常用方法 1. 直接法——若动点的运动规律就是一些几何量的等量关系,这些条件简单明确易于表 达,则可根据已知(或可求)的等量关系直接列出方程的方法。 2. 定义法——利用二次曲线的定义求轨迹方程。 (1) 若平面上的动点P(x,y)满足条件:11||||PF PF +=定长2a ,且122||a F F >(F 1F 2 为定点),那么P 点的轨迹为以F 1、F 2为焦点的椭圆。故只须选择恰当的坐标系, 就可直接写出椭圆的方程。 (2) 若平面上的动点P(x,y)满足条件:11||||||PF PF -=定长2a ,且122||a F F <(F 1F 2 为定点),那么P 点的轨迹为以F 1、F 2为焦点的双曲线。当122||a F F =时,P 点的轨迹为射线;如果不含绝对值,那么轨迹是一支双曲线或一条射线。故只 须选择恰当的坐标系,依双曲线的定义,就可直接写出椭圆的方程。 3. 代入法(或称相关点法)——有时动点P 所满足的几何条件不易求出,但它随另一动点 P ’的运动而运动,称之为相关点,若相关点P ’满足的条件简单、明确(或P ’的轨迹方程已知),就可以用动点P 的坐标表示出相关点P ’的坐标,再用条件把相关满足的轨迹方程表示出来(或将相关点坐标代入已知轨迹方程)就可得所求动点的轨迹方程的方法。 4. 几何法——利用平面几何的有关知识找出所求动点满足的几何条件,并写出其方程的方 法。 5. 参数法——有时很难直接找出动点的横纵坐标间的关系,可选择一个(有时已给出)与 所求动点的坐标x,y 都相关的参数,并用这个参数把x,y 表示出来,然后再消去参数的方法。 如:遇求两动直线的交点的轨迹方程问题,可适当引进参数(如斜率、截距等),写出两动直线的方程,然后消去参数就得到所求的两动直线的交点的轨迹方程,这种方法又称交轨法,其关键有二:一是选参,要容易写出动直线的方程;二是消参,消参的途径灵活多变,有时分别从两个方程中解出参数,再消参;有时分别解出x,y ,再消参;有时直接或适当变形后,通过加、减、乘、除,求平方和,求平方差等方法整体消参。 5.定义法—— 注意点:求动点轨迹方程在掌握一般步骤的基础上还要注意以下两点,一选建适当的坐标系,以简化运算;二是要注意曲线图形的范围,即根据条件限定方程中变量x,y 的取值范围,将方程中不适合题意的解去掉。 思路方法技巧: 1.“直接法”求动点的轨迹方程 例1. 在正三角形ABC 内有一动点P ,已知P 到三个顶点的距离分别为|PA|、|PB|、|PC| 且满足22||||||P A P B P C =+,求动点P 的轨迹方程。 222()4(0(2)x y a y +=<≤ 例2. 互相垂直的两条直线1l 、2l 的交点为P(a,b),长为2r 的线段MN 的两端点分别在1l 、 2l 上滑动,求线段MN 的中点Q 的轨迹。 (|PQ|=1/2|MN|222()()x a y b r -+-=) 例3. 已知一条曲线在x 轴的上方,它上面的每一个点到A(0,2) 的距离减去它到x 轴的

(完整版)线性回归方程——非线性方程转化为线性方程

线性回归方程——非线性方程转化为线性方程 例1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费x i 和年销售量y i (i =1,2,?,8)数据作了初步处理,得到下面的散点图及一些统计量的值. x? y ? w ? 46.6 563 6.8 289.8 1.6 1469 108.8 表中w i =√x i ,w ? =1 8 ∑w i 8i=1, ,I )根据散点图判断,y =a +bx 与y =c +d √x ,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由); ,II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程; (III )已知这种产品的年利润z 与x ,y 的关系为z =0.2y ?x ,根据(II )的结果回答下列问题: (i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大? 附:对于一组数据(u 1,v 1) (u 2,v 2) ,…,(u n ,v n ) 其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为:β ?=∑ (u i ?u)(v i ?v) n i=1∑(u i ?u)2 n i=1,α?=v ?β ?u . 【答案】(Ⅰ)y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型;(Ⅱ)y ?=100.6+68√x ;(Ⅲ)(i)答案见解析;(ii)46.24千元. 【解析】(I )由散点图可以判断,y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型. (II )令w =√x ,先建立y 关于w 的线性回归方程,由于d ?=∑(w i ?w)(y i ?y) 8 i=1∑(w i ?w)28 i=1= 108.81.6 =68, ∴c?=y ?d ?w =563?68×6.8=100.6, ∴y 关于w 的线性回归方程为y ?=100.6+68w , 因此y 关于x 的回归方程为y ?=100.6+68√x . (III )(ⅰ)由(II )知,当x =49时,年销售量y 的预报值y ?=100.6+68√49=576.6, 年利润z 的预报值为z?=576.6×0.2?49=66.32. ,ⅱ)根据(II )的结果知,年利润z 的预报值z?=0.2(100.6+68√x)?x =?x +13.6√x +20.12, 所以当√x =13.62 =6.8,即x =46.24时,z?取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.

简单曲线的极坐标方程优秀教学设计

简单曲线的极坐标方程 内容和内容解析 本节课是普通高中新课程标准实验教科书《数学》(选修4-4)中第一讲《坐标系》第三节“简单曲线的极坐标方程”的第一课时。解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。牛顿在他的老师沃利斯的影响下,多次运用坐标系,按曲线的方程来描述曲线,而且提出了建立新的坐标系的创建。牛顿坐标系就是现在的极坐标系。极坐标系的创立为数学研究做出了巨大的贡献。简单曲线的极坐标方程这一节是本讲的重点内容,是选修4-4的重点,也是高考选考内容中的考察内容之一。极坐标方程在实际生活中有着较广的应用,同时也是学生锻炼提高数学能力的良好题材,它蕴含了许多重要的数学思想方法,如:数形结合思想、转化与化归思想等。因此,教学时应重视体现数学的思想方法及价值。 目标和目标解析 1.知识与技能目标: 理解曲线极坐标方程的概念;了解与曲线直角坐标方程的异同;掌握求曲线极坐标方程的步骤;能在极坐标系中给出简单图形(如过极点或圆心在极点的圆)的方程,通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。掌握圆的直角坐标方程和极坐标方程的互化,能根据圆的极坐标方程画出其对应的图形并进行有关计算 2.过程与方法目标: 通过对预习作业中问题的探究体会类比、从已知推测未知、从特殊到一般的数学思想方法;通过对简单曲线的极坐标方程的求解和其几何意义的探讨,培养观察、分析、比较和归纳的能力;通过不同坐标系的选择感受转化与化归的思想方法;通过极坐标方程与其几何图形的对应,体会数形结合的思想方法

3.情感、态度与价值观目标: 通过不同坐标系的选择与变换理解事物的多样性及其中必然的内在的联系性,可以多角度、多层次地分析问题.;通过练习体验小组探究合作学习,体会团结协作精神;通过阿基米德螺线,四叶玫瑰线,双曲螺线,心脏线,双纽线,星形线,三叶玫瑰线的绘制感受数学与生活的联系,欣赏和感受数学中的美,渗透数学文化,激发学习兴趣 教学重点:圆的极坐标方程的求法 教学问题诊断分析 高二学生,知识经验正逐步成熟,形成了适合自己的一套学习方法,有较强的演绎推理能力和数形结合的能力,具有较好自主探究的能力,能在教师的引导下独立、合作地解决一些问题,学生之前已经学习了极坐标系,现在基本会极坐标和直角坐标的互化,也会求曲线轨迹方程的步骤,具备了数形结合思想。在圆的极坐标方程推导中,要用到三角函数知识,关键是利用直角三角形边角关系建立起坐标变量间的关系,如何合理作图构造恰当的三角形是关键,因此在这部分内容的研究中,鼓励学生小组讨论, 尽多的给学生动手的机会,让学生在实践中体验作图的关键,另外,特殊点极坐标的选择和检验也是理解难点。本节课需要学生小组合作探究学习,因此之前的学习小组分配很关键,小组间的配合也有影响课堂进度,教师分组时引起注意。 教学难点:对不同位置的圆的极坐标方程的理解 教学支持条件分析 课堂上需要学生小组讨论,合作学习。配合班级管理把班上同学分成六个学习小组,围桌而坐,组建原则是:“组间同质、组内异质”, 根据学习能力、兴趣倾向、交往技能、守纪情况、性别比例及座位的安排等合理搭配 根据本节内容的特点,教学过程中可充分发挥信息技术的作用: 利用多媒体播放短片引起兴趣,利用动态作图优势为学生的数学探究与数学思维提供支持;利用实物投影仪,直接投影学生小组讨论的解题思路、解题过程,学生上台分析时也可直接投影自己的答题过程不用板书节约时间

求曲线方程的几种常见方法

求曲线方程的几种常见方法 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

常见曲线的极坐标方程3

常见曲线的极坐标方程(3) 学习目标: 1、进一步体会求简单曲线的极坐标方程的基本方法; 2、了解圆锥曲线的方程; 3、通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面 图形时选择适当坐标系的意义。 活动过程: 活动一:知识回顾 1、若圆心的坐标为),(00θρM ,圆的半径为r ,则圆的极坐标方程为 ; 2、(1)当圆心位于)0,(r M 时,圆的极坐标方程是: ; (2)当圆心位于),(2π r M 时,圆的极坐标方程是: 。 3、圆锥曲线统一定义: 活动二:圆锥曲线的极坐标方程 探究:设定点F 到定直线l 的距离为p ,求到定点F 和定直线l 的距离之比为常数e 的点的 轨迹的极坐标方程。

活动三:圆锥曲线的极坐标方程的简单应用 例1:2003年10月15—17日,我国自主研制的神舟五号载人航天飞船成功发射并按预定方 案安全、准确的返回地球,它的运行轨道先是以地球中心为一个焦点的椭圆,椭圆的近地点(离地面最近的点)和远地点(离地面最远的点)距离地面分别为200km 和350km ,然后进入距地面约343km 的圆形轨道。若地球半径取6378km ,试写出神舟五号航天飞船运行的椭圆轨道的极坐标方程。 例2:求证:过抛物线的焦点的弦被焦点分成的两部分的倒数和为常数。 例3:已知抛物线的极坐标方程为θρcos 14-= ,求此抛物线的准线的极坐标方程。

活动四:课堂小结与自主检测 1、按些列条件写出椭圆的极坐标方程: (1)离心率为0.5,焦点到准线的距离为6; (2)长轴为10,短轴为8。 2、圆心在极轴上,半径为a 的圆经过极点,求此圆过极点的弦的三等分点的轨迹方程。 3、自极点O 作射线与直线4cos =θρ相交于点M ,在OM 上取一点P ,使得12=?OP OM ,求点P 的轨迹方程。

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

4常见曲线的极坐标方程

第4课时:常见曲线极坐标方程 教学目标 (1)了解曲线的极坐标方程的求法, (2)了解简单图形(过极点的直线、过极点的圆、圆心在极点的圆)的极坐标方程。 教学重难点:曲线的极坐标方程的求法 教学过程: 一、新课讲解 1、直线的极坐标方程 若直线l 经过点00(,)M ρθ,且极轴到此直线的角为α,则直线l 的极坐标方程为00sin()sin()ρθαρθα-=- 2、圆心是A (0ρ,0θ),半径r 的圆的极坐标方程为2220002cos()-0r ρρρθθρ--+= 二、例题选讲: 例1、按下列条件写出直线的极坐标方程: (1)经过极点,且倾斜角是π6的直线; (2)经过点 A(2, π4 ),且垂直于极轴的直线; (3)经过点 B(3, - π3),且平行于极轴的直线; (4)经过点C(4,0),且倾斜角是3π4 的直线. 例2、按下列条件写出圆的极坐标方程. (1)以(2,0)为圆心,2为半径的圆; (2)以(4,π2 )为圆心,4为半径的圆;

(3)以(5,π)为圆心,且过极点的圆; (4)以(2,π4 )为圆心,1为半径的圆。 例3、在圆心的极坐标为点A (4,0),半径为4的圆中,求过极点的O 的弦的中点的轨迹方 程。 例4. 已知曲线:C 3cos 2sin x y θθ =??=?,直线:l (cos 2sin )12ρθθ-=. ⑴.将直线l 的极坐标方程化为直角坐标方程; ⑵.设点P 在曲线C 上,求P 点到直线l 距离的最小值. 例5在极坐标系中,已知圆C 的圆心)6, 3(πC ,半径1=r ,Q 点在圆C 上运动. (1)求圆C 的极坐标方程; (2)若P 在直线OQ 上运动,且3:2:=QP OQ ,求动点P 的轨迹方程. 课堂反馈: 1.两圆θρcos 2=和θρsin 4=的圆心距是 . 2.极坐标方程cos()4π ρθ=-所表示的曲线是 . 3.极坐标方程分别是θρcos =和θρsin =的两个圆的圆心距是 . 4、 直线αθ=和直线1)sin(=-αθρ的位置关系是 . 三、课堂小结:

求曲线轨迹方程的常用方法

求曲线轨迹方程的常用 方法 Hessen was revised in January 2021

高考数学专题:求曲线轨迹方程的常用方法 张昕 陕西省潼关县潼关高级中学 714399 求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的内在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下: (1)直接法:直接法就是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程的方法就称为直接法,直接法求轨迹经常要联系平面图形的性质. (2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系数法求解.这种求轨迹方程的方法称为定义法,利用定 义法求方程要善于抓住曲线的定义特征. (3)代入法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.这就叫代入法.

(4) 参数法:若动点的坐标(x ,y )中的x ,y 分别随另一变量的 变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,消去参数来求轨迹方程. (5) 几何法:根据曲线的某种几何性质和特征,通过推理列出等式 求轨迹方程,这种求轨迹的方法叫做几何法. (6) 交轨法:在求动点轨迹方程时,经常遇到求两动曲线的交点轨 迹方程问题,我们列出两动曲线的方程再设法消去曲线中的参数即可得到交点的轨迹方程. 典型例题示范讲解: 设圆C :22(1)1x y -+=,过原点作圆的弦0A ,求OA 中点B 的轨迹方程. 【解】:法一:(直接法) 如图,设B (x ,y ),由题得2OB +2BC =2OC , 即x 2+y 2 +[22(1)x y -+]=1 即OA 中点B 的轨迹方程为2211()24 x y -+=(x ≠0). 法二:(定义法) 设B (x ,y ),如上图,因为B 是OA 的中点

非线性回归分析(教案)

1.3非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的/y 个 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为 0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数 x 与增大的容积y 之间的关系.

求曲线方程的几种常用方法 - 副本

求曲线方程(导学案) 选编:万立勇审核:吴海燕 求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有: 1.直接法:就是课本中主要介绍的方法。若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y)后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 a>,求直角顶点C的轨迹方程。 例1:在直角△ABC中,斜边是定长2a(0) Array 说明:利用这种方法求曲线方程的一般方法步骤: (1)建立适当的直角坐标系,用(,) x y表示曲线上任意点M的坐标; (2)写出适合条件p的点M的集合{|()} =; p M p m (3)用坐标表示() p m,列出方程(,)0 f x y=; (4)化简方程(,)0 f x y=为最简形式; (5)证明以化简后的方程的解为坐标的点都是曲线上的点(此步骤经常省略,但一定要注意所求的方程中所表示的点是否都表示曲线上的点,要注意那些特殊的点。)。 这种按照上述五个步骤来求曲线方程的方法,又称“五步法”或“条件直译 法”,这是求曲线方程的基本方程。

2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2:已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,AM MB=,求动点M的轨迹方程。 且:1:2 3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种求轨迹方程的方法称作几何法。 -),B(2,0),O为原点,动点P与线段AO、BO所例3:如图,已知两定点A(6,0 张的角相等,求动点P的轨迹方程。

非线性回归分析

非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+ ,再令ln z y =,则21ln z c x c =+, 可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-$,因此红铃虫的产卵数对温度的非线性回归方程为$0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数x 与增大的容积y 之间的关系.

简单曲线的极坐标方程教案

简单曲线的极坐标方程 【教学目标】 1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力. 2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法. 3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力. 【教学重难点】 简单曲线的极坐标方程的求法 【教学过程】 一、复习、预习自学:

2.极坐标和直角坐标的互化(P11) (1)极坐标化为直角坐标 θ ρcos = x,θ ρsin = y (2)直角坐标化为极坐标 2 2 2y x+ = ρ,)0 ( tan≠ =x x y θ 3.曲线和方程(平面直角坐标系中(P12)) 曲线C上的点的坐标都是方程0 ) , (= y x f 的解; 以方程0 ) , (= y x f的解为坐标的点都在 曲线C上. (3)极坐标系中如何用方 程表示曲线 【复习、预习自测】 1.极坐标化为直角坐标:→ ) 4 ,3( π________,→ ) 3 2 ,2( π________ 2. 直角坐标化为极坐标:→ )3 ,3( ________,→ -) 3 5 ,0(________ 二、合作探究 探究点一:圆的极坐标方程(P12-13) 如图,半径为a的圆的圆心坐标为C(a,0)(a>0).你能用一个等式表示圆上任意一点的极坐标) , (θ ρ满足的条件吗 探究点1图拓展1图小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程

0),(=θρf 叫做曲线C 的极坐标方程: (1) (2) 拓展1(P13):已知圆O 的半径为r ,建立怎样的极坐标系,可以使圆的 极坐标方程更简单并将所得结果与直角坐标方程进行比较. 探究点二:直线的极坐标方程(P13) 如图,直线l 经过极点,从极轴到直线l 的角是4 π ,求直线l 的极坐标方 程. 探究点2图 拓展2图 拓展3图 拓展2(P14):求过点A(a,0)(a>0),且垂直于极轴的直线l 的极坐标方程. 拓展3(P14):设P 点的极坐标为),(11θρ,直线l 过点P 且与极轴所成的角为α,求直线l 的极坐标方程. 【课堂小结】 1. 知 识 方 面 _____________________________________________________________________ 2. 数 学 思 想 方 面 _______________________________________________________________

极坐标的几种常见题型p

极坐标的几种常见题型 一、极坐标方程与直角坐标方程的互化 互化条件:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同. 互化公式:???==θρθρsin cos y x 或 ? ? ? ??≠=+=)0(tan 2 22x x y y x θρ θ的象限由点(x,y)所在的象限确定. 例1(2007海南宁夏)⊙O 1和⊙O 2的极坐标方程分别为θρcos 4=,θρsin 4-=. (I)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (II)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程. 解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位. (I)θρcos =x ,θρsin =y ,由θρcos 4=得θρρcos 42=.所以x y x 42 2=+. 即042 2 =-+x y x 为⊙O 1的直角坐标方程. 同理042 2 =++y y x 为⊙O 2的直角坐标方程. (II)解法一:由? ??=++=-+04042 222y y x x y x 解得???==0011y x ,???-==22 22y x 即⊙O 1,⊙O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x . 解法二: 由???=++=-+0 40 42 222y y x x y x ,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x . 评述:本题主要考查曲线的极坐标方程化为直角坐标方程的方法及两圆公共弦所在直线方程的求法. 例2(2003全国)圆锥曲线θ θ ρ2cos sin 8= 的准线方程是 (A)2cos -=θρ (B)2cos =θρ (C) 2sin -=θρ (D) 2sin =θρ 解: 由θ θρ2 cos sin 8= 去分母后两边同时乘以ρ得:θρθρsin 8cos 22=,所以x 2 =8y ,其准线方程为y=2-,在极坐标系中方程为2sin -=θρ,故选C. 例3(1998年上海)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若椭圆两焦点的极坐标分别是(1, 2 π),(1,23π),长轴长是4,则此椭圆的直角坐标方程是_______________. 解:由已知条件知椭圆两焦点的直角坐标为(0,1),(0,-1).c=1,a=2,b 2=a 2-c 2=3, 故所求椭圆的直角坐标方程为4 32 2y x +=1 类题:1(1995年上海)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并且在两种坐标系中取相同的长度单位.若曲线的极坐标方程是1 cos 4122 -= θρ,则它的直角坐标方程是___________. (答案:3x 2-y 2=1) 2(1998年全国)曲线的极坐标方程ρ=4sin θ化成直角坐标方程为 (A) x 2+(y+2)2=4 (B) x 2+(y-2)2=4

求曲线方程的常用方法

求曲线方程的常用方法 曲线方程的求法就是解析几何的重要内容与高考的常考点.求曲线方程时,应根据曲线的不同背景,不同的结构特征,选用不同的思路与方法,才能简捷明快地解决问题.下面对其求法进行探究. 1.定义法 求曲线方程时,如果动点轨迹满足已知曲线的定义,则可根据题设条件与图形的特点,恰当运用平面几何的知识去寻求其数量关系,再由曲线定义直接写出方程,这种方法叫做定义法. 例1 如图,点A 为圆形纸片内不同于圆心C 的定点,动点M 在圆周上, 将纸片折起,使点M 与点A 重合,设折痕m 交线段CM 于点N 、现将圆 形纸片放在平面直角坐标系xOy 中,设圆C :(x +1)2+y 2=4a 2 (a >1),A (1,0),记点N 的轨迹为曲线E 、 (1)证明曲线E 就是椭圆,并写出当a =2时该椭圆的标准方程; (2)设直线l 过点C 与椭圆E 的上顶点B ,点A 关于直线l 的对称点为点Q ,若椭圆E 的离心率e ∈???? ?? 1 232,求点Q 的纵坐标的取值范围. 解 (1)依题意,直线m 为线段AM 的垂直平分线, ∴|NA |=|NM |、 ∴|NC |+|NA |=|NC |+|NM |=|CM |=2a >2, ∴N 的轨迹就是以C 、A 为焦点,长轴长为2a ,焦距为2的椭圆. 当a =2时,长轴长为2a =4,焦距为2c =2, ∴b 2=a 2-c 2=3、 ∴椭圆的标准方程为x 24+y 2 3 =1、 (2)设椭圆的标准方程为x 2a 2+y 2 b 2=1 (a >b >0). 由(1)知:a 2-b 2=1、又C (-1,0),B (0,b ), ∴直线l 的方程为x -1+y b =1,即bx -y +b =0、 设Q (x ,y ),∵点Q 与点A (1,0)关于直线l 对称,

非线性回归分析

非线性回归分析(转载) (2009-10-23 08:40:20) 转载 分类:Web分析 标签: 杂谈 在回归分析中,当自变量和因变量间的关系不能简单地表示为线性方程,或者不能表示为可化为线性方程的时侯,可采用非线性估计来建立回归模型。 SPSS提供了非线性回归“Nonlinear”过程,下面就以实例来介绍非线性拟合“Nonlinear”过程的基本步骤和使用方法。 应用实例 研究了南美斑潜蝇幼虫在不同温度条件下的发育速率,得到试验数据如下: 表5-1 南美斑潜蝇幼虫在不同温度条件下的发育速率 温度℃17.5 20 22.5 25 27.5 30 35 发育速率0.0638 0.0826 0.1100 0.1327 0.1667 0.1859 0.1572 根据以上数据拟合逻辑斯蒂模型: 本例子数据保存在DATA6-4.SAV。 1)准备分析数据 在SPSS数据编辑窗口建立变量“t”和“v”两个变量,把表6-14中的数据分别输入“温度”和“发育速率”对应的变量中。 或者打开已经存在的数据文件(DATA6-4.SAV)。 2)启动线性回归过程 单击SPSS主菜单的“Analyze”下的“Regression”中“Nonlinear”项,将打开如图5-1

所示的线回归对话窗口。 图5-1 Nonlinear非线性回归对话窗口 3) 设置分析变量 设置因变量:从左侧的变量列表框中选择一个因变量进入“Dependent(s)”框。本例子选“发育速率[v]”变量为因变量。 4) 设置参数变量和初始值 单击“Parameters”按钮,将打开如图6-14所示的对话框。该对话框用于设置参数的初始值。 图5-2 设置参数初始值

相关文档
最新文档