流体力学和传热学39页PPT

合集下载

流体力学与传热学ppt课件

流体力学与传热学ppt课件
2) 物理条件 物性参数λ、ρ 、c 和η 的数值,是否随温度和压力变化;有无 内热源、大小和分布
3) 时间条件 稳态对流换热过程不需要时间条件—与时间无关
4) 边界条件 第一类边界条件:已知任一瞬间对流换热过程边界上的温度值 第二类边界条件:已知任一瞬间对流换热过程边界上的热流密度值
§8.3 边界层概念及边界层换热微分方程组
计算出在参考温差下的对流传热系数
温度梯度或温度场取决于流体热物性、流动状态(层流或湍流)、流速的大 小及其分布、表面粗糙度等。
温度场取决于流场
§8.2 对流传热问题的数学描写
1、假设条件
为简化分析,对于影响常见对流换热问题的主要因素,做如下假设:
1) 流动是二维的; 2) 流体为不可压缩的牛顿型流体; 3) 流体物性为常数,无内热源;
比拟法 数值法
通过研究动量传递及热量传递的共性或类似特性,以建立起表 面传热系数见的相互关系的方法。
近20年内得到迅速发展,并将会日益显示出其重要的作用。
7、如何从解得的温度场来计算对流传热系数
当粘性流体在壁面上流动时,由于粘性的作 用,流体的流速在靠近壁面处随离壁面的距 离的缩短而逐渐降低;
在贴壁处被滞止,处于无滑移状态(即:y=0, u=0) 在这极薄的贴壁流体层中,热量只能以导热方式传递
c 数值解法:近年来发展迅速 可求解很复杂问题:三维、紊流、变物性、超音速
2)动量传递和热量传递的类比法 利用湍流时动量传递和热量传递的类似规律,由湍流时的局部 表面摩擦系数推知局部表面传热系数
3)实验法 用相似理论指导
4、对流传热过程的单值性条件
完整数学描述:对流传热微分方程组+ 单值性条件
1) 几何条件 平板、圆管;竖直圆管、水平圆管;长度、直径等

流体力学课件PPT课件

流体力学课件PPT课件

注意:恒定流中流线与迹线重合
第27页/共90页
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
第28页/共90页
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
x
y方向:
my
(uy ) dxdydz
y
z方向:
mz
(uz ) dxdydz
z
据质量守恒定律:
第39页/共90页
单位时间内流进、流出控制体的流体质量差之总和
等于控制体内流体因密度发生变化所引起的质量增
量 即
mx
my
mz
t
dxdydz
将 mx、my、mz 代入上式,化简得:
(ux ) (u y ) (uz ) 0
第54页/共90页
1.伯努利方程的物理意义
• z mgz : 单位重量流体所具有的位能。 mg

p
mg
p
/
mg
:
单位重量流体所具有的压能。
•z p :
单位重量流体所具有的势能。

u2 2g
1 2
mu
2
/
mg
:
单位重量流体所具有的动能。
第55页/共90页
• z p u2 : 单位重量流体所具有的机械能。
第8页/共90页
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。

(完整PPT)传热学

(完整PPT)传热学
温度
温度对导热系数的影响因材料而异,一般情况下,随着温度的升高 ,导热系数会增加。
压力
对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程
稳态导热
物体内部各点温度不随时间变化而变化的导热过程。在稳态导热过程中,热流 密度和温度分布保持恒定。
非稳态导热
物体内部各点温度随时间变化而变化的导热过程。在非稳态导热过程中,热流 密度和温度分布会发生变化,通常需要考虑时间因素对导热过程的影响。
辐射换热计算方法
辐射换热量计算
通过斯蒂芬-玻尔兹曼定律计算两 个物体之间的辐射换热量,需要 考虑物体的发射率、温度以及物 体间的角系数等因素。
角系数计算
角系数表示一个表面对另一个表 面辐射能量的相对大小,可以通 过几何方法或数值方法计算得到 。
辐射换热网络模型
对于多个物体之间的复杂辐射换 热问题,可以建立辐射换热网络 模型,通过求解线性方程组得到 各个物体之间的辐射换热量。
06 传热学实验技术 与设备
实验测量技术与方法
温度测量
使用热电偶、热电阻等 温度传感器,配合数据 采集系统,实现温度的
精确测量。
热量测量
采用量热计、热流计等 设备,测量传热过程中
的热量变化。
热阻测量
通过测量传热设备两侧 温差和传热量,计算得
到热阻。
热流密度测量
利用热流计等设备,测 量单位面积上的热量传
(完整PPT)传热学
contents
目录
• 传热学基本概念与原理 • 导热现象与规律 • 对流换热原理及应用 • 辐射换热基础与特性 • 传热过程数值计算方法 • 传热学实验技术与设备 • 传热学在工程领域应用案例
01 传热学基本概念 与原理

流体力学基础讲解PPT课件

流体力学基础讲解PPT课件
措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。

流体力学(共64张PPT)

流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功

HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准

1_流体力学与传热学

1_流体力学与传热学

P p lim A
A 0
返回首页
第二节 流体静力学
一、流体静压强及其特性
P Z dA n

流体静压强的方向与受 压面垂直并指向受压面
Y X 0

作用于同一点上各方 向的静压强大小相等
流体静 压强的 特性
第二节 流体静力学
二、流体静压强的分布规律
分析静止液体中压强分布 作用于轴向的外力有:
可忽略。 2、气体有显著的压缩性和膨胀性,t与P的变化对v 影响很大。 3、当气体的温度不过低压强不过高时,T、P、v三
者关系服从理想气体状态方程。
第二节 流体静力学
目的:学习和讨论流体静止状态下 的力学规律及其应用
流体静止时的特点:
不显示其粘滞性,不存在切相应力
流体静止是运动中的一种特殊状态
流体静力学研究的中心问题:
流体静压强的分布规律
第二节 流体静力学
一、流体静压强及其特性
静水压力与静水压强

静止液体作用在与之接触的表面上的水压力称为 静水压力P.
在静水中表面积为A的水体,微小面积△A所受作 用力△P, P P 该微小面积上的平均压强为 A 当△A无限缩小至趋于点K时,K点的静水压强
p1
2
2
图2-5
圆管中有压流动的总水头线与测压管水头线
第四节 流动阻力和水头损失
能量损失的计算
沿程损失
hf
l v2 d 2g
沿管长 均匀发 生
局部损失
局部障 碍引起 的
hm
v2 2g
整个管路的能量损失等于:
各管段的沿程损失和局部 损失之和
第五节 流动阻力和水头损失
整个管路的能量损失等于各管段的沿程损失和局部损失之和.

流体力学与传热学详解

流体力学与传热学详解

/ m2
30
传热学
两个思考题
热量到底是怎么流动的? 怎样使热量流得快(慢)一点?
32
0.绪论
本节内容主要讲述热能传递的基本理论知识; 概述
研究热量传递规律的科学,主要有热量传递 的机理、 规律、计算和测试方法
热力学第二定律: 热量可以自发地由高温热源传给低温热源 有温差就会有传热, 温差是热量传递的动力
(c) 圆角 0.2
(d) 流线形 0.04 22
管道出口损失系数ζ
1.0
23
管道变截面结构损失系数
管道突扩结构损 失系数ζ
管道突缩结构损 失系数ζ
24
90o 弯头损失系数ζ
25
4. 复合管系
串联管系:
Q1 Q2 Q3
hw,AB hw1 hw2 hw3
1.沿程阻力——沿程损失(长度损失、摩擦损失)
hf

l d
v2 2g
p f

l d

v2 2

λ——沿程阻力系数
2.局部阻力——局部损失
hj

v2 2g

pj


v2 2

达西-魏斯巴赫公式
ζ——局部阻力系数
6
沿程阻力
沿程阻力系数跟黏性有关—— 牛顿粘性实验


gz2
hw
he ws
hw u2 u1 q 0
管道流动损失 hw hf hj
hf : 直管中沿程流动损失(J/kg) hj : 附加管件损失(J/kg)
hf

l de
V2 2
4A de U

《流体力学与传热学》课件

《流体力学与传热学》课件
总结词
04
传热学应用实例
建筑节能是传热学的重要应用领域,通过合理利用传热学原理,可以有效降低建筑能耗,提高能源利用效率。
建筑设计时,利用传热学原理,合理设计建筑物的保温、隔热、通风等系统,可以有效降低建筑物的热量损失和冷热负荷,从而减少能源消耗。例如,利用保温材料和密封技术减少墙体热传导,利用自然通风和热压差通风降低室内温度等。
流体静力学的基本概念、原理和应用
详细描述
流体静力学是研究流体在静止状态下力学行为的一门学科。主要研究流体内部的压力分布、液体对容器壁的侧压力等,在工程实际中有广泛应用。
总结词
流体动力学的基本概念、原理和应用
详细描述
流体动力学是研究流体在运动状态下力学行为的一门学科。主要研究流体的速度、压力、密度等物理量的变化规律,以及流体与固体壁面的相互作用等,在航空航天、交通运输等领域有重要应用。
随着计算机技术的不断发展,数值模拟与仿真技术在流体力学与传热学中发挥着越来越重要的作用。这些技术可以对流体流动和传热过程进行精确模拟和预测,为实验研究和工程应用提供有力支持。
数值模拟与仿真技术在流体力学与传热学中广泛应用于各种领域。例如,在能源领域,通过对流体流动和传热的数值模拟,优化核能、风能等可再生能源的开发和利用。在环境领域,通过对污染物扩散的数值模拟,评估环境治理措施的有效性。在生物医学领域,通过对生物体内的流体流动和传热的数值模拟,揭示生理过程和疾病机制,为诊断和治疗提供依据。
THANKS
感谢观看
总结词
新能源技术是未来能源发展的方向,传热学在新能源技术的开发和利用中发挥着重要作用。
要点一
要点二
详细描述
太阳能、风能等新能源的开发和利用过程中,传热学原理被广泛应用于设备的热回收、热利用和热控制等方面。例如,太阳能热水器利用传热学原理将太阳能转化为热能,风力发电设备的散热系统和热回收系统也涉及到传热学的知识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档