江苏省兴化顾庄学区三校八级数学下学期第三次月考试题 苏科版-课件
苏科八年级苏科初二数学下册第3次月考数学试题百度文库

苏科八年级苏科初二数学下册第3次月考数学试题百度文库一、选择题1.下列调查中,最不适合普查的是()A.了解一批灯泡的使用寿命情况B.了解某班学生视力情况C.了解某校初二学生体重情况D.了解我国人口男女比例情况2.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5003.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列命题中,是假命题的是()A.平行四边形的两组对边分别相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形5.下面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近()A.1000 B.1500 C.2000 D.25007.一组数据的样本容量是50,若其中一个数出现的频率为0.5,则该数出现的频数为()A.20 B.25 C.30 D.1008.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件9.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是()A .9mB .12mC .8mD .10m10.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD ,则四边形ABCD 面积的最大值是( )A .15B .16C .19D .20二、填空题11.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB =6cm ,BC =8cm ,则EF =_____cm .12.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是线段DE 上一点,连接AF ,BF ,若AB =16,EF =1,∠AFB =90°,则BC 的长为_____.13.326_____.14.某次测验后,将全班同学的成绩分成四个小组,第一组到第三组的频率分别为0.1,0.3,0.4,则第四组的频率为_________.15.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)16.如图,点E 在正方形ABCD 的边CD 上,以CE 为边向正方形ABCD 外部作正方形CEFG ,O 、O′分别是两个正方形的对称中心,连接OO′.若AB =3,CE =1,则OO′=________.17.若点()23,在反比例函数k y x=的图象上,则k 的值为________. 18.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是_____.19.如图,E 、F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =1,则四边形BEDF 的周长是_____.20.若关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是_______.三、解答题21.如图,在ABCD 中,点O 为对角线BD 的中点,过点O 的直线EP 分别交AD ,BC 于E ,F 两点,连接BE ,DF .(1)求证:四边形BFDE 为平行四边形;(2)当∠DOE = °时,四边形BFDE 为菱形?22.如图,将▱ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F ,连接AC 、BE .(1)求证:四边形ABEC 是平行四边形;(2)若∠AFC =2∠ADC ,求证:四边形ABEC 是矩形.23.如图,在▱ABCD 中,E 为BC 边上一点,且AB =AE(1)求证:△ABC ≌△EAD ;(2)若∠B =65°,∠EAC =25°,求∠AED 的度数.24.如图,在平面直角坐标系xOy 中,边长为1个单位长度的正方形ABCD 的边BC 平行于x 轴,点A 、C 分别在直线OM 、ON 上,点A 的坐标为(3,3),矩形EFGH 的顶点E 、G 也分别在射线OM 、ON 上,且FG 平行于x 轴,EF :FG =3:5.(1)点B 的坐标为 ,直线ON 对应的函数表达式为 ;(2)当EF =3时,求H 点的坐标;(3)若三角形OEG 的面积为s 1,矩形EFGH 的面积为s 2,试问s 1:s 2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.25.已知23x =+,23y =-。
苏科初二数学下学期第3次月考测试卷

苏科初二数学下学期第3次月考测试卷一、解答题1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.2.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?3.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF 交BD于O.(1)求证:EO=FO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.4.一粒木质中国象棋子“帅”,它的正面雕刻一个“帅”字,它的反面是平滑的.将它从定高度下掷,落地反弹后可能是“帅”字面朝上,也可能是“帅”字面朝下.由于棋子的两面不均匀,为了估计“帅”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如表:试验次数20406080100120140160“帅”字面朝上频数a18384752667888相应频率0.70.450.630.590.520.550.56b=;=;(2)画出“帅”字面朝上的频率分布折线图;(3)如图实验数据,实验继续进行下去,根据上表的这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?5.如图,在ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE 的延长线于F,连接CF.(1)求证:AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.6.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.7.用适当的方法解方程:(1)x2﹣4x﹣5=0;(2)y(y﹣7)=14﹣2y;(3)2x2﹣3x﹣1=0.8.化简求值:221211x x xx x x x++⎛⎫-÷⎪--⎝⎭,其中31x=-9.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m_________,扇形D所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人?10.为了解某区初中生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示不完整的统计图.(1)本次调查共随机抽取了名学生;(2)补全条形统计图;(3)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为︒;(4)若该区共有10 000名初中生,估计该地区中学生一周课外阅读时长不少于4小时的人数.11.先化简,再求代数式(1﹣32x+)÷212xx-+的值,其中x=4.12.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD的边长为1.5,过点A作一条直线l交边BC于点P,且∠DAP=90°,点F是AP上一点,且∠BAD+∠AFD=180°,过点B作BE⊥AB,与直线l交于点E,若EF=1,求BE的长.(思维拓展)(3)如图3,在正方形ABCD中,点P在AD所在直线上的上方,AP=2,连接PB,PD,若△PAD的面积与△PAB的面积之差为m(m>0),则PB2﹣PD2的值为.(用含m的式子表示)13.如图,在△ABC中,DE∥BC,EF∥AB,BE平分∠ABC,试判断四边形DBFE的形状,并说明理由.14.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB PE=,连接PD,O为AC中点.(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,并说明理由;(2)如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P 在AC 的延长线上时,请你在图3中画出相应的图形,并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.15.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =; (2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、解答题1.解:(1)如图所示:点A 1的坐标(2,﹣4). (2)如图所示,点A 2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A 、B 、C 三点关于x 轴的对称点,再顺次连接,然后根据图形写出A 点坐标.(2)将△A 1B 1C 1中的各点A 1、B 1、C 1绕原点O 旋转180°后,得到相应的对应点A 2、B 2、C 2,连接各对应点即得△A 2B 2C 2. 2.(1)见解析(2)成立 【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CD B CDF BE DF∠∠=== ∴△CBE ≌△CDF (SAS ). ∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF , ∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°, 又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF ∵∠GCE =∠GCF , GC =GC ∴△ECG ≌△FCG (SAS ). ∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质. 3.(1)见解析;(2)AE =3. 【分析】(1)由平行四边形的性质和AAS 证明△OBE ≌△ODF ,得出对应边相等即可; (2)先证出AE=GE ,再证明DG=DO ,得出OF=FG=1,即可得出结果. 【详解】(1)∵四边形ABCD 是平行四边形, ∴DC ∥AB , ∴∠OBE =∠ODF . 在△OBE 与△ODF 中,OBE ODF BOE DOF BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OBE ≌△ODF (AAS ). ∴EO =FO ;(2)∵EF ⊥AB ,AB ∥DC , ∴∠GEA =∠GFD =90°. ∵∠A =45°, ∴∠G =∠A =45°. ∴AE =GE , ∵BD ⊥AD ,∴∠ADB =∠GDO =90°. ∴∠GOD =∠G =45°. ∴DG =DO , ∴OF =FG =1,由(1)可知,OE =OF =1, ∴GE =OE +OF +FG =3, ∴AE =3. 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键. 4.(1)14,0.55;(2)图见解析;(3)0.55. 【分析】(1)根据图中给出的数据和频数、频率与总数之间的关系分别求出a 、b 的值; (2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小. 【详解】(1)a =20×0.7=14; b =88160=0.55; 故答案为:14,0.55;(2)根据图表给出的数据画折线统计图如下:(3)随着试验次数的增加“帅”字面朝上的频率逐渐稳定在0.55左右,利用这个频率来估计概率,得P(“帅”字朝上)=0.55.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.作图时应先描点,再连线.用到的知识点为:部分的具体数目=总体数目×相应频率.频率=所求情况数与总情况数之比.5.(1)见解析;(2)见解析【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;(2)根据平行四边形的判定和性质以及菱形的判定证明即可.【详解】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴□ADCF是菱形.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键. 6.(1)0.25;(2)3个. 【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可; (2)列用概率公式列出方程求解即可. 【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近, ∴估计从袋中摸出一个球是黑球的概率是0.25; (2)设袋中白球为x 个, 11x+=0.25,解得x =3. 答:估计袋中有3个白球, 故答案为:(1)0.25;(2)3个. 【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.7.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)1233,44x x +==. 【分析】(1)根据因式分解法即可求出答案; (2)根据因式分解法即可求出答案. (3)利用公式法求解可得. 【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0, 则x +1=0或x ﹣5=0, 解得:x 1=-1,x 2=5. (2)y (y ﹣7)=14﹣2y , 移项得,y (y ﹣7)-14+2y =0, 分解因式得:(y ﹣7)(y +2)=0, 则y ﹣7=0或y +2=0, 解得:y 1=7,y 2=﹣2. (3)2x 2﹣3x ﹣1=0, ∴a =2,b =﹣3,c =﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x 1=34,x 2=34. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 8.11x +;33【分析】通分合并同类项,再约分,代入求值. 【详解】原式222111(1)x x x x x x -=⋅=+-+ 代入得原式3311==-+. 【点睛】本题考查分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.9.(1)50;32;43.2 (2)见解析 (3)1120人 【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯= (2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可. 【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2 (2)5040%20⨯=(人), 补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.10.(1)200;(2)图见解析;(3)144;(4)6 500人【分析】(1)用阅读时长在“6小时及以上”的人数除以对应百分比即可计算;(2)先根据统计图中的数据求出课外阅读时长在“2~4小时”和“4~6小时”的人数,然后补全条形统计图即可;(3)用360°乘以课外阅读时长“4~6小时”对应的百分比即可求出;(4)用初中生总数乘以一周课外阅读时长不少于4小时的百分比即可.【详解】(1)本次调查共随机抽取了:50÷25%=200(名);(2)课外阅读时长“2~4小时”的有:200×20%=40(人),课外阅读时长“4~6小时”的有:200-30-40-50=80(人),故条形统计图如下:;(3)阅读时长在“2小时以内”的人数所占的百分比为:30÷200×100%=15%,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1-20%-25%-15%)=144°; (4)10000×(1-20%-15%)=6500(人).【点睛】本题考查了扇形统计图和条形统计图的结合,由图表获取数据是解题关键.11.11x +;15【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可.【详解】 解:原式=()()232211x x x x x +-+⋅++- ()()12211x x x x x -+=⋅++-11x =+ 当x =4时,原式=15. 【点睛】 本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.12.(1)1.5;(2)58;(3)4m . 【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=. (2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠,()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE =2.51 1.5EF DF BE ∴=-=-=.故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=, 58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△,∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.13.菱形,理由见解析【分析】根据平行四边形的判定得出四边形BDEF 是平行四边形,再利用平行四边形的性质和等腰三角形的判定得出DE =BD ,进而利用菱形的判定解答即可.【详解】四边形DBFE 是菱形,理由如下:∵DE ∥BC ,EF ∥AB ,∴四边形DBEF 是平行四边形,∴DE ∥BC ,∴∠DEB =∠EBF ,∵BE 平分∠ABC ,∴∠DBE =∠EBF ,∴∠DBE =∠DEB ,∴BD =DE ,∴平行四边形DBEF 是菱形.【点睛】此题考查菱形的判定,关键是根据平行四边形的判定得出四边形BDEF 是平行四边形解答.14.(1)PE PD =且PE PD ⊥,详见解析;(2)猜想成立,详见解析;(3)猜想成立【分析】(1)根据点P 在线段AO 上时,利用三角形的全等判定和性质以及四边形内角和定理可以得出PE ⊥PD ,PE=PD ;(2)利用三角形全等得出,BP=PD ,由PB=PE ,得出PE=PD ,要证PE ⊥PD ;从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可得出;(3)根据题意作出图形,利用(2)中证明思路即可得出答案.【详解】(1)当点P 在线段AO 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,在△ABP 和△ADP 中,45AB AD BAP DAP AP AP =⎧⎪∠∠︒⎨⎪⎩===,∴△ABP ≌△ADP ,∴PB PD =,ABP ADP ∠=∠,CDP CBP ∠=∠,又∵PB PE =,∴CBP BEP ∠=∠,PE PD =,∴BEP CDP ∠=∠,∵180BEP CEP ∠+∠=︒,∴180CDP CEP ∠+∠=︒,∵正方形ABCD 中,90BCD ∠=︒,∴36090DPE CEP CDP BCD ∠=︒-∠-∠-∠=︒,∴PE PD ⊥;(2)当点P 在线段OC 上时,PE PD =且PE PD ⊥,理由如下:∵四边形ABCD 是正方形,AC 为对角线,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,①当点E 与点C 重合时,PE PD ⊥;②当点E 在BC 的延长线上时,如图所示,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵12∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥,综上所述:PE PD ⊥.∴当点P 在线段OC 上时,(1)中的猜想成立;(3)当点P 在线段OC 的延长线上时,如图所示,(1)中的猜想成立.∵四边形ABCD 是正方形,点P 在AC 的延长线上,∴BA DA =,45BAP DAP ∠=∠=︒,又PA PA =,∴BAP DAP ∆≅∆(SAS),∴PB PD =,又∵PB PE =,∴PE PD =,∵BAP DAP ∆≅∆,∴ABP ADP ∠=∠,∴CDP CBP ∠=∠,PB PE =,∴CBP PEC ∠=∠,∴PEC PDC ∠=∠,∵DGC EGP ∠=∠,∴90DPE DCE ∠=∠=︒,∴PE PD ⊥.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质以及垂线的证明方法,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题..15.(1)证明见解析;(2)5AP =;(3)图见解析,7AP =,∠CAB=120°.【分析】(1)只需借助等边三角形的性质证明△ACP ≌△QBP 即可得出结论;(2)利用(1)中的全等和等边三角形的性质可求得90ABQ ∠=︒,再借助勾股定理即可求得AQ ,即AP 的值;(3)当AQ 最长时,AP 最长,此时Q 在QB 的延长线,由此得解.【详解】解:(1)证明:∵CBP ∆和APQ ∆为等边三角形,∴AP=PQ ,CP=BP ,∠CPN=∠APQ=60°,∴∠CPA=∠BPQ ,∴△ACP ≌△QBP (SAS )∴AC=BQ ;(2)∵△ACP ≌△QBP ,∴3BQ AC ==,CAP BQP ,AP AQ =, ∵APQ ∆为等边三角形,∴60PAQ AQP , ∵30CAB ∠=︒ ∴BAQ AQBCAQ CAB AQP BQP 603060CAP BQP 90=︒∴90ABQ ∠=︒, ∴2222435APAQ AB BQ ; (3)如下图,当等边△APQ 的AQ 边在AB 的延长线上时,AQ 有最大值,即AP 有最大值,由(1)得△ACP ≌△QBP ,∴BQ=CA=3,∠CAP=∠Q,∵△APQ 为等边三角形,∴∠CAP=∠Q=60°,AP=AQ=AB+BQ=7.∴∠CAB=120°,AP=,此时∠CAB=120°.故AP最大值时,7【点睛】本题考查等边三角形的性质,全等三角形的性质和判定,三角形内角和定理,勾股定理.(1)中熟练掌握等边三角形的性质,得出∠CPA=∠BPQ是解题关键;(2)中能求得∠=︒是解题关键;(3)中能想到AQ有最大值,即AP有最大值是解题关键.90ABQ。
苏科初二数学下学期第3次月考试卷

苏科初二数学下学期第3次月考试卷一、解答题1.如图,在ABCD 中,点O 为对角线BD 的中点,过点O 的直线EP 分别交AD ,BC 于E ,F 两点,连接BE ,DF .(1)求证:四边形BFDE 为平行四边形; (2)当∠DOE = °时,四边形BFDE 为菱形?2.自2009年以来,“中国•兴化千垛菜花旅游节”享誉全国.“河有万湾多碧水,田无一垛不黄花”所描绘的就是我市发达的油菜种植业.为了解某品种油菜籽的发芽情况,农业部门从该品种油菜籽中抽取了6批,在相同条件下进行发芽试验,有关数据如表: 批次 1 2 3 4 5 6 油菜籽粒数 100400800100020005000发芽油菜籽粒数 a 318 652 793 1604 4005 发芽频率0.8500.7950.8150.793b0.801(1)分别求a 和b 的值;(2)请根据以上数据,直接写出该品种油菜籽发芽概率的估计值(精确到0.1); (3)农业部门抽取的第7批油菜籽共有6000粒.请你根据问题(2)的结果,通过计算来估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数.3.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表 组别A BCD E分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数. 4.正方形ABCD 中,点O 是对角线DB 的中点,点P 是DB 所在直线上的一个动点,PE ⊥BC 于E ,PF ⊥DC 于F .(1)当点P 与点O 重合时(如图①),猜测AP 与EF 的数量及位置关系,并证明你的结论;(2)当点P 在线段DB 上(不与点D 、O 、B 重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P 在DB 的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.5.用适当的方法解方程: (1)x 2﹣4x ﹣5=0; (2)y (y ﹣7)=14﹣2y ; (3)2x 2﹣3x ﹣1=0.6.已知:如图,AC 、BD 相交于点O ,且点O 是AC 、BD 的中点,点E 在四边形ABCD 的形外,且∠AEC =∠BED =90°.求证:四边形ABCD 是矩形.7.如图,已知△ABC.(1)画△ABC关于点C对称的△A′B′C;(2)连接AB′、A′B,四边形ABA'B'是形.(填平行四边形、矩形、菱形或正方形)8.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?9.某商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克.问第一次购进这种商品多少千克?10.如图,在平面直角坐标系中,△ABC和△A'B'C'的顶点都在格点上.(1)将△ABC绕点B顺时针旋转90°后得到△A1BC1;(2)若△A'B'C'是由△ABC绕某一点旋转某一角度得到,则旋转中心的坐标是.11.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD 的边长为1.5,过点A 作一条直线l 交边BC 于点P ,且∠DAP =90°,点F 是AP 上一点,且∠BAD +∠AFD =180°,过点B 作BE ⊥AB ,与直线l 交于点E ,若EF =1,求BE 的长. (思维拓展)(3)如图3,在正方形ABCD 中,点P 在AD 所在直线上的上方,AP =2,连接PB ,PD ,若△PAD 的面积与△PAB 的面积之差为m (m >0),则PB 2﹣PD 2的值为 .(用含m 的式子表示)12.如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB ,A ,B 均为格点,按要求完成下列问题.(1)以AB 为对角线画一个面积最小的菱形AEBF ,且E ,F 为格点; (2)在(1)中该菱形的边长是 ,面积是 ;(3)以AB 为对角线画一个菱形AEBF ,且E ,F 为格点,则可画 个菱形.13.如图1,在正方形ABCD 中,点E 是边AB 上的一个动点(点E 与点A ,B 不重合)连接CE ,过点B 作BF ⊥CE 于点G ,交AD 于点F .(1)求证:△ABF ≌△BCE ;(2)如图2,连接EF 、CF ,若CE =8,求四边形BEFC 的面积; (3)如图3,当点E 运动到AB 中点时,连接DG ,求证:DC =DG .14.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.(1)求证:PD PE =.(2)探究:α与β的数量关系,并证明你的结论.15.发现:如图1,点A 为线段BC 外一动点,且(),,BC a AB c a c ==>.(1)填空:当点A 位于 上时,线段AC 的长取得最小值,且最小值为 (用含,a c 的式子表示)(2)应用:如图2,点A 为线段BC 外一动点,且3,1BC AB ==,分别以,AB AC 为边,作等腰直角ABD ∆和等腰直角ACE ∆,连接,CD BE . ①请找出图中与BE 相等的线段,并说明理由; ②直接写出BE 长的最小值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()10,0,点P 为线段AB 外一动点,且2,,PA PM PB ==60BPM ︒∠=,请直接写出AM 长的最小值及此时点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)详见解析;(2)90 【分析】(1)证△DOE ≌△BOF (ASA ),得DE=BF ,即可得出结论; (2)由∠DOE=90°,得EF ⊥BD ,即可得出结论. 【详解】(1)∵四边形ABCD 是平行四边形,O 为对角线BD 的中点,∴BO =DO ,AD ∥BC , ∴∠EDO =∠FBO ,在△EOD 和△FOB 中,EDO FBO DO BO EOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE ≌△BOF (ASA ), ∴DE =BF , 又∵DE ∥BF ,∴四边形BFDE 为平行四边形;(2)∠DOE =90°时,四边形BFDE 为菱形; 理由如下:由(1)得:四边形BFDE 是平行四边形, 若∠DOE =90°,则EF ⊥BD , ∴四边形BFDE 为菱形; 故答案为:90. 【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE ≌△BOF 是解题的关键. 2.(1)85a ,0.802b =;(2)0.8;(3)4800【分析】(1)用油菜籽粒数乘以发芽频率求得a 的值,用发芽油菜籽粒数除以油菜籽总数即可求得b 的值.(2)观察大量重复试验发芽的频率稳定到哪个常数附近即可用哪个数表示发芽概率. (3)用油菜籽总数乘以发芽概率即可求得发芽粒数. 【详解】(1)1000.85085a =⨯=,16040.8022000b ==; (2)∵观察表格发现发芽频率逐渐稳定到0.8附近, ∴该品种油菜籽发芽概率的估计值为0.8; (3)60000.8=4800⨯,故估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数为4800. 【点睛】本题考查统计与概率,解题关键在于信息筛选能力,对频率计算公式的理解,其次注意计算仔细即可.3.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B 的圆心角度数为115.2°;(4)每月零花钱的数额x 在30≤x <90范围的人数大约为720人. 【解析】分析:(1)根据C 组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a 的值,m 的值;(2)根据a的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a=50﹣4﹣20﹣8﹣2=16,A组所占的百分比是450=8%,则m=8.故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B的圆心角度数是360°×1650=115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数是1000×162050=720(人).答:每月零花钱的数额x在30≤x<90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.4.(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB 交PF 于H ,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键. 5.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12317317x x +-==【分析】(1)根据因式分解法即可求出答案; (2)根据因式分解法即可求出答案. (3)利用公式法求解可得. 【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0, 则x +1=0或x ﹣5=0, 解得:x 1=-1,x 2=5. (2)y (y ﹣7)=14﹣2y , 移项得,y (y ﹣7)-14+2y =0, 分解因式得:(y ﹣7)(y +2)=0, 则y ﹣7=0或y +2=0, 解得:y 1=7,y 2=﹣2. (3)2x 2﹣3x ﹣1=0, ∴a =2,b =﹣3,c =﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0, ∴x 1317+,x 2317- 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.6.见解析【分析】连接EO,证四边形ABCD是平行四边形,在Rt△AEC中EO=12AC,在Rt△EBD中,EO=12BD,得到AC=BD,即可得出结论.【详解】证明:连接EO,如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在Rt△EBD中,∵O为BD中点,∴EO=12 BD,在Rt△AEC中,∵O为AC的中点,∴EO=12 AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.【点睛】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.7.(1)见解析;(2)平行四边形.【分析】(1)根据题意画出三角形即可;(2)由对称的性质判断即可.【详解】(1)如图,△A′B′C即为所求;(2)如上图,由题意可得△ABC≌△A′B′C,∴AC=A′C,BC=B′C,∴四边形ABA'B'为平行四边形.【点睛】本题考查了对称图形的性质,平行四边形的判定,掌握知识点是解题关键.8.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.9.第一次购进这种商品10千克【分析】根据“商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克”列出分式方程求解即可.【详解】解:设第一次购进这种商品x千克,则第二次购进这种商品(x+5)千克,由题意,得5007505x x=+,解得x =10.经检验:x =10是所列方程的解.答:第一次购进这种商品10千克.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,注意得出分式方程的解之后要验根.10.(1)见解析 (2)(3,4)【分析】(1)根据网格结构找出点A 、C 绕点B 顺时针旋转90°后的对应点A 1、C 1的位置,然后顺次连接即可;(2)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)三角形的旋转可以分开看作每条边的旋转,分别找到对应的点,连接即可,故△A 1BC 1如图所示;(2)连接'AA 并作其垂直平分线,连接'CC 并作其垂直平分线,交点即为旋转中心.如图所示,旋转中心为(3,4),故答案为(3,4).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.11.(1)1.5;(2)58;(3)4m . 【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠, ()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE = 2.51 1.5EF DF BE ∴=-=-=. 故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=, 58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△,∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=, 故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题. 12.(1)见解析;(210,6;(3)3【分析】(1)根据菱形的定义以及已知条件画出满足条件的菱形即可.(2)利用勾股定理,菱形的面积公式计算即可.(3)画出满足条件的菱形即可判断.【详解】解:(1)如图,菱形AEBF 即为所求.(2)AE 223+1=10,菱形AEBF 的面积=12×6×2=6, 10,6.(3)如图备用图可知:可以画3个菱形,故答案为3.【点睛】本题主要考查了格点作图和菱形的性质应用,涉及了勾股定理等,正确理解,准确利用网格的特点是解题的关键.13.(1)见解析;(2)32;(3)见解析【分析】(1)根据同角的余角相等得到∠GCB =∠FBA ,利用ASA 定理证明△ABF ≌△BCE ; (2)根据全等三角形的性质得到BF =CE =8,根据三角形的面积公式计算,得到答案; (3)作DH ⊥CE ,设AB =CD =BC =2a ,根据勾股定理用a 表示出CE ,根据三角形的面积公式求出BG ,根据勾股定理求出CG ,证明△CHD ≌△BGC ,得到CH =BG ,证明CH =GH ,根据线段垂直平分线的性质证明结论.【详解】(1)证明:∵BF ⊥CE ,∴∠CGB =90°,∴∠GCB +∠CBG =90,∵四边形ABCD 是正方形,∴∠CBE =90°=∠A ,BC =AB ,∴∠FBA +∠CBG =90,∴∠GCB =∠FBA ,在△ABF 和△BCE 中,A CBE AB BCABF BCE ⎧∠=∠⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△BCE (ASA );(2)解:∵△ABF ≌△BCE ,∴BF =CE =8,∴四边形BEFC 的面积=△BCE 的面积+△FCE 的面积 =12×CE ×FG +12×CE ×BG =12×CE ×(FG +BG )=12×CE ×BF =12×8×8 =32;(3)证明:如图3,过点D 作DH ⊥CE 于H ,设AB =CD =BC =2a ,∵点E 是AB 的中点,∴EA =EB =12AB =a , ∴CE =225BE BC a +=,在Rt △CEB 中,12BG •CE =12CB •EB , ∴BG =255CB EB a CE ⋅=, ∴CG =22455BC BG a -=, ∵∠DCE +∠BCE =90°,∠CBF +∠BCE =90°,∴∠DCE =∠CBF ,∵CD =BC ,∠CHD =∠CGB =90°,∴△CHD ≌△BGC (AAS ),∴CH =BG =25a , ∴GH =CG ﹣CH =25a =CH , ∵CH =GH ,DH ⊥CE ,∴CD =GD ;【点睛】本题通过正方形动点问题引入,考查了三角形全等、勾股定理和垂直平分线定理的应用.14.(1)详见解析;(2)2180αβ+=︒,证明见解析.【分析】(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.【详解】(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点, ∴12PM AC =, NE 为Rt AEC ∆斜边上的中线,∴12NE AN AC ==, PM NE ∴=,同理可得:DM PN =,12DM AM AB ==, ADM BAD ∴∠=∠,2BMD BAD ∴∠=∠,同理,2CNE CAE ∠=∠,又BAD CAE α∠=∠=,BMD CNE ∴∠=∠,又PM 、PN 都是ABC ∆的中位线,//PM AC ∴,//PN AB ,BMP BAC ∴∠=∠,CNP BAC ∠=∠,BMP CNP ∴∠=∠,∴DMP PNE ∠=∠,MDP NPE ∴∆≅∆(SAS),PD PE ∴=;(2)解:α与β的数量关系是:2180αβ+=︒;证明://PN AB ,BMP MPN ∴∠=∠,∵MDP NPE ∆≅∆,EPN MDP ∴∠=∠,在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒,∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒,而22DMB BAD α∠=∠=,2180EPN DPM MPN α∴∠+∠++∠=︒,DPE DPM MPN EPN β∠=∠+∠+∠=,2180αβ∴+=︒.【点睛】本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.15.(1);BC a c -;(2)①BE DC =,证明见解析,②32;(3)AM 最小为(6,3P 或(33.【分析】(1)根据点A 位于CB 上时,线段AC 的长取得最小值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=90°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果; (3)以AP 为边向右边作等边三角形APC ,连接BE 后,易证APM CPB ≅,此时AM=BC ,然后根据(1)的结论求值即可,点P 坐标可根据等边三角形性质求.【详解】解:()1AC BC AB a c ≥-=-当A 位于BC 线段上AO ,取到最小值a c -故答案为:;BC a c - ()2①ABO ∆和AEC ∆均为等腰直角三角形,1,AB AD AE AC ∴===,2BAD EAC BD ∠=∠=BAE BAD EAD EAC EAD DAC ∴∠=∠-∠=∠-∠=∠∴在ABE ∆和ADC ∆中AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩()BAE DAC SAS ∴∆≅∆BE DC ∴= ②而32DC BC BD ≥-=-BE 最小值为32-,当且仅当D 在线段BC 上取到()3以AP 为边向右边作等边三角形APC ,连接BCAPC ∆为正三角形,2,60AC AP PC APC ︒∴===∠=又60MPB ︒∠=APM APC MPC ∴∠=∠-∠60MPC ︒=-∠MPB MPC =∠-∠CPB =∠∴在APM ∆和CPB ∆中AP CP APM CPB PM PB =⎧⎪∠=∠⎨⎪=⎩()APM CPB SAS ∴∆≅∆()10226AM BC AB AC ∴=≥-=--=AM ∴最小为6,此时C 在线段AB 上,P 的横坐标为1232AP +⨯= 纵坐标为222222322AP AP ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭((33,3P ∴-或.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.。
苏科八年级数学下学期第3次月考试卷百度文库

苏科八年级数学下学期第3次月考试卷百度文库一、选择题1.满足下列条件的四边形,不一定是平行四边形的是( )A .两组对边分别平行B .两组对边分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等 2.下列命题中,是假命题的是( )A .平行四边形的两组对边分别相等B .两组对边分别相等的四边形是平行四边形C .矩形的对角线相等D .对角线相等的四边形是矩形 3.如图,将△ABC 沿着它的中位线DE 折叠后,点A 落到点A ’,若∠C =120°,∠A =26°,则∠A ′DB 的度数是( )A .120°B .112°C .110°D .100°4.如图,在平面直角坐标系中,菱形OABC 的顶点A 的坐标为(4,3),点D 是边OC 上的一点,点E 在直线OB 上,连接DE 、CE ,则DE+CE 的最小值为( )A .5B 7+1C .5D .2455.在菱形ABCD 中,12AC =,16BD =,则该菱形的面积是( )A .10B .40C .96D .192 6.已知关于x 的方程23x m x -=+的解是负数,则m 的取值范围为( ) A .6m >-且3m ≠- B .6m >- C .6m <-且3m ≠- D .6m <-7.下列条件中,不能..判定平行四边形ABCD 为矩形的是( ) A .∠A =∠C B .∠A =∠B C .AC =BD D .AB ⊥BC 8.下列分式中,属于最简分式的是( )A .62aB .2x xC .11x x --D .21x x + 9.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A .必然事件B .随机事件C .确定事件D .不可能事件10.如图,在周长为20cm 的平行四边形ABCD 中,AB ≠AD ,AC 和BD 相交于点O ,OE ⊥BD 交AD 于E ,则ΔABE 的周长为( )A.4cm B.6cm C.8cm D.10cm二、填空题11.小明用a元钱去购买某种练习本.这种练习本原价每本b元(b>1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.12.为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有______条鱼.13.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.14.如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度_____.15.如图,点A是一次函数13y x=(0)x≥图像上一点,过点A作x轴的垂线l,点B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(0)x>的图像过点B、C,若OAB∆的面积为8,则ABC∆的面积是_________.16.如图,在 ABCD中,若∠A=2∠B,则∠D=________°.17.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.18.一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到_____(颜色)球的可能性最大.19.已知1x ,2x ,…,10x 的平均数是a ;11x ,12x ,…,30x 的平均数是b ,则1x ,2x ,…,30x 的平均数是_________.20.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB=3,则BC 的长为 .三、解答题21.如图,将▱ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F ,连接AC 、BE .(1)求证:四边形ABEC 是平行四边形;(2)若∠AFC =2∠ADC ,求证:四边形ABEC 是矩形.22.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其它b(1)在此次调查中,该校一共调查了名学生;(2)a=;b=;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.23.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.24.某商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克.问第一次购进这种商品多少千克?25.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是 人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B 的扇形的圆心角度数为 度;(4)在扇形统计图中表示观点E 的百分比是 .26.如图1,在正方形ABCD 中,点E 是边AB 上的一个动点(点E 与点A ,B 不重合)连接CE ,过点B 作BF ⊥CE 于点G ,交AD 于点F .(1)求证:△ABF ≌△BCE ;(2)如图2,连接EF 、CF ,若CE =8,求四边形BEFC 的面积;(3)如图3,当点E 运动到AB 中点时,连接DG ,求证:DC =DG .27.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?28.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =;(2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行四边形的判定分别对各个选项进行判断,即可得出结论.【详解】A、∵两组对边分别平行的四边形是平行四边形,∴选项A不符合题意;B、∵两组对边分别相等的四边形是平行四边形,∴选项B不符合题意;C、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形,∴选项D符合题意;故选:D.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.2.D解析:D【分析】分别利用平行四边形的性质以及矩形的性质与判定方法分析得出即可.【详解】解:A、平行四边形的两组对边分别相等,正确,不合题意;B、两组对边分别相等的四边形是偶像四边形,正确,不合题意;C、矩形的对角线相等,正确,不合题意;D、对角线相等的四边形是矩形,错误,等腰梯形的对角线相等,故此选项正确.故选D.“点睛”此题主要考查了命题与定理,正确把握矩形的判定与性质是解题的关键. 3.B解析:B【分析】根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=26°可求出∠B的值,继而求出答案.【详解】解:由题意得:DE∥BC,∴∠A'DE=∠B=180°﹣120°﹣26°=34°,∴∠BDE=180°﹣∠B=146°,故∠A'DB=∠BDE﹣∠A'DE=146°﹣34°=112°.故选:B.【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.4.D解析:D【解析】【分析】首先根据菱形的对角线性质得到DE+CE的最小值=CF,再利用菱形的面积列出等量关系即可解题.【详解】解:如下图,过点C作CF⊥OA与F,交OB于点E,过点E作ED⊥OC与D,∵四边形OABC是菱形,由菱形对角线互相垂直平分可知EF=ED,∴DE+CE的最小值=CF,∵A的坐标为(4,3),∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积),即24=CF×5,解得:CF= 24 5,即DE+CE的最小值=24 5,故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E的位置并熟悉菱形面积的求法是解题关键.5.C解析:C【分析】根据菱形的面积等于对角线乘积的一半即可解决问题.【详解】解:∵四边形ABCD 是菱形,12AC =,12BD =,∴菱形ABCD 的面积1112169622AC BD =⋅⋅=⨯⨯=. 故选:C .【点睛】本题考查菱形的性质,解题的关键是记住菱形的面积等于对角线乘积的一半,属于中考常考题型. 6.A解析:A【分析】解分式方程,得到含有m 得方程的解,根据“方程的解是负数”,结合分式方程的分母不等于零,得到两个关于m 得不等式,解之即可.【详解】解:方程两边同时乘以1x +得:3(1)x m x -=+,解得:6=--x m ,又∵方程的解是负数,∴60--<m ,解不等式得:6m >-,综上可知:6m >-且3m ≠-,故本题答案为:A.【点睛】本题考查了分式方程的解;解一元一次不等式.解决本题的关键是熟练掌握分式方程的解法过程,注意分式方程分母不为0这一要求.7.A解析:A【分析】根据矩形的判定定理再结合平行四边形的性质对选项逐一进行推理即可.【详解】A 、∠A=∠C 不能判定这个平行四边形为矩形,故此项错误;B 、∵∠A=∠B ,∠A+∠B=180°,∴∠A=∠B=90°,可以判定这个平行四边形为矩形,故此项正确;C 、AC=BD ,对角线相等,可推出平行四边形ABCD 是矩形,故此项正确;D 、AB ⊥BC ,即∠B=90°,可以判定这个平行四边形为矩形,故此项正确;故选:A .【点睛】本题考查了平行四边形的性质和矩形的判定,掌握知识点是解题关键.8.D【解析】【分析】根据最简分式的概念判断即可.【详解】解:A.62a 分子分母有公因式2,不是最简分式; B.2x x 的分子分母有公因式x ,不是最简分式; C.11x x --的分子分母有公因式1-x ,不是最简分式; D. 21x x +的分子分母没有公因式,是最简分式. 故选:D【点睛】本题考查的是最简分式,需要注意的公因式包括因数.9.B解析:B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.10.D解析:D【解析】分析:利用平行四边形、等腰三角形的性质,将△ABE 的周长转化为平行四边形的边长之间的和差关系.详解:∵四边形ABCD 是平行四边形,∴AC 、BD 互相平分,∴O 是BD 的中点.又∵OE ⊥BD ,∴OE 为线段BD 的中垂线,∴BE=DE .又∵△ABE 的周长=AB+AE+BE ,∴△ABE 的周长=AB+AE+DE=AB+AD .又∵□ABCD 的周长为20cm ,∴AB+AD=10cm∴△ABE 的周长=10cm .点睛:本题考查了平行四边形的性质.平行四边形的对角线互相平分.请在此填写本题解析!二、填空题11.【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元,则购买到这种练习本的本数为(本),故答案为. 解析:1a b - 【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元, 则购买到这种练习本的本数为1a b -(本), 故答案为1a b -. 【点睛】 本题考查的是列代数式,掌握列代数式的方法是解题的关键.12.1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼解析:1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到110,而有标记的共有100条,从而可求得总数. 【详解】可估计湖里大约有鱼100÷20200=1000条.故答案为1000.【点睛】本题考查了用样本估计总体,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.13..【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠解析:020.【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.14.2【分析】连接并延长DM交AB于E,证明△AME≌△CMD,根据全等三角形的性质得到AE=CD=3,DM=ME,求出BE,根据三角形中位线定理计算即可.【详解】连接并延长DM交AB于E,解析:2【分析】连接并延长DM 交AB 于E ,证明△AME ≌△CMD ,根据全等三角形的性质得到AE =CD =3,DM =ME ,求出BE ,根据三角形中位线定理计算即可.【详解】连接并延长DM 交AB 于E ,∵AB ∥CD ,∴∠C =∠A ,在△AME 和△CMD 中,A C AM CMAME CMD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△CMD (ASA )∴AE =CD =3,DM =ME ,∴BE =AB ﹣AE =4,∵DM =ME ,DN =NB ,∴MN 是△DEB 的中位线,∴MN =12BE =2, 故答案为:2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.15.【分析】过作轴于,交于,设,根据直角三角形斜边中线是斜边一半得:,设,则,,因为.都在反比例函数的图象上,列方程可得结论.【详解】如图,过作轴于,交于.∵轴∴,∵是等腰直角三角形,解析:163 【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===, 设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上,∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =,∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅=16 3故答案为:163.【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.16.60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解析:60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠B+∠A=180°,又∵∠A=2∠B,∴3∠B=180°,∴∠B=60°,又∵∠D=∠B,∴∠D=60°,故答案为:60.【点睛】本题主要是考查了平行四边形的性质,掌握平行四边形的相邻内角互为补角,相对内角相等是解答本题的关键.17.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠解析:65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠B=70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF,∴∠BAE=∠FAG=40°,∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.18.红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率==,摸到白球的概率==,摸到蓝球的概率=,所以从中任意摸一球,则摸到红球的可能性最大解析:红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率=3321++=12,摸到白球的概率=26=13,摸到蓝球的概率=16,所以从中任意摸一球,则摸到红球的可能性最大.故答案为:红.【点睛】本题考查了可能性的大小:某事件的可能性等于所求情况数与总情况数之比.19.【分析】利用平均数的定义,利用数据x1,x2,…,x10的平均数为a,x11,x12,…,x30的平均数为b,可求出x1+x2+…+x10=10a,x11+x12+…+x30=20b,进而即可求 解析:1(1020)30a b + 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.【详解】解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=()1102030a b + 故答案为:1(1020)30a b +. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数. 20.【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF 为菱形,∴∠FCO=∠ECO解析:【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF 为菱形,∴∠FCO=∠ECO ,由折叠的性质可知,∠ECO=∠BCE ,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt △EBC 中,EC=2EB ,又EC=AE ,AB=AE+EB=3,∴EB=1,EC=2,∴223BC EC EB =-=【点睛】解题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.三、解答题21.(1)证明见解析;(2)证明见解析.【分析】(1)根据平行四边形的性质得到AB//CD,AB=CD,然后根据CE=DC,得到AB=EC,AB//EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形;(2)∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点睛】此题考查的知识点是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.22.(1)50;(2)8,5;(3)108°;(4)240人.【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a 的值,进而从总人数中减去其他组的人数得到b 的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数.【详解】(1)12÷24%=50人故答案为50.(2)a =50×16%=8人,b =50﹣15﹣8﹣12﹣10=5人,故答案为:8,5.(3)360°×1550=108° 答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×1050=240人 答:该校1200名学生中最喜爱“相声”的学生大约有240人.【点睛】考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.23.(1)详见解析;(2)8【分析】(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.【详解】(1)∵四边形EFGH 是矩形,//FG HE EH FG ∴=GFH EHF ∴∠=∠180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠BFG DHE ∴∠=∠∵四边形ABCD 是菱形//AD BC ∴GBF EDH ∴∠=∠在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩()BGF DEH AAS ∴∆≅∆BG DE ∴=;(2)如图,连接EG∵四边形EFGH 是矩形,2FH =2EG FH ∴==∵四边形ABCD 是菱形,//AD BC AD BC ∴=∵E 为AD 中点AE DE ∴=BG DE =,//AE BG AE BG ∴=∴四边形ABGE 是平行四边形2AB EG ∴==∴菱形ABCD 的周长为248⨯=故菱形ABCD 的周长为8.【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.24.第一次购进这种商品10千克【分析】根据“商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克”列出分式方程求解即可.【详解】解:设第一次购进这种商品x 千克,则第二次购进这种商品(x +5)千克, 由题意,得5007505x x =+, 解得x =10.经检验:x =10是所列方程的解.答:第一次购进这种商品10千克.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,注意得出分式方程的解之后要验根.25.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.【分析】(1)根据选A的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C的人数,从而可以将条形统计图补充完整;(3)根据选B的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E的百分比.【详解】解:(1)本次调查的总人数是:2300÷46%=5000(人),故答案为:5000;(2)选用C的学生有:5000×30%=1500(人),补充完整的条形统计图如图所示;(3)在扇形统计图中表示观点B的扇形的圆心角度数为:360°×2505000=18°,故答案为:18;(4)在扇形统计图中表示观点E的百分比是:2005000×100%=4%,故答案为:4%.【点睛】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.26.(1)见解析;(2)32;(3)见解析【分析】(1)根据同角的余角相等得到∠GCB=∠FBA,利用ASA定理证明△ABF≌△BCE;(2)根据全等三角形的性质得到BF=CE=8,根据三角形的面积公式计算,得到答案;(3)作DH⊥CE,设AB=CD=BC=2a,根据勾股定理用a表示出CE,根据三角形的面积公式求出BG,根据勾股定理求出CG,证明△CHD≌△BGC,得到CH=BG,证明CH=GH,根据线段垂直平分线的性质证明结论.【详解】(1)证明:∵BF ⊥CE ,∴∠CGB =90°,∴∠GCB +∠CBG =90,∵四边形ABCD 是正方形,∴∠CBE =90°=∠A ,BC =AB ,∴∠FBA +∠CBG =90,∴∠GCB =∠FBA ,在△ABF 和△BCE 中,A CBE AB BCABF BCE ⎧∠=∠⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△BCE (ASA );(2)解:∵△ABF ≌△BCE ,∴BF =CE =8,∴四边形BEFC 的面积=△BCE 的面积+△FCE 的面积 =12×CE ×FG +12×CE ×BG =12×CE ×(FG +BG ) =12×CE ×BF =12×8×8 =32;(3)证明:如图3,过点D 作DH ⊥CE 于H ,设AB =CD =BC =2a ,∵点E 是AB 的中点,∴EA =EB =12AB =a , ∴CE=,在Rt △CEB 中,12BG •CE =12CB •EB , ∴BG=CB EB a CE ⋅=, ∴CGa =, ∵∠DCE +∠BCE =90°,∠CBF +∠BCE =90°,∴∠DCE =∠CBF ,∵CD =BC ,∠CHD =∠CGB =90°,∴△CHD ≌△BGC (AAS ),∴CH =BG =25a , ∴GH =CG ﹣CH =25a =CH , ∵CH =GH ,DH ⊥CE ,∴CD =GD ;【点睛】本题通过正方形动点问题引入,考查了三角形全等、勾股定理和垂直平分线定理的应用. 27.商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【分析】设售价为x 元,则销售量为10200100.5x -⎛⎫-⨯ ⎪⎝⎭件,根据利润=数量⨯每件的利润,每天所得利润为640元列出方程,再根据利润率不得超过60%,即可得出结果.【详解】解;设售价为x 元,据题意得10(8)200106400.5x x -⎛⎫--⨯= ⎪⎝⎭ 化简得2281920x x -+=,解得112x =,216x =又8860%x -<⨯12.8x ∴≤ 16x ∴=不合题意,舍去12x ∴=,∴1210200101600.5--⨯=(件). 答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【点睛】本题考查了销售问题的数量关系的运用,不等式的性质的运用,熟悉相关性质是解题的关键.28.(1)证明见解析;(2)5AP =;(3)图见解析,7AP =,∠CAB=120°.【分析】(1)只需借助等边三角形的性质证明△ACP ≌△QBP 即可得出结论;(2)利用(1)中的全等和等边三角形的性质可求得90ABQ ∠=︒,再借助勾股定理即可求得AQ ,即AP 的值;(3)当AQ 最长时,AP 最长,此时Q 在QB 的延长线,由此得解.【详解】解:(1)证明:∵CBP ∆和APQ ∆为等边三角形,∴AP=PQ ,CP=BP ,∠CPN=∠APQ=60°,∴∠CPA=∠BPQ ,∴△ACP ≌△QBP (SAS )∴AC=BQ ;(2)∵△ACP ≌△QBP ,∴3BQ AC ==,CAP BQP ,AP AQ =, ∵APQ ∆为等边三角形,∴60PAQ AQP , ∵30CAB ∠=︒ ∴BAQ AQBCAQ CAB AQP BQP 603060CAP BQP 90=︒∴90ABQ ∠=︒, ∴2222435APAQ AB BQ ; (3)如下图,当等边△APQ 的AQ 边在AB 的延长线上时,AQ 有最大值,即AP 有最大值,由(1)得△ACP ≌△QBP ,∴BQ=CA=3,∠CAP=∠Q,∵△APQ为等边三角形,∴∠CAP=∠Q=60°,AP=AQ=AB+BQ=7.∴∠CAB=120°,AP=,此时∠CAB=120°.故AP最大值时,7【点睛】本题考查等边三角形的性质,全等三角形的性质和判定,三角形内角和定理,勾股定理.(1)中熟练掌握等边三角形的性质,得出∠CPA=∠BPQ是解题关键;(2)中能求得∠=︒是解题关键;(3)中能想到AQ有最大值,即AP有最大值是解题关键.90ABQ。
苏科八年级苏科初二数学下册第二学期第3次月考数学试题

苏科八年级苏科初二数学下册第二学期第3次月考数学试题一、解答题1.已知:如图,在 ABCD 中,点E 、F 分别在AD 、BC 上,且∠ABE =∠CDF . 求证:四边形BFDE 是平行四边形.2.如图,在ABC 中,AD 是BC 边上的中线,点E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF . (1)求证:AEF ≌△DEB ;(2)若∠BAC =90°,求证:四边形ADCF 是菱形.3.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表 组别A BCD E分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数;(4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数. 4.已知:如图,AC 、BD 相交于点O ,且点O 是AC 、BD 的中点,点E 在四边形ABCD 的形外,且∠AEC =∠BED =90°.求证:四边形ABCD 是矩形.5.已知关于x 的方程x 2﹣(k +3)x +3k =0. (1)若该方程的一个根为1,求k 的值;(2)求证:不论k 取何实数,该方程总有两个实数根.6.如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点A(-6,0),D(-7,3),点B 、C 在第二象限内.(1)点B 的坐标 ;(2)将正方形ABCD 以每秒1个单位的速度沿x 轴向右平移t 秒,若存在某一时刻t,使在第一象限内点B 、D 两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t 的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x 轴上的点P 和反比例函数图象上的点Q,使得以P 、Q 、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P 、Q 的坐标;若不存在,请说明理由.7.先化简,再求代数式(1﹣32x +)÷212x x -+的值,其中x =4.8.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x <2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:(1)这次随机抽取了名学生进行调查;扇形统计图中,扇形B的圆心角的度数为.(2)补全频数分布直方图;(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?9.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO 上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.10.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?11.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B的扇形的圆心角度数为度;(4)在扇形统计图中表示观点E的百分比是.12.如图,在▱ABCD中,BC=6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t 秒,当t 为何值时,EF ∥AB .13.解方程(1)22(1)1x x +=+ (2)22310x x ++=(配方法)14.已知关于x 的一元二次方程x 2+(2m ﹣1)x+m 2=0有两个实数根x 1和x 2. (1)求实数m 的取值范围; (2)当x 12﹣x 22=0时,求m 的值.15.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积;(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由; (3)如果在第二象限内有一点3,2P m ⎛⎫⎪ ⎪⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?【参考答案】***试卷处理标记,请不要删除一、解答题1.见解析 【分析】先根据平行四边形的性质,得出ED ∥BF ,再结合已知条件∠ABE =∠CDF 推断出EB ∥DF ,即可证明. 【详解】证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠ABC =∠ADC , ∴∠ADF =∠DFC ,ED ∥BF ,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.2.(1)见解析;(2)见解析【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;(2)根据平行四边形的判定和性质以及菱形的判定证明即可.【详解】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴□ADCF是菱形.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.3.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B的圆心角度数为115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数大约为720人.【解析】分析:(1)根据C组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a的值,m的值;(2)根据a的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a=50﹣4﹣20﹣8﹣2=16,A组所占的百分比是450=8%,则m=8.故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B的圆心角度数是360°×1650=115.2°;(4)每月零花钱的数额x在30≤x<90范围的人数是1000×162050=720(人).答:每月零花钱的数额x在30≤x<90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.4.见解析【分析】连接EO,证四边形ABCD是平行四边形,在Rt△AEC中EO=12AC,在Rt△EBD中,EO=12BD,得到AC=BD,即可得出结论.【详解】证明:连接EO,如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在Rt△EBD中,∵O为BD中点,∴EO=12 BD,在Rt△AEC中,∵O为AC的中点,∴EO =12AC , ∴AC =BD ,又∵四边形ABCD 是平行四边形, ∴平行四边形ABCD 是矩形. 【点睛】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半. 5.(1)k =1;(2)证明见解析. 【分析】(1)把x =1代入方程,即可求得k 的值; (2)求出根的判别式是非负数即可. 【详解】(1)把x =1代入方程x 2﹣(k +3)x +3k =0得1﹣(k ﹣3)+3k =0, 1﹣k ﹣3+3k =0 解得k =1; (2)证明:1,(3),3a b k c k ==-+=24b ac ∆=-∴ △=(k +3)2﹣4•3k =(k ﹣3)2≥0,所以不论k 取何实数,该方程总有两个实数根. 【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键. 6.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为ky x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论. 【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形, ∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°, ∴∠ADE=∠BAF . 在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△BAF (AAS ), ∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3), ∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1). 故答案为:(-3,1). (2)设反比例函数为ky x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3), ∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩,解得:t=9,k=6,∴反比例函数解析式为6y x=. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n). 以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形分两种情况:①B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴63162nm n⎧-=⎪⎨⎪-=-⎩,解得:13232mn⎧=⎪⎪⎨⎪=⎪⎩,∴P(132,0),Q(32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴626031m nn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=⎧⎨=⎩,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=-⎧⎨=-⎩.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE≌△BAF;(2)找出关于k、t的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k是关键.7.11x +;15【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可. 【详解】解:原式=()()232211x x x x x +-+⋅++- ()()12211x x x x x -+=⋅++- 11x =+ 当x =4时,原式=15. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则. 8.(1)200;72° (2)见解析 (3)1300名 【分析】(1)由D 组人数及其所占百分比可得总人数;用360°乘以B 所占的百分比即可求出扇形B 的圆心角的度数;(2)根据各组人数之和等于总人数求出A 组人数,从而补全统计图;(3)用该校的总人数乘以每周阅读时间不少于4小时的学生所占的百分比即可. 【详解】解:(1)本次随机抽查的学生人数为:60÷30%=200(名), 扇形B 的圆心角的度数为:360°×40200=72°; 故答案为:200,72°;(2)A 组人数为:200﹣(40+70+60)=30(人),补全图形如下:(3)根据题意得: 2000×7060200+=1300(名),答:估计每周阅读时间不少于4小时的学生共有.【点睛】本题考查了频数分布直方图,扇形图,用样本估计总体等知识,总体难度不大,根据直方图和扇形图提供的公共信息D组信息得到样本容量是解题关键.9.见解析【分析】根据平行线的性质和全等三角形的判定和性质定理以及平行四边形的判定即可得到结论.【详解】证明:∵BE∥DF,∴∠BEO=∠DFO,在△BEO与△DFO中,BEO DFO BO DOBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA),∴EO=FO,∵AE=CF,∴AE+EO=CF+FO,即AO=CO,∵BO=DO,∴四边形ABCD为平行四边形.【点睛】本题考查了平行四边形的判定定理,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.10.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键.11.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.【分析】(1)根据选A的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C的人数,从而可以将条形统计图补充完整;(3)根据选B的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E的百分比.【详解】解:(1)本次调查的总人数是:2300÷46%=5000(人),故答案为:5000;(2)选用C 的学生有:5000×30%=1500(人),补充完整的条形统计图如图所示;(3)在扇形统计图中表示观点B 的扇形的圆心角度数为:360°×2505000=18°, 故答案为:18;(4)在扇形统计图中表示观点E 的百分比是:2005000×100%=4%, 故答案为:4%.【点睛】 本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.12.t =2【分析】当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,由EF ∥AB ,BF ∥AE 可得出四边形ABFE 为平行四边形,利用平行四边形的性质可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,∵EF ∥AB ,BF ∥AE ,∴四边形ABFE 为平行四边形,∴BF =AE ,即t =6﹣2t ,解得:t =2.答:当t =2秒时,EF ∥AB .【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t 的一元一次方程是解题的关键.13.(1)11x =-,212x =-;(2)11x =-,212x =- 【分析】(1)移项,提取公因式1x +,利用因式分解法求解即可;(2)移项,方程左右两边同时除以2后,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.【详解】(1)22(1)1x x +=+,移项得:22(1)10()x x -++=,提取公因式1x +得:121)()(0x x ++=,可得:10x +=或210x +=, 解得:12112x x =-=-,; (2)22310x x ++=, 原方程化为:23122x x +=-, 配方得:22233132424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即231()416x +=, 开方得:3144x +=±, 解得:12112x x =-=-,. 【点睛】本题考查了解一元二次方程-因式分解法及配方法,能把一元二次方程转化成一元一次方程是解此题的关键.14.(1)m≤14;(2)m =14. 【分析】(1)若一元二次方程有两实数根,则根的判别式△=b 2-4ac≥0,建立关于m 的不等式,求出m 的取值范围;(2)由x 12-x 22=0得x 1+x 2=0或x 1-x 2=0;当x 1+x 2=0时,运用两根关系可以得到-2m-1=0或方程有两个相等的实根,据此即可求得m 的值.【详解】解:(1)由题意有△=(2m-1)2-4m 2≥0,解得m≤14, 即实数m 的取值范围是m≤14; (2)由两根关系,得根x 1+x 2=-(2m-1),x 1•x 2=m 2,由x 12-x 22=0得(x 1+x 2)(x 1-x 2)=0,若x 1+x 2=0,即-(2m-1)=0,解得m =12, ∵12>14, ∴m =12不合题意,舍去, 若x 1-x 2=0,即x 1=x 2 ∴△=0,由(1)知m =14, 故当x 12-x 22=0时,m =14. 【点睛】本题考查一元二次方程根的判别式,根与系数的关系,熟练掌握公式正确计算是本题的解题关键.15.(12)存在.(0,2Q 或()2或(0,或3⎛⎫ ⎪ ⎪⎝⎭;(2)PHOB S 梯形=,56m =-时,ABC ABP S S ∆∆=. 【分析】 (1)根据勾股定理和直角三角形中30°角所对直角边等于斜边的一半求出AB 、AC 的长,再利用三角形面积公式求解即可;(2)设Q (0,a ),分三种情况①AB=BQ 时;②AB=AQ 时;③BQ=AQ 时进行讨论求解即可;(3)由题意,OH=﹣m ,利用梯形面积公式得()12PHOB S OB PH OH =⨯+⨯梯形=,结合图形可得ABP ABO PAH S S S S ∆∆∆=+-梯形PHOB 42=-,再由ABP ABC S S ∆∆=得到关于m 的方程,解方程即可求解m 值.【详解】()()(11,0,A B , 2AB ∴=,又90,30BAC ABC ︒︒∠=∠=, 2BC AC ∴=,设AC a =,则2BC a =,在Rt ABC ∆中,由勾股定理得:222BC AB AC =+,即()2224a a =+,得:a =11223232233ABC S AC AB ∆∴==⨯⨯=; ()2存在设()0,Q a ,则(2224,3AB BQ a ==-,221AQ a =+,①当AB BQ =时,即22AB BQ =, (243a ∴=-,解得:123a =232a =, (()120,23,32Q Q ∴==;②当AB AQ =时,即22AB AQ =, 241a ∴=+解得:3a =3a =B 重合),(30,3Q ∴;③当BQ AQ =时,即22BQ AQ =, (2231,32a a a ∴=+=,解得:3a =43Q ⎛∴= ⎝⎭, 综上:在y 轴上存在一点(0,23Q +或()32或(0,3或3⎛ ⎝⎭,使QAB ∆为等腰三角形;()33,2P m ⎛ ⎝⎭, (),0H m ∴,3,1OH m PH AH m ∴=-==-+, ()12PHOB S OB PH OH ∴=⨯+⨯梯形, ()1332m =⨯⨯-⎭ 334m =, 11313222AOB S OA OB ∆==⨯⨯=, ()113122APH S AH PH m ∆==⨯-)31m =-, ABP ABO PAH S S S S ∆∆∆∴=+-梯形PHOB)33331424m m =+-- 33=, ABP ABC S S ∆∆=,33233+=, ∴112243m =-, 解得:56m =-,即S=梯形PHOB ,当56m=-时,ABC ABPS S∆∆=.【点睛】本题考查了坐标与图形、含30°角的直角三角形的性质、勾股定理、等腰三角形的性质、平方根、解一元一次方程等知识,解答的关键是利用数形结合思想,将各知识点串起来,进行探究、推理和计算.。
新苏科初二数学下学期第3次月考数学试题百度文库

新苏科初二数学下学期第3次月考数学试题百度文库一、选择题1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有A.1组B.2组C.3组D.4组2.下列图案中,是中心对称图形的是()A.B.C.D.3.满足下列条件的四边形,不一定是平行四边形的是()A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定6.若分式5xx-的值为0,则()A.x=0 B.x=5 C.x≠0 D.x≠57.反比例函数3yx=-,下列说法不正确的是()A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大8.某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是()A.2000 B.200 C.20 D.29.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱10.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是()A.15B.16C.19D.20二、填空题11.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.12.若菱形的两条对角线分别为2和3,则此菱形的面积是.13.如图,在ABCD中,对角线AC、BD相交于点O.如果AC=6,BD=8,AB=x,那么x 的取值范围是__________.14.为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有______条鱼.15.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=___.164823a-a=_____.17.如图,点A是一次函数13y x=(0)x≥图像上一点,过点A作x轴的垂线l,点B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(0)x>的图像过点B、C,若OAB∆的面积为8,则ABC∆的面积是_________.18.在△ABC 中,点D ,E 分别为BC ,AC 的中点,若DE =2,则AB 的长为_____.19.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若 6 cm AB =,8 cm BC =则AEF 的周长=______cm .20.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.三、解答题21.如图,将▱ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F ,连接AC 、BE .(1)求证:四边形ABEC 是平行四边形;(2)若∠AFC =2∠ADC ,求证:四边形ABEC 是矩形.22.先化简:22241a a a a a+--÷-,再从﹣1、0、1、2中选一个你喜欢的数作为a 的值代入求值.23.已知:如图,在平行四边形ABCD 中,点E 、F 在AD 上,且AE=DF求证:四边形BECF 是平行四边形.24.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?25.如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN∥BC.设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.26.解方程:224124x x x +-=-- 27.如图,在▱ABCD 中,BC =6cm ,点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 的运动速度为2cm /s ,点F 的运动速度为lcm /s ,它们同时出发,设运动的时间为t 秒,当t 为何值时,EF ∥AB .28.发现:如图1,点A 为线段BC 外一动点,且(),,BC a AB c a c ==>.(1)填空:当点A 位于 上时,线段AC 的长取得最小值,且最小值为 (用含,a c 的式子表示)(2)应用:如图2,点A 为线段BC 外一动点,且3,1BC AB ==,分别以,AB AC 为边,作等腰直角ABD ∆和等腰直角ACE ∆,连接,CD BE .①请找出图中与BE 相等的线段,并说明理由;②直接写出BE 长的最小值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()10,0,点P 为线段AB 外一动点,且2,,PA PM PB ==60BPM ︒∠=,请直接写出AM 长的最小值及此时点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】如图,(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD,∴∠BAD+∠ABC=180°,∴AD∥BC,∴四边形ABCD是平行四边形;(3)∵在四边形ABCD中,AO=CO,BO=DO,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.2.A解析:A【分析】本题根据中心对称图形的概念求解.【详解】A选项是中心对称图形,故本选项符合题意;B选项是轴对称图形,故本选项不合题意;C选项是轴对称图形,故本选项不合题意;D选项是轴对称图形,故本选项不合题意.故选:A.【点睛】本题考查中心对称图形的识别,按照其定义求解即可,注意与轴对称图形的区别.3.D解析:D【分析】根据平行四边形的判定分别对各个选项进行判断,即可得出结论.【详解】A、∵两组对边分别平行的四边形是平行四边形,∴选项A不符合题意;B、∵两组对边分别相等的四边形是平行四边形,∴选项B不符合题意;C、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形,∴选项D符合题意;故选:D.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.4.D解析:D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,也不是中心对称的图形,故本选项不符合题意;C、不是轴对称图形,是中心对称的图形,故本选项不符合题意;D、是轴对称图形,也是中心对称的图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.D解析:D【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A 1=②为必然事件;()0P A 1<<③为随机事件.6.B解析:B【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案.【详解】 解:∵分式5x x-的值为0, ∴x ﹣5=0且x ≠0,解得:x =5.故选:B .【点睛】本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.7.D解析:D【解析】【分析】通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的; 由反比例函数的对称性,可知反比例函数3y x =-关于y x =对称是正确的,故C 也是正确的,由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D 是不正确的,故选:D .【点睛】考查反比例函数的性质,当0k <时,在每个象限内y 随x 的增大而增大的性质、反比例函数的图象是轴对称图象,y x =和y x =-是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.8.B解析:B【分析】某校共有2000名学生,按10%的比例抽样,用总数乘以10%即可得出样本容量【详解】解:2000×10%=200,故样本容量是200.故选:B.【点睛】本题考查了样本容量,一个样本包括的个体数量叫做样本容量,等于总数乘以抽取的比例.9.D解析:D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,因此,A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故本选项错误;B、旅客上飞机前的安检,意义重大,宜用全面调查,故本选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故本选项正确.故选D.10.A解析:A【解析】如图1,作AE⊥BC于E,AF⊥CD于F,,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形的宽都是3,∴AE=AF=3,∵S四边形ABCD=AE⋅BC=AF⋅CD,∴BC=CD,∴平行四边形ABCD是菱形.如图2,,设AB=BC=x,则BE=9−x,∵BC2=BE2+CE2,∴x2=(9−x)2+32,解得x=5,∴四边形ABCD面积的最大值是:5×3=15.故选A.二、填空题11.20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,解析:20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.12.3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=×2×3=3,故答案为3.考点:菱形的性质.解析:3【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【详解】解:由题意,知:S菱形=12×2×3=3,故答案为3.考点:菱形的性质.13.1<x<7【解析】因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.解析:1<x<7【解析】因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.14.1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼解析:1000【解析】【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到110,而有标记的共有100条,从而可求得总数.【详解】可估计湖里大约有鱼100÷20200=1000条.故答案为1000.本题考查了用样本估计总体,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.15.【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解解析:【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=12AC=3,BP=12BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为5【点睛】本题考查轴对称-最短路线问题;菱形的性质.【分析】首先化简二次根式,再根据同类二次根式定义可得2a﹣3=3,再解即可.【详解】,∵与最简二次根式是同类二次根式,∴2a﹣3=3,解得:a=3,故答案为:3.【点睛】此题主解析:3【分析】2a﹣3=3,再解即可.【详解】==,是同类二次根式,∴2a﹣3=3,解得:a=3,故答案为:3.【点睛】此题主要考查了同类二次根式,关键是掌握把二次根式化为最简二次根式后被开方数相同的二次根式称为同类二次根式.17.【分析】过作轴于,交于,设,根据直角三角形斜边中线是斜边一半得:,设,则,,因为.都在反比例函数的图象上,列方程可得结论.【详解】如图,过作轴于,交于.∵轴∴,∵是等腰直角三角形,解析:16 3【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上,∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =,∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅= 163= 故答案为:163.本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.18.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质.19.9【解析】【分析】【详解】在中,,∵点、分别是、的中点,∴是的中位线,,,,∴的周长,故答案为:9.解析:9【解析】【分析】在Rt ABC 中,10AC cm == ,∵点E 、F 分别是AO 、AD 的中点,∴EF 是AOD △的中位线,12141452E F O D B D A C ====,11422AF AD BC cm === ,115242AE AO AC === , ∴AEF 的周长9AE AF EF cm =++=,故答案为:9.20.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x3,x4, ∴at2+bt+1=0,由题意可知:t1=解析:1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x 3,x 4,∴at 2+bt+1=0,由题意可知:t 1=1,t 2=2,∴t 1+t 2=3,∴x 3+x 4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.三、解答题21.(1)证明见解析;(2)证明见解析.【分析】(1)根据平行四边形的性质得到AB //CD ,AB=CD ,然后根据CE=DC ,得到AB=EC ,AB //EC ,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论先证得四边形ABEC 是平行四边形,通过角的关系得出FA=FE=FB=FC ,AE=BC ,得证.【详解】(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD .∵CE =DC ,∴AB =EC ,AB ∥EC ,∴四边形ABEC 是平行四边形;(2)∵由(1)知,四边形ABEC 是平行四边形,∴FA =FE ,FB =FC .∵四边形ABCD 是平行四边形,∴∠ABC =∠D .又∵∠AFC =2∠ADC ,∴∠AFC =2∠ABC .∵∠AFC =∠ABC +∠BAF ,∴∠ABC =∠BAF ,∴FA =FB ,∴FA =FE =FB =FC ,∴AE =BC ,∴四边形ABEC 是矩形.【点睛】此题考查的知识点是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.22.1a 2--,当1a =-时,原式1=3【分析】 本题根据分式的除法和减法运算法则,结合平方差以及提公因式法将题目化简,然后从1-、0、1、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】 原式2(1)1111(2)(2)22a a a a a a a a a +--=-⨯=-=-+---, 由已知得:若使原分式有意义,需满足0a ≠,20a a -≠,240a -≠,即当0a =、1、2、2-时原分式无意义,故当1a =-时,原式11123=-=--. 【点睛】本题考查分式的化简求值,解题关键在于对平方差、完全平方公式等运算法则的运用,其次注意计算仔细即可.23.证明见解析.根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.24.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,依题意,得:1001201 0.8x x-=,解得:x=5,经检验,x=5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.25.当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明见解析.【分析】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:如图,∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点睛】本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定.解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF是平行四边形,并证明∠ECF是90°.26.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x2-4,解得:x=-1,经检验x=-1是分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.27.t =2【分析】当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,由EF ∥AB ,BF ∥AE 可得出四边形ABFE 为平行四边形,利用平行四边形的性质可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,∵EF ∥AB ,BF ∥AE ,∴四边形ABFE 为平行四边形,∴BF =AE ,即t =6﹣2t ,解得:t =2.答:当t =2秒时,EF ∥AB .【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t 的一元一次方程是解题的关键.28.(1);BC a c -;(2)①BE DC =,证明见解析,②3;(3)AM 最小为(6,P 或(3.【分析】(1)根据点A 位于CB 上时,线段AC 的长取得最小值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=90°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果; (3)以AP 为边向右边作等边三角形APC ,连接BE 后,易证APM CPB ≅,此时AM=BC ,然后根据(1)的结论求值即可,点P 坐标可根据等边三角形性质求.【详解】解:()1AC BC AB a c ≥-=-当A 位于BC 线段上AO ,取到最小值a c -故答案为:;BC a c - ()2①ABO ∆和AEC ∆均为等腰直角三角形,1,AB AD AE AC ∴===,BAD EAC BD ∠=∠=BAE BAD EAD EAC EAD DAC ∴∠=∠-∠=∠-∠=∠∴在ABE ∆和ADC ∆中AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩()BAE DAC SAS ∴∆≅∆BE DC ∴= ②而32DCBC BD ≥-=- BE 最小值为32-,当且仅当D 在线段BC 上取到 ()3以AP 为边向右边作等边三角形APC ,连接BCAPC ∆为正三角形,2,60AC AP PC APC ︒∴===∠= 又60MPB ︒∠=APM APC MPC ∴∠=∠-∠60MPC ︒=-∠MPB MPC =∠-∠CPB =∠∴在APM ∆和CPB ∆中AP CP APM CPB PM PB =⎧⎪∠=∠⎨⎪=⎩()APM CPB SAS ∴∆≅∆()10226AM BC AB AC ∴=≥-=--= AM ∴最小为6,此时C 在线段AB 上, P 的横坐标为1232AP +⨯= 纵坐标为222222322AP AP ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭((33,3P ∴-或.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.。
江苏省八年级数学下学期3月月考试题苏科版
江苏省八年级数学下学期3月月考试题苏科版一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题纸上)1.下列图形中既是轴对称图形,又是中心对称图形的是(▲)A.B.C.D.2.下列事件中,是随机事件的为(▲)A.水涨船高B.守株待兔C.水中捞月D.冬去春来3.为了解某县八年级9800名学生的视力情况,从中抽查了100名学生的视力情况,对于这个问题,下面说法中正确的是(▲)A.9800名学生是总体B.每个学生是个体C.100名学生是所抽取的一个样本D.100名学生的视力情况是所抽取的一个样本4.如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于(▲)A.100°B.80°C.60°D.40°5.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有(▲)A.1组B.2组C.3组D.4组6.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是(▲)A.点A B.点B C.点C D.点D第4题第6题二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题纸相应位置.......上)7.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是7,频率是0.2,那么该班级的人数是▲人.8.在□ABCD中,AB:BC=4:3,周长为28cm,则AD= ▲cm.9.在每个小正方形边长均为1的1×2的网格格点(格点即每个小正方形的顶点)上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其余格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的可能性为▲.10.在□ABCD中,若∠A+∠C=140°,那么∠D= ▲.11.对于下列图形:①等边三角形;②矩形;③平行四边形;④菱形;⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是▲.(填写图形的相应编号)12.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE= ▲.13.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球▲个.14.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是▲.15.如图,□ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是▲.16.如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN∥AB,连接NH,如果∠D=68°,则∠CHN= ▲.第9题第12题第14题第15题第16题三.解答题(本大题共有10小题,共68分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题5分)如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.已知:在四边形ABCD中,▲,▲;求证:四边形ABCD是平行四边形.18.(本题4分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(﹣2,2),B(0,5),C(0,2).(1)画△A1B1C,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),画出平移后对应的△A2B2C2;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为▲.19.(本题7分)为了解某校学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《出彩中国人》四个电视节目的喜爱情况,随机抽取了m学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),将调查结果绘制成如下两幅不完整的统计图(如图1和图2):根据统计图提供的信息,回答下列问题;(1)m = ▲ ,n= ▲ ;(2)扇形统计图中,喜爱《最强大脑》节目所对应的扇形的圆心角度数是 ▲ 度. (3)根据以上信息直接在答题卡中补全条形统计图;(4)根据抽样调查结果,请你估计该校6000名学生中有多少学生最喜欢《中国诗词大会》节目.20.(本题6分)如图,E 、F 是平行四边形ABCD 对角线AC 上两点,AE =CF . 证明(1)△ABE ≌△CDF ;(2)BE ∥DF .21.(本题8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a = ▲ ,b = ▲ ,c = ▲ ; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数; (4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.22.(本题6分)在一个不透明的口袋里装有若干个篮球和20个绿球,这些球除颜色外均相同.为了估计口袋里球的数量,某学习小组做了摸球实验,将口袋里的球搅匀后从中随机摸出一个球并记本数(本) 频数(人数)频率 5 a0.2 6 18 0.367 14 b8 80.16 合计c1下颜色,再把它放回袋中,不断重复.共摸球1200次,发现有500次摸到绿球,请你估计这个口袋里一共有多少个球?23.(本题8分)如图,已知E、F分别为平行四边形ABCD的对边AD、BC上的点,且DE=BF,EM⊥AC于M,FN⊥AC于N,EF交AC于点O,求证:(1)EM=FN;(2)EF与MN互相平分.24.(本题8分)如图,在□ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求□ABCD的面积.25.(本题8分)如图,△ABC和△BEF都是等边三角形,点D在BC边上,点F在AB边上,且∠EAD=60°,连接ED、CF.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.26.(本题8分)按要求完成下列尺规作图(不写作法,保留作图痕迹).(1)如图①,点A、B、C是平行四边形ABCD的三个顶点,求作平行四边形ABCD;(2)如图②,点O、P、Q分别是平行四边形EFGH三边EH、EF、FG的中点,求作平行四边形EFGH.xx第二学期湖熟片八年级学情检测数学参考答案一、选择题(每小题2分,共12分)7. 35 . 8. 6 . 9.34. 10 110 .11.②④⑤⑥. 12.100°.13. 8 . 14.(7,4).15. 10 . 16.56°.三、解答题17.解:已知:①③,①④,②④,③④均可,其余均不可以.解法一:已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,………(1分)求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.………(4分)解法二:已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AD∥BC,∴四边形ABCD是平行四边形;解法三:已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形;解法四:已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,∴∠A+∠D=180°,又∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形.18.画图一个1分旋转中心的坐标为:(0,﹣2).………(2分)19.(1)m= 50 ,n= 30 ;………(2分)(2)72 度.………(2分)(3)………(1分)(4)6000×30%=1800,答:该校6000名学生中有1800名学生最喜欢《中国诗词大会》节目.…(2分)20.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB,∴∠BAE=∠DCF,∵AE=CF,∴△ABE≌△CDF(SAS).………(3分)(2)∵△ABE≌△CDF,∴∠AEB=∠CFD,∴∠CEB=∠AFD,∴BE∥DF.………(3分)21.解:(1)统计表中的a= 10 ,b= 0.28 ,c= 50 ;………(3分)(2)将频数分布表直方图补充完整,如图所示:………(1分)(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).………(2分)(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).………(2分)22.解:20÷50 1200=48则这个口袋里一共有48个球.23.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAM=∠FCN,∵DE=BF,∴AE=CF,∵EM⊥AC于M,FN⊥AC于N,∴∠AME=∠CNF=90°,在△AEM和△CFN中,,∴△AEM≌△CFN(AAS),∴EM=FN;………(4分)(2)连接EN、FM,如图所示:∵EM⊥AC,FN⊥AC,∴∠AME=∠EMN=∠FNC=∠FNM=90°,∴EM∥FN,又∵由(1)得EM=FN,∴四边形EMFN是平行四边形,∴EF与MN互相平分.………(4分)24.解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,CD=AB=5,AB∥CD,∴∠AEB=∠CBF,∠ABE=∠F=20°,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠AEB=∠ABE=20°,∴AE=AB,∠A=(180°﹣20°﹣20°)÷2=140°;………(4分)(2)∵AE=AB=5,AD=BC=8,CD=AB=5,∴DE=AD﹣AE=3,∵CE⊥AD,∴CE===4,∴▱ABCD的面积=AD•CE=8×4=32.………(4分)25.证明:(1)∵△ABC和△BEF都是等边三角形,∴AB=AC,∠EBF=∠ACB=∠BAC=60°,∵∠EAD=60°,∴∠EAD=∠BAC,∴∠EAB=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD.………(4分)(2)由(1)得△ABE≌△ACD,∴BE=CD,∵△BEF、△ABC是等边三角形,∴BE=EF,∴∠EFB=∠ABC=60°,∴EF∥CD,∴BE=EF=CD,∴EF=CD,且EF∥CD,∴四边形EFCD是平行四边形.………(4分)26.第一个图4分,第二个图4分如有侵权请联系告知删除,感谢你们的配合!。
苏科八年级数学下册第二学期第3次月考测试卷
苏科八年级数学下册第二学期第3次月考测试卷一、解答题1.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.2.某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.3.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.4.自2009年以来,“中国•兴化千垛菜花旅游节”享誉全国.“河有万湾多碧水,田无一垛不黄花”所描绘的就是我市发达的油菜种植业.为了解某品种油菜籽的发芽情况,农业部门从该品种油菜籽中抽取了6批,在相同条件下进行发芽试验,有关数据如表:批次123456油菜籽粒100400800100020005000数发芽油菜a31865279316044005籽粒数发芽频率0.8500.7950.8150.793b0.801(1)分别求a和b的值;(2)请根据以上数据,直接写出该品种油菜籽发芽概率的估计值(精确到0.1);(3)农业部门抽取的第7批油菜籽共有6000粒.请你根据问题(2)的结果,通过计算来估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数.5.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?6.如图,在ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE 的延长线于F,连接CF.(1)求证:AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.7.如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)直接写出:以A、B、C为顶点的平形四边形的第四个顶点D的坐标.8.计算: (1)2354535⨯; (2)()22360,0x y xy x y ≥≥;(3)()48274153-+÷.9.如图,在△ABC 中,AB =AC ,点D 是边AB 的点,DE ∥BC 交AC 于点E ,连接BE ,点F 、G 、H 分别为BE 、DE 、BC 的中点. (1)求证:FG =FH ;(2)当∠A 为多少度时,FG ⊥FH ?并说明理由.10.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m _________,扇形D 所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人?11.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?12.如图,在矩形ABCD中,AB=1,BC=3.(1)在图①中,P是BC上一点,EF垂直平分AP,分别交AD、BC边于点E、F,求证:四边形AFPE是菱形;(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接..标出菱形的边长.(保留作图痕迹,不写作法)13.解方程:x21 x1x-= -.14.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.15.如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC延长线上一点,且CE=3,连结DE.(1)求证:四边形ACED为矩形.(2)连结OE,求OE的长.【参考答案】***试卷处理标记,请不要删除一、解答题1.详见解析.【解析】试题分析:根据已知易证∠DAC=∠ACB,根据平行线的判定可得AD∥BC,AB∥CD,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD是平行四边形.试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.考点:平行四边形的判定.2.解:(1)200,144.(2)见解析;(3)120名【分析】(1)根据阅读写作的人数和所占的百分比,即可求出学生总数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出“艺术鉴赏”部分的圆心角.(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图.(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案.【详解】解:(1)学生总数:50÷25%=200(名)“艺术鉴赏”部分的圆心角:80200×360°=144°故答案为:200,144.(2)数学思维的人数是:200-80-30-50=40(名),补图如下:(3)根据题意得:800×30200=120(名),答:其中有120名学生选修“科技制作”项目. 3.解:(1)如图所示:点A 1的坐标(2,﹣4). (2)如图所示,点A 2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A 、B 、C 三点关于x 轴的对称点,再顺次连接,然后根据图形写出A 点坐标.(2)将△A 1B 1C 1中的各点A 1、B 1、C 1绕原点O 旋转180°后,得到相应的对应点A 2、B 2、C 2,连接各对应点即得△A 2B 2C 2. 4.(1)85a ,0.802b =;(2)0.8;(3)4800【分析】(1)用油菜籽粒数乘以发芽频率求得a 的值,用发芽油菜籽粒数除以油菜籽总数即可求得b 的值.(2)观察大量重复试验发芽的频率稳定到哪个常数附近即可用哪个数表示发芽概率. (3)用油菜籽总数乘以发芽概率即可求得发芽粒数. 【详解】(1)1000.85085a =⨯=,16040.8022000b ==; (2)∵观察表格发现发芽频率逐渐稳定到0.8附近, ∴该品种油菜籽发芽概率的估计值为0.8; (3)60000.8=4800⨯,故估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数为4800. 【点睛】本题考查统计与概率,解题关键在于信息筛选能力,对频率计算公式的理解,其次注意计算仔细即可.5.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元. 【分析】(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x元,则第二批套尺购进时单价为0.8x元,依题意,得:1001201 0.8x x-=,解得:x=5,经检验,x=5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.6.(1)见解析;(2)见解析【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;(2)根据平行四边形的判定和性质以及菱形的判定证明即可.【详解】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴□ADCF是菱形.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.7.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)【分析】(1)根据关于原点对称的点的坐标特征分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)分类讨论:分别以AB、AC、BC为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D点的坐标.【详解】---,根据关于原点对称的点解:(1)如图,点A、B、C的坐标分别为(1,0),(4,1),(2,2)--,描点连线,的坐标特征,则点A、B、C关于原点对称的点分别为(1,0),(4,1),(2,2)△A1B1C1即为所作:(2)分别以AB、AC、BC为对角线画平行四边形,如下图所示:---,则由图可知D点的坐标分别为:(3,1),(1,1),(5,3)---.故答案为:(1,1),(5,3),(3,1)【点睛】本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.8.(1)6;(2)32xy;(3)5【分析】(1)利用二次根式的乘法法则运算; (2)利用二次根式的乘法法则运算; (3)利用二次根式的除法法则运算. 【详解】(1=23×35=6; (2()260,0yxy x y ≥≥=3(3)=4﹣= 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.(1)见解析;(2)当∠A =90°时,FG ⊥FH . 【分析】(1)根据等腰三角形的性质得到∠ABC =∠ACB ,根据平行线的性质、等腰三角形的判定定理得到AD =AE ,得到DB =EC ,根据三角形中位线定理证明结论;(2)延长FG 交AC 于N ,根据三角形中位线定理得到FH ∥AC ,FN ∥AB ,根据平行线的性质解答即可. 【详解】(1)证明:∵AB =AC . ∴∠ABC =∠ACB ,∵DE ∥BC , ∴∠ADE =∠ABC ,∠AED =∠ACB , ∴∠ADE =∠AED , ∴AD =AE , ∴DB =EC ,∵点F 、G 、H 分别为BE 、DE 、BC 的中点, ∴FG 是△EDB 的中位线,FH 是△BCE 的中位线, ∴FG =12BD ,FH =12CE ,∴FG =FH ;(2)解:延长FG 交AC 于N ,∵FG 是△EDB 的中位线,FH 是△BCE 的中位线, ∴FH ∥AC ,FN ∥AB , ∵FG ⊥FH , ∴∠A =90°,∴当∠A =90°时,FG ⊥FH . 【点睛】本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键. 10.(1)50;32;43.2 (2)见解析 (3)1120人 【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯= (2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可. 【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2 (2)5040%20⨯=(人), 补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.11.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.12.(1)见解析;(2)见解析【分析】(1)根据矩形的性质和EF垂直平分AP推出AF=PF=AE=PE即可判断;(2)以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,此时的菱形即为矩形ABCD内面积最大的菱形.【详解】(1)证明:如图①∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠2,∵EF垂直平分AP,∴AF=PF,AE=PE,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=PF=AE=PE,∴四边形AFPE是菱形;(2)如图②,以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,连接各个点,所得的菱形即为矩形ABCD内面积最大的菱形;此时设菱形边长为x,则可得12+(3-x)2=x2,解得x=53,所以菱形的边长为53.【点睛】本题考查了矩形的性质,菱形的性质和判定,掌握知识点是解题关键.13.2x .【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.详见解析.【分析】先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,证出四边形ABCD是平行四边形,再由AD=AB,即可得出结论.【详解】证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC平分∠BAD.∴∠OAB=∠DAC,∴∠DCA =∠DAC ,∴CD =AD =AB ,∵AB ∥CD ,∴四边形ABCD 是平行四边形,∵AD =AB ,∴四边形ABCD 是菱形.【点睛】本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大.15.(1)见解析(2)10 【分析】(1)根据平行四边形的性质得到AD =BC =3,AD ∥BC ,得到AD =CE ,推出四边形ACED 是平行四边形,由垂直的定义得到∠ACE =90°,于是得到结论;(2)根据三角形的中位线定理得到OC =12DE =12AC =1,由勾股定理即可得到结论. 【详解】 (1)证明:∵在平行四边形ABCD 中,AD =BC =3,AD ∥BC ,∵CE =3,∴AD =CE ,∴四边形ACED 是平行四边形,∵AC ⊥BC ,∴∠ACE =90°,∴四边形ACED 为矩形;(2)解:连接OE ,如图,∵BO =DO ,BC =CE ,∴OC =12DE =12AC =1, ∵∠ACE =90°,∴OE 22221310OC CE +=+=【点睛】本题主要考查了平行四边形的性质,结合三角形中位线定理和勾股定理进行求解.。
苏科初二数学下学期第3次月考试卷
苏科初二数学下学期第3次月考试卷一、选择题1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有A.1组B.2组C.3组D.4组2.下列图案中,是中心对称图形的是()A.B.C.D.3.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为()A.35°B.40°C.45°D.60°4.如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②∠AHB=∠EHD;③S△BHE=S△CHD;④AG⊥BE.其中正确的是()A.①③B.①②③④C.①②③D.①③④5.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()A.5B7+1C.5D.24 56.下面图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .7.为了解某校八年级320名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是( ) A .320名学生的全体是总体 B .80名学生是总体的一个样本 C .每名学生的体重是个体D .80名学生是样本容量8.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近( ) A .1000B .1500C .2000D .25009.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠ 10.要反应一周气温的变化情况,宜采用( )A .统计表B .条形统计图C .扇形统计图D .折线统计图二、填空题11.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.12.在英文单词tomato 中,字母o 出现的频数是_____.13.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.14.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .15.若点()23,在反比例函数ky x=的图象上,则k 的值为________. 16.一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到_____(颜色)球的可能性最大.17.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D 、B 作DE ⊥a 于点E 、BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为_______.18.如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE ,设▱ABCD 的面积为S 1,四边形AEDF 的面积为S 2,则12S S的值是_____.19.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.20.如图,在□ABCD 中,AB =7,AD =11,DE 平分∠ADC ,则BE =__.三、解答题21.解下列方程:(1)9633x x =+- ; (2)241111x x x -+=-+ . 22.如图1,矩形的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(6,8).D 是AB 边上一点(不与点A 、B 重合),将△BCD 沿直线CD 翻折,使点B 落在点E 处. (1)求直线AC 所表示的函数的表达式;(2)如图2,当点E 恰好落在矩形的对角线AC 上时,求点D 的坐标;(3)如图3,当以O 、E 、C 三点为顶点的三角形是等腰三角形时,求△OEA 的面积.23.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表 组别A BCD E分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数. 24.用适当的方法解方程: (1)x 2﹣4x ﹣5=0; (2)y (y ﹣7)=14﹣2y ; (3)2x 2﹣3x ﹣1=0.25.已知关于x 的方程x 2﹣(k +3)x +3k =0. (1)若该方程的一个根为1,求k 的值;(2)求证:不论k 取何实数,该方程总有两个实数根.26.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x (单位:小时)分成了4组,A :0≤x <2;B :2≤x <4;C :4≤x <6;D :6≤x <8,试结合图中所给信息解答下列问题:(1)这次随机抽取了名学生进行调查;扇形统计图中,扇形B的圆心角的度数为.(2)补全频数分布直方图;(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?27.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.28.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120゜,∠MBN=60゜,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为.(不需要证明);(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】如图,(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD,∴∠BAD+∠ABC=180°,∴AD∥BC,∴四边形ABCD是平行四边形;(3)∵在四边形ABCD中,AO=CO,BO=DO,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.2.A解析:A【分析】本题根据中心对称图形的概念求解.【详解】A选项是中心对称图形,故本选项符合题意;B选项是轴对称图形,故本选项不合题意;C选项是轴对称图形,故本选项不合题意;D选项是轴对称图形,故本选项不合题意.故选:A.【点睛】本题考查中心对称图形的识别,按照其定义求解即可,注意与轴对称图形的区别.3.C解析:C【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF ,根据等边对等角求出∠BEF=∠CBE ,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【详解】∵DE 垂直平分AB ,∴AE=BE , ∵BE ⊥AC ,∴△ABE 是等腰直角三角形, ∴∠BAE=∠ABE=45°, 又∵AB=AC ,∴∠ABC=12(180°-∠BAC )=12(180°-45°)=67.5°, ∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°, ∵AB=AC ,AF ⊥BC , ∴BF=CF ,∵EF=12BC (直角三角形斜边中线等于斜边的一半), ∴BF=EF=CF ,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°. 故选:C . 【点睛】此题考查等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE 是等腰直角三角形是解题的关键.4.B解析:B 【分析】根据正方形的性质证得BAE CDE ∆≅∆,推出ABE DCE ∠=∠,可知①正确;证明ABH CBH ∆≅∆,再根据对顶角相等即可得到AHB EHD ∠=∠,可知②正确;根据//AD BC ,求出BDE CDE S S ∆∆=,推出BDE DEH CDE DEH S S S S ∆∆∆∆-=-,即BHE CHD S S ∆∆=,故③正确;利用正方形性质证ADH CDH ∆≅∆,求得HAD HCD ∠=∠,推出ABE HAD ∠=∠;求出90ABE BAG ∠+∠=︒,求得90AGE ∠=︒故④正确.【详解】 解:四边形ABCD 是正方形,E 是AD 边上的中点,AE DE ∴=,AB CD =,90BAD CDA ∠=∠=︒,()BAE CDE SAS ∴∆≅∆, ABE DCE ∴∠=∠,故①正确;∵四边形ABCD 是正方形, ∴AB=BC , ∠ABD=∠CBD , ∵BH=BH , ∴ABH CBH ∆≅∆,AHB CHB ∴∠=∠,BHC DHE ∠=∠,AHB EHD ∴∠=∠,故②正确;//AD BC ,BDE CDE S S ∆∆∴=,BDE DEH CDE DEH S S S S ∆∆∆∆∴-=-,即BHE CHD S S ∆∆=, 故③正确;四边形ABCD 是正方形,AD DC ∴=,45ADB CDB ∠=∠=︒,DH DH =,()ADH CDH SAS ∴∆≅∆, HAD HCD ∴∠=∠, ABE DCE ∠=∠ABE HAD ∴∠=∠,90BAD BAH DAH ∠=∠+∠=︒, 90ABE BAH ∴∠+∠=︒, 1809090AGB ∴∠=︒-︒=︒,AG BE ∴⊥, 故④正确;故选:B . 【点睛】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题关键要充分利用正方形的性质:①四边相等;②四个内角相等,都是90度;③对角线相等,相互垂直,且每条对角线平分一组对角.5.D解析:D【解析】【分析】首先根据菱形的对角线性质得到DE+CE的最小值=CF,再利用菱形的面积列出等量关系即可解题.【详解】解:如下图,过点C作CF⊥OA与F,交OB于点E,过点E作ED⊥OC与D,∵四边形OABC是菱形,由菱形对角线互相垂直平分可知EF=ED,∴DE+CE的最小值=CF,∵A的坐标为(4,3),∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积),即24=CF×5,解得:CF= 24 5,即DE+CE的最小值=24 5,故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E的位置并熟悉菱形面积的求法是解题关键.6.D解析:D【分析】根据轴对称图形的定义和中心对称图形的定义对每个选项进行判断即可.【详解】A项是轴对称图形,不是中心对称图形;B项是中心对称图形,不是轴对称图形;C项是中心对称图形,不是轴对称图形;D项是中心对称图形,也是轴对称图形;故选:D . 【点睛】本题考查了轴对称图形的定义和中心对称图形的定义,掌握知识点是解题关键.7.C解析:C 【分析】根据总体、样本、样本容量及个体的定义对选项逐一判断即可得答案. 【详解】A 、320名学生的体重情况是总体,故该选项错误;B 、80名学生的体重情况是样本,故该选项错误;C 、每个学生的体重情况是个体,故该选项正确;D 、样本容量是80,故该选项错误; 故选:C . 【点睛】本题考查总体、个体、样本、样本容量的定义,熟练掌握相关定义是解题关键.8.B解析:B 【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可. 【详解】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近, 所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次, 故选:B . 【点睛】本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.9.D解析:D 【分析】利用旋转的性质得AC=CD ,BC=EC ,∠ACD=∠BCE ,所以选项A 、C 不一定正确 再根据等腰三角形的性质即可得出A EBC ∠=∠,所以选项D 正确;再根据∠EBC =∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 判断选项B 不一定正确即可. 【详解】解:∵ABC ∆绕点C 顺时针旋转得到DEC ∆, ∴AC=CD ,BC=EC ,∠ACD=∠BCE , ∴∠A=∠CDA=180ACD 2∠︒-;∠EBC=∠BEC=180BCE2∠︒-, ∴选项A 、C 不一定正确 ∴∠A =∠EBC ∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 不一定等于090,∴选项B 不一定正确;故选D .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.10.D解析:D【分析】反应一周气温的变化情况,即反应一周气温的升高、降低的变化情况,因此采取折线统计图较好.【详解】解:折线统计图能够直观反应出一组数据的增减变化情况,因此要反应一周的气温变化情况,采用折线统计图较好,故选:D .【点晴】本题考查了各种统计图表的特征及应用,掌握统计图表的特征是解题的关键.二、填空题11.20【分析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得.【详解】设原来红球个数为x 个,则有=,解得,x=20,解析:20【分析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得.【详解】设原来红球个数为x 个, 则有1010x =1030, 解得,x =20, 经检验x =20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.12.2【分析】根据频数定义可得答案.【详解】解:字母o出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.解析:2【分析】根据频数定义可得答案.【详解】解:字母o出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.13.从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在解析:从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,故答案为:从各学校共随机抽取的500名八年级男生体重.【点睛】本题考查统计中的总体与样本,属于基本题型.14.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147.考点:概率公式.15.6【详解】解:由题意知:k=3×2=6故答案为:6解析:6【详解】解:由题意知:k=3×2=6故答案为:616.红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率==,摸到白球的概率==,摸到蓝球的概率=,所以从中任意摸一球,则摸到红球的可能性最大解析:红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率=3321++=12,摸到白球的概率=26=13,摸到蓝球的概率=16,所以从中任意摸一球,则摸到红球的可能性最大.故答案为:红.【点睛】本题考查了可能性的大小:某事件的可能性等于所求情况数与总情况数之比.17.7【解析】【详解】因为ABCD 是正方形,所以AB=AD ,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS 易证△AFB≌△DEA,所以AF=DE=4,BF 解析:7【解析】【详解】因为ABCD 是正方形,所以AB=AD ,∠BFA=∠BAD=90°,则有∠ABF=∠DAE ,又因为DE ⊥a 、BF ⊥a ,根据AAS 易证△AFB ≌△DEA ,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.18.2【分析】首先由ASA 可证明:△BCE≌△ADF;由平行四边形的性质可知:S△BEC+S△AED =S ▱ABCD ,进而可求出的值.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AD∥B解析:2【分析】首先由ASA 可证明:△BCE ≌△ADF ;由平行四边形的性质可知:S △BEC +S △AED =12S ▱ABCD ,进而可求出12S S 的值. 【详解】∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ABC +∠BAD =180°,∵AF ∥BE ,∴∠EBA +∠BAF =180°,∴∠CBE =∠DAF ,同理得∠BCE =∠ADF ,在△BCE 和△ADF 中,CBE DAF BC ADBCE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BCE ≌△ADF (ASA ),∴S △BCE =S △ADF ,∵点E 在▱ABCD 内部,∴S △BEC +S △AED =12S ▱ABCD , ∴S 四边形AEDF =S △ADF +S △AED =S △BEC +S △AED =12S ▱ABCD , ∵▱ABCD 的面积为S 1,四边形AEDF 的面积为S 2, ∴12S S =2, 故答案为:2.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.19.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x3,x4, ∴at2+bt+1=0,由题意可知:t1=解析:1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x 3,x 4,∴at 2+bt+1=0,由题意可知:t 1=1,t 2=2,∴t 1+t 2=3,∴x 3+x 4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.20.4【解析】解:∵DE 平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD 中AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD 中,AB=7,AD=11,解析:4【解析】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AB=7,AD=11,∴CD=AB=7,BC=AD=11,∴BE=BC-CE=11-7=4.三、解答题21.(1)35x=;(2)原方程无解【分析】(1)分式方程两边同乘以(3+x)(3﹣x)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即得结果.【详解】解:(1)方程两边同乘(3+x)(3﹣x),得9(3﹣x)=6(3+x),解这个方程,得x=35,检验:当x=35时,(3+x)(3﹣x)≠0,∴x=35是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,∴x=﹣1是增根,原方程无解.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题的关键.22.(1)483y x=-+;见解析;(2)()6,5D;见解析;(3)12或694,见解析.【分析】(1)利用矩形的性质,求出点A、C的坐标,再用待定系数法即可求解;(2)Rt△AED中,由勾股定理得:222AE DE AD+=,即可求解;(3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC 时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】 解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10,∵四边形OABC 是矩形,∴∠B =90°,BC =6,AB =8,∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4,∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=,∴()22248a a +-=,解得a =3, ∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ,∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA ,∴∠ENO =∠NOM =∠OME =90°,∴四边形OMEN 是矩形,∴EM =ON .①当EC =EO 时,∵EC =EO ,NE ⊥OC ,∴ON =12OC =4=EM , △OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时,∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=,在Rt △ENO 中,222NE EO ON -=,即()2222688b b ---=,解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法.23.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B 的圆心角度数为115.2°;(4)每月零花钱的数额x 在30≤x <90范围的人数大约为720人.【解析】分析:(1)根据C 组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a 的值,m 的值;(2)根据a 的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a =50﹣4﹣20﹣8﹣2=16,A 组所占的百分比是450=8%,则m =8. 故答案为50,16,8; (2)补全频数分布直方图如图:(3)扇形统计图中扇形B 的圆心角度数是360°×1650=115.2°; (4)每月零花钱的数额x 在30≤x <90范围的人数是1000×162050+=720(人). 答:每月零花钱的数额x 在30≤x <90范围的人数大约为720人. 点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.24.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12317317x x +-== 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0,则x +1=0或x ﹣5=0,解得:x 1=-1,x 2=5.(2)y (y ﹣7)=14﹣2y ,移项得,y (y ﹣7)-14+2y =0,分解因式得:(y ﹣7)(y +2)=0,则y ﹣7=0或y +2=0,解得:y 1=7,y 2=﹣2.(3)2x 2﹣3x ﹣1=0,∴a =2,b =﹣3,c =﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x 1=3174,x 2=3174. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.25.(1)k =1;(2)证明见解析.【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键. 26.(1)200;72° (2)见解析(3)1300名【分析】(1)由D组人数及其所占百分比可得总人数;用360°乘以B所占的百分比即可求出扇形B的圆心角的度数;(2)根据各组人数之和等于总人数求出A组人数,从而补全统计图;(3)用该校的总人数乘以每周阅读时间不少于4小时的学生所占的百分比即可.【详解】解:(1)本次随机抽查的学生人数为:60÷30%=200(名),扇形B的圆心角的度数为:360°×40200=72°;故答案为:200,72°;(2)A组人数为:200﹣(40+70+60)=30(人),补全图形如下:(3)根据题意得:2000×7060200+=1300(名),答:估计每周阅读时间不少于4小时的学生共有.【点睛】本题考查了频数分布直方图,扇形图,用样本估计总体等知识,总体难度不大,根据直方图和扇形图提供的公共信息D 组信息得到样本容量是解题关键.27.见解析【分析】由平行四边形的性质得AD ∥BC ,根据平行线的性质证明∠E =∠F ,角边角证明△AFG ≌△CEH ,其性质得AG =CH ,进而可证明BG =DH .【详解】BG =DH ,理由如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∠A =∠C ,AB =DC ,∴∠E =∠F ,又∵BE =DF ,AF =AD +DF ,CE =CB +BE ,∴AF =CE ,在△CEH 和△AFG 中,A C AF CE F E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFG ≌△CEH (ASA ),∴AG =CH ,∴BG =DH .【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.28.(1)AE+CF=EF ;(2)如图2,(1)中结论成立,即AE+CF=EF ;如图3,(1)中结论不成立,AE=EF+CF .【分析】(1)根据题意易得△ABE ≌△CBF ,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;(2)如图2,延长FC 到H ,使CH=AE ,连接BH ,根据题意可得△BCH ≌△BAE ,则有BH=BE ,∠CBH=∠ABE ,进而可证△HBF ≌△EBF ,推出HF=EF ,最后根据线段的等量关系可求解;如图3,在AE 上截取AQ=CF ,连接BQ ,根据题意易得△BCF ≌△BAQ ,推出BF=BQ ,∠CBF=∠ABQ ,进而可证△FBE ≌△QBE ,推出EF=QE 即可.【详解】解:(1)如图1,AE+CF=EF ,理由如下:∵AB ⊥AD ,BC ⊥CD ,∴∠A=∠C=90°,∵AB=BC ,AE=CF ,∴△ABE ≌△CBF (SAS ),∴∠ABE=∠CBF ,BE=BF ,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴11,22AE BE CF BF==,∵∠MBN=60°,BE=BF,∴△BEF是等边三角形,∴1122AE CF BE BF BE EF +=+==,故答案为AE+CF=EF;(2)如图2,(1)中结论成立;理由如下:延长FC到H,使CH=AE,连接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF,如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:在在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CE,∴AE=EF+CF.【点睛】本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。
2013-2014学年江苏省兴化顾庄等三校八年级下第三次月考联考数学试题及答案【苏科版】
(考试时间:120分钟,满分:150分) 成绩一.选择题(每题3分,共计18分)1. 下列说法正确的是 ( )A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大.B .为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行.C .彩票中奖的机会是1%,买100张一定会中奖.D .泰州市某中学学生小亮,对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占65%,于是他得出泰州市拥有空调家庭的百分比为65%的结论.2. 如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4,则四边形CODE 的周长( ) A. 4 B. 6 C. 8 D. 103. 在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y = k 2x 的图像没有公共点,则A. k 1+k 2<0B. k 1+k 2>0C. k 1k 2<0D. k 1k 2>0 4. 下列各式中,是最简二次根式是 ( ) A .8B .70C .99D .1x5. 若13-m 有意义,则m 能取的最小整数值是( ) A .m=0B .m=1C .m=2D .m=36. 如图,反比例函数(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( ) A. 1 B. 2 C. 3 D. 4 二.填空题(每题3分,共计30分)7. 四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件: ①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有______________种 8. 若最简二次根式5231-+-+-y x y x y x 与与是同类根式,则x= 。
9. 若m <0,化简nmn2= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
且以 A、B、C、D 为顶点的四边形是平行四边形.请直接写出 C、D 两点的坐标.(4 分)
26. (本题满分 12 分)如图,在平面直角坐标中,点 A 的坐标为(1,1) ,OA=AC,∠OAC=90°,点 D 为 x 轴上一动点. 以 AD 为边在 AD 的右侧 作正方形 ADEF. .. (1)当点 D 在线段 OC 上时(不与点 O、C 重合) ,则线段 CF 与 OD 之间的数量关系为 ;位置关系 为 , (2)当点 D 在线段 OC 的延长线上时, (1)中的结论是否成立?若成立,请说明理由;若不成立,请举一 反例; (3)设 D 点坐标为(t,0) ,当 D 点从 O 点运动到 C 点时,用含 t 的代数式表示 E 点坐标,并直接写出 E 点所经过的路径长.
5
B. 2 3
6
C. 8 4 2
D. 4
2 2
4.下列结论错误的是( ▲ ) A.直径是圆中最大的弦 B.长度相等的两条弧是等弧 C.半径相等的两个半圆是等弧 D.面积相等的两个圆是等圆 5.若顺次连接四边形 ABCD 各边的中点所得四边形是矩形,则四边形 ABCD 一定是( ▲ ) A.矩形 B.菱形 C.对角线互相垂直的四边形 D.对角线相等的四边形 6.如图,正方形 ABCD 的顶点 B、C 在 x 轴的正半轴上,反比例函数 y 顶点 A(m,2)和 CD 边上的点 E(n,
C D
2 1
cm.
B A
O
1
第 12 题 15.关于 x 的方程
第 14 题
2x a 1 的解是正数,则 a 的取值范围是 x 1
▲
.
16.如图,正方形 ABCD 的对角线相交于点 O,正三角形 OEF 绕点 O 旋转.在旋转过程中,当 AE=BF 时, ∠AOE 的大小是 ▲ 三、解答题(本大题共有 10 小题,共 102 分.解答时应写出必要的步骤) 17. (本题满分 12 分)化简或计算:
,
5
⑴设每件衬衫应降价 x 元。 根据题意,得 (40-x)(20+2x)=1200 整理,得 x2-30x+200=0 解之得 x1=10,x2=20。 因题意要尽快减少库存,所以 x 取 20。 答:每件衬衫应降价 20 元。 ⑵商场每天盈利(40-x)(20+2x)=800+60x-2x2=-2(x-15)2+1250. 当 x=15 时,商场最大盈利 1250 元。 答:每件衬衫降价 15 元时,商场平均每天盈利最多。
13.
2
;
14.
4 3
15°或 165°
;
15.
a<-1 且 a≠-2
;
16 .
三、解答题(共 102 分,解答时应写出文字说明、证明过程或演算步骤.) 17. (1) -1 6分 5分 (2) (2)
2
6分 x2=1 5分
18. (1)x=2 是增根. 19. 化简:
(用配方法)x1=-3
1 a a
2
5分
结果
1 6
3分
20. (本题满分 10 分) (1)证明△=(k-6) +16>0
2
4分
(2)k=1.5
另一根为
15 8
6分
21. (本题满分 8 分) (1) 50 ; (2) x 20 , m 30% (3) 略 22. (1) 作图 略 4分 (2)R=10 6分 23. (1)证明略 (2)90° 各5分 24. (本题满分 10 分)
23. (本题满分 10 分)如图,在□ABCD 中,点 E、F 分别是 AD、BC 的中点,分别连接 BE、DF、BD. (1)求证:△AEB≌△CFD; (2)若四边形 EBFD 是菱形,求∠ABD 的度数. D E
A
B
F
C
(第 23 题图)
3
24. (本题满分 10 分)某商场销售一种名牌衬衫,平均每天可售出 20 件,每件盈利 40 元,为了扩大销 售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价 1 元, 商场平均每天可多售出 2 件, (1)若商场平均每天要盈利 1200 元,每件衬衫应降价多少元? (2)当每件衬衫售价为多少元时,商场每天获利最大,最大获利是多少?
2 ) ,过点 E 的直线 l 交 x 轴 3
▲ )
k (k 0) 在第一象限的图象经过 x
于点 F,交 y 轴于点 G(0,-2) ,则点 F 的坐标是( A. ( , 0)
5 4
B. ( , 0)
7 4
C. ( , 0)
9 4
D. 0 分) 7.函数 y=
1 a (1) a 1 a 1
(2)
1 1 8 2 2
18. (本题满分 10 分) 解方程: (1)
1 1 x 3. x2 2 x
(2)
x2+2x 3=0(配方法)
19. (本题满分 8 分)先化简再求值:
其中 a 是方程 x2﹣x=6 的根
20. (本题满分 10 分)已知,方程 4x2 (k+2)x+k-3=0. (1)求证:不论 k 取何值时,方程总有两个不相等实数根; (2)若方程有一根为 1,求方程的另一根及 k 的值.
25. (本题满分 12 分)如图,反比例函数 y1
k 的图像和一次函数 x
y2=ax+b 的图像交于 A(3,4)、B(—6,n)。 (1)求两个函数的解析式;(6 分) (2)观察图像,写出当 x 为何值时 y1>y2?(2 分)
(3)C、D 分别是反比例函数 y1
k 第一、三象限的两个分支上的点, x
2
21. (本题满分 8 分)为了提高学生写好汉字的积极性,某校组织全校学生参加汉字听写比赛,比赛成绩 从高到低只分 A、B、C、D 四个等级.若随机抽取该校部分学生的比赛成绩进行统计分析,并绘制了如下 的统计图表:
所抽取学生的比赛成绩情况统计表 所抽取学生的比赛成绩条形统计图
成绩等级 人数
A
15
2
C. x 1 x 2 1
D. 3 x 2 xy 5 y 0
2.如果把
5x 中的 x 与 y 都扩大为原来的 10 倍,那么这个代数式的值( ▲ ) x y
B.扩大为原来的 5 倍 ▲ ) C.扩大为原来的 10 倍 D.缩小为原来的
A.不变
1 10
3.下列计算正确的是( A. 2 3
江苏省兴化顾庄学区三校 2015-2016 学年八年级数学下学期第三次月考试题
(考试时间:120 分钟 满分:150 分) 请注意:考生须将本卷所有答案答到答题纸上,答在试卷上无效! 一、选择题(每题 3 分,共 18 分) 1.下列方程中,一元二次方程是 A. x
2
( ▲
2
)
2
1 1 x2
B. ax bx =2
(1 ) y 1
25.
y2
2 x 2 3
12 x
6分
(2)0<x<3 或 x<-6 2分 (3)C(6,2) D(-3,-4)
4分
26. (1)相等、垂直; 4分 (2)结论成立;证明:∵OA=AC,∠OAC=90°,四边形 ADEF 为正方形 ∴∠OAD=∠CAF,AD=AF ∴AOD≌ACF ∴OD=CF ∠ACF=AOD=45° ∵∠ACO=45°,∴∠OCF=90°,∴CF⊥OD 5分 (3)过 A 点作 AH⊥x 轴,H 为垂点,过 E 作 EM⊥x 轴于 M ∴∠ADH=∠DEM,∠AHD=∠DME=90°,AD=DE, ∴ADH≌DEM ∴AH=DM=1,DH=ME=1-t ∴E(1+t,t-1) (0≤t≤2) ∴x=1+t,y=t-1 ∴y=x-2 ∴E 在直线 y=x-2 上运动,1≤x≤3 ∴E 点所走路径长为 3分
6
备用图
4
三校 2015~2016 学年度第二学期第三次月度联考 八年级数学参考答案 一、选择题(每题 3 分,共 18 分.) 题号 答案 1 C 2 A 3 B 4 B 5 C 6 C
二、填空题(每空 3 分,共 30 分.) 7 9. 11 x≥1 1 1 ; ; ; 8. 10. 12 30° 5或9 3 ; ; ;
x 1 的自变量 x 的取值范围为
▲
. ▲ ▲ .
8.等腰三角形的两边长分别为 5 和 9,则第三边长为
9.若 a、b 为实数,且满足│a-2│+ b 1 =0,则 a+b 的值为 10.若关于 x 的分式方程
x m 2 有增根,则 m 的值为 ▲ . x3 x3
11.若关于 x 的一元二次方程 kx2+4x+k2-k=0 有一个根为 0,则 k 的值为__▲____ 12.如图,在⊙O 中,弧 AC=弧 BD,∠1=30°,则∠2=__▲___ 13. 若一元二次方程 x2﹣2x-3=0 的两个根为 x1、x2;则 x1+x2= ▲ 14.如图,菱形 ABCD 的周长为 16cm,BC 的垂直平分线 EF 经过点 A,则对角线 BD 长为 ▲
B
C
10
D
5
x
人数 25 20 15 10 5 0
抽查学生占抽查 m 总数的百分比
15 10 5
40% 20% 10%
根据图表的信息,回答下列问题:
A
B
C
D
类别
(1)本次抽查的学生共有 名; (2)表中 x 和 m 所表示的数分别为: x ,m ,并在图中补全条形统计图; (3)若该校共有 2500 名学生,请你估计此次汉字听写比赛有多少名学生成绩达到 B 级(含 B 级)以上? 22. (本题满分 10 分)如图所示:残缺的圆形轮片上,弦 AB 的垂直平分线 CD 交圆形轮片于点 C,垂足为 D,解答下列问题: (1) 用尺规作图找出圆形轮片的圆心 O 的位置并将圆形轮片所在的圆补全; (要求: 保留所有的作图痕迹, 不写作法) (2)若弦 AB=16,CD=4,求圆形轮片所在圆半径 R.