第二章 训练1
高中地理必修1第二章第一节“冷热不均引起大气运动”训练题(一)

中学地理必修1其次章第一节“冷热不均引起大气运动”训练题(一)福建省南安市华侨中学 林志胜一、单项选择题读图1,完成1~2题。
1.图中①、②、③三个箭头所表示的辐射依次是( )A .大气逆辐射、地面辐射、太阳辐射B .太阳辐射、地面辐射、大气逆辐射C .地面辐射、大气逆辐射、太阳辐射D .太阳辐射、大气逆辐射、地面辐射 2.全球变暖与图中哪个过程的加强有关( )A .①B .②C .③D .④图2中甲乙两地的纬度相同,读图回答3~5题。
3.a 处气温比近地面气温低的主要缘由是( )A .地面是大气的主要干脆热源B .太阳辐射是大气的主要干脆热源C .a 处大气的散射作用比近地面强D .a 处的太阳辐射比近地面弱4.b 处气温比同纬度平原地区低的主要缘由是( )①到达b 处的太阳辐射少 ②b 处的地面辐射弱 ③b 处大气汲取的地面辐射少 ④b 处大气的保温作用差A .①②B .③④C .①④D .②④5.下列叙述中,其气温成因与b 处相像的是( )A .冬季,我国气温的最低值出现在漠河旁边B .夏季,我国气温的最低值出现在青藏高原地区C .冬季,同纬度地区相比,陆地气温低于海洋气温D .夏季,同纬度地区相比,山区气温低于平原气温 读图3,回答6~7题。
6.若甲、乙为相距不远的陆地,a 、c 为水平气流,b 、d 为垂直气流,则甲、乙、丙、丁四处气压的关系为( )A .甲>乙>丙>丁B .乙>甲>丙>丁C .乙>甲>丁>丙D .甲>乙>丁>丙7.若甲地为郊区,乙地为城市,其余条件与上题相同,从环境效益的角度考虑,不宜在甲地建立的企业是( )A .造纸厂B .水泥厂C .家具厂D .电子厂图4为某地区城市风形成的热力环流剖面图,图5显示0至600米的垂直气压差分布状况,读图回答8~10题。
a d bc 丙乙 甲 丁 图38.有关该地区气压分布状况的叙述正确的是( )A .①地气压高于②地B .③地气压低于④地C .近地面同一等压面的分布高度①地比②地低D .高空同一等压面的分布高度④地比③地高9.下列说法正确的是( )A .a 地的风向为东南风B .b 为下沉气流C .c 地的风向为西南风D .d 为下沉气流10.有关图中地面状况的叙述,正确的是( )A .甲地是城市,乙在是郊区B .甲地是郊区,乙在是城市C .甲地是商业区,乙在是工业区D .甲地是果园,乙在是菜地某学校地理爱好小组做了如下试验:做两个相同规格的玻璃箱(如图6),甲底部放一层土,中午同时把两个玻璃箱放在日光下,十五分钟后,同时测玻璃箱里的气温,结果发觉底部放土的比没有放土的足足高了3℃。
第二章 2.2 2.2.4 第二课时 均值不等式的应用

第二课时 均值不等式的应用课标要求素养要求掌握均值不等式ab ≤a +b2(a ,b ≥0).结合具体实例,能用均值不等式解决简单的最大值或最小值问题.通过学习均值不等式及其应用,重点提升数学运算、逻辑推理、数学建模素养.教材知识探究(1)某养殖场要用100米的篱笆围成一个矩形的鸡舍,怎样设计才能使鸡舍面积最大?(2)某农场主想用篱笆围成一个10 000平方米的矩形农场,怎样设计才能使所用篱笆最省呢?问题 实例中两个问题的实质是什么?如何求解?提示 这两个都是求最值问题.第一个问题是矩形周长一定,即长x 与宽y 的和一定,求xy 的最大值,xy ≤⎝⎛⎭⎪⎫x +y 22=252=625,当且仅当x =y =25时取等号,即鸡舍为正方形,长与宽各为25米时鸡舍面积最大.第二个问题是矩形面积一定,求矩形长x 与宽y 之和最小值,x +y ≥2xy =210 000=200,当且仅当x =y =100时取等号,即当农场为正方形,边长为100米时,所用篱笆最省.1.均值不等式与最大(小)值 口诀:和定积最大,积定和最小两个正数的和为常数时,它们的积有最大值;两个正数的积为常数时,它们的和有最小值.(1)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(2)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2.均值不等式在解决实际问题中有广泛的应用,是解决最大(小)值问题的有力工具.教材拓展补遗[微判断]1.对于实数a ,b ,若a +b 为定值,则ab 有最大值.(×) 提示 a ,b 不一定为正实数.2.对于实数a ,b ,若ab 为定值,则a +b 有最小值.(×) 提示 a ,b 不一定为正实数.3.若x >2,则x +1x 的最小值为2.(×)提示 当且仅当x =1时才能取得最小值2,故x >2时,取不到最小值2. [微训练]1.已知正数a ,b 满足ab =10,则a +b 的最小值是________. 解析 a +b ≥2ab =210,当且仅当a =b =10时等号成立. 答案 2102.已知m ,n ∈R ,m 2+n 2=100,则mn 的最大值是________.解析 由m 2+n 2≥2mn ,∴mn ≤m 2+n 22=50.当且仅当m =n =±52时等号成立. 答案 50 [微思考]1.利用均值不等式求最大值或最小值时,应注意什么问题呢? 提示 利用均值不等式求最值时应注意:一正,二定,三相等.2.已知x ,y 为正数,且1x +4y =1,求x +y 的最小值. 下面是某同学的解题过程:解:因为x >0,y >0,所以1=1x +4y ≥2×2xy =4xy ,所以xy ≥4.从而x +y ≥2xy≥2×4=8.故x +y 的最小值为8. 请分析上面解法是否正确,并说明理由. 解 这个同学的解法是错误的.理由如下:上述解法中连续使用两次均值不等式,但这两个不等式中的等号不能同时成立.第一个不等式当且仅当1x =4y =12,即x =2,y =8时,等号成立;第二个不等式当且仅当x =y 时,等号成立,因此x +y 不能等于8.正解 x +y =(x +y )⎝ ⎛⎭⎪⎫1x +4y =1+y x +4x y +4=y x +4x y +5≥2·y x ·4x y +5=9,当且仅当⎩⎪⎨⎪⎧1x +4y =1,y x =4x y ,即x =3,y =6时,等号成立.故x +y 的最小值为9.题型一 利用均值不等式求最值注意均值不等式成立的条件,且等号能否取得 【例1】 (1)已知x >2,求x +4x -2的最小值; (2)设x >0,y >0,且2x +8y -xy =0,求x +y 的最小值. 解 (1)∵x >2,∴x -2>0, ∴x +4x -2=x -2+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2,即x =4时,等号成立.∴x +4x -2的最小值为6.(2)法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)×16x -8+10=18, 当且仅当x -8=16x -8,即x =12时,等号成立. ∴x +y 的最小值是18.法二 由2x +8y -xy =0及x >0,y >0,得8x +2y =1. ∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y=8y x +2xy +10≥108y x ·2xy +10=18,当且仅当8y x =2xy ,即x =2y =12时等号成立. ∴x +y 的最小值是18.规律方法 利用均值不等式求最值的策略【训练1】 (1)若x <0,求y =12x +3x 的最大值; (2)若x >1,求y =1x -1+x 的最小值. 解 (1)因为x <0,所以y =-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-12x +(-3x )≤-2⎝ ⎛⎭⎪⎫-12x ·(-3x ) =-12,当且仅当-12x =-3x ,即x =-2时等号成立,所以y 的最大值为-12. (2)因为x >1,所以x -1>0,y =1x -1+x -1+1≥ 2(x -1)·1x -1+1=3,当且仅当x -1=1x -1,即x =2时等号成立,所以y的最小值为3.题型二 利用均值不等式解决实际应用问题【例2】 某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比A 1B 1B 1C 1=x (x >1),求公园ABCD 所占面积S 关于x 的函数解析式;(2)要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长和宽该如何设计? 解 (1)设休闲区的宽为a 米,则长为ax 米,由a 2x =4 000,得a =2010x.则S =(a +8)(ax +20)=a 2x +(8x +20)a +160=4 000+(8x +20)·2010x +160=8010⎝⎛⎭⎪⎫2x +5x +4 160(x >1).(2)因为8010⎝ ⎛⎭⎪⎫2x +5x +4 160≥8010×22x ×5x+4 160=1 600+4 160=5 760,当且仅当2x =5x,即x =2.5时,等号成立,此时a =40,ax =100, 所以要使公园所占面积最小,休闲区A 1B 1C 1D 1应设计为长100米,宽40米. 规律方法 利用均值不等式解决实际问题的步骤解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用均值不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量.设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式.把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.【训练2】 某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管费及其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?解 设该厂每x 天购买一次面粉,其购买量为6x 吨. 由题意可知,面粉的保管费及其他费用为 3×[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1). 设平均每天所支付的总费用为y 1元,则y 1=1x [9x (x +1)+900]+6×1 800=9x +900x +10 809≥29x ·900x +10 809=10 989(元),当且仅当9x =900x ,即x =10时,等号成立.所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少. 题型三 均值不等式的综合应用均值不等式应用的关键是获得定值的条件,解题时需灵活地选择方法 【探究1】 已知x >0,y >0且1x +9y =1,则x +y 的最小值为________. 解析 法一 (1的代换): 因为1x +9y =1,所以x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y =10+y x +9x y . 因为x >0,y >0,所以y x +9xy ≥2y x ·9xy =6,当且仅当y x =9xy ,即y =3x ①时,取“=”. 又1x +9y =1,②解①②可得x =4,y =12.所以当x =4,y =12时,x +y 的最小值是16. 法二 (消元法):由1x +9y =1,得x =yy -9.因为x >0,y >0,所以y -9>0.所以x +y =y y -9+y =y +y -9+9y -9=y +9y -9+1=(y -9)+9y -9+10≥2(y -9)·9y -9+10=16,当且仅当y -9=9y -9,即y =12时,取“=”,此时x =4, 所以当x =4,y =12时,x +y 的最小值是16. 法三 (构造定值):因为x >0,y >0,且1x +9y =1,所以x >1,y >9.由1x +9y =1,得y +9x =xyxy -9x -y +9-9=0(x -1)(y -9)=9(定值).所以x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=2×3+10=16,当且仅当x -1=y -9=3,即x =4,y =12时取等号,所以x +y 的最小值是16. 答案 16【探究2】 已知a >0,b >0,若不等式2a +1b ≥m2a +b 恒成立,则m 的最大值等于( ) A.10 B.9 C.8D.7解析 因为a >0,b >0,所以2a +b >0,所以要使2a +1b ≥m2a +b 恒成立,只需m ≤(2a+b )⎝ ⎛⎭⎪⎫2a +1b 恒成立,而(2a +b )⎝ ⎛⎭⎪⎫2a +1b =4+2a b +2b a +1≥5+4=9,当且仅当a =b时,等号成立,所以m ≤9. 答案 B【探究3】 若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 解析 ∵a >0,b >0,∴ab =a +b +3≥2ab +3, 即ab -2ab -3≥0,解得ab ≥3,即ab ≥9. 答案 [9,+∞)【探究4】 已知正数x ,y 满足x +y =1,则4x +2+1y +1的最小值为________. 解析 正数x ,y 满足x +y =1, 即有(x +2)+(y +1)=4,则4x +2+1y +1=14[(x +2)+(y +1)]⎝⎛⎭⎪⎫4x +2+1y +1=14⎣⎢⎢⎡⎦⎥⎥⎤5+x +2y +1+4(y +1)x +2≥14⎣⎢⎢⎡⎦⎥⎥⎤5+2x +2y +1·4(y +1)x +2=14×(5+4)=94,当且仅当x =2y =23时,取得最小值94. 答案 94规律方法 利用均值不等式求条件最值的常用方法(1)“1”的代换:利用已知的条件或将已知条件变形得到含“1”的式子,将“1”代入后再利用均值不等式求最值. (2)构造法:①构造不等式:利用ab ≤⎝ ⎛⎭⎪⎫a +b 22,将式子转化为含ab 或a +b 的不等式,将ab ,(a +b )作为整体解出范围;②构造定值:结合已知条件对要求的代数式变形,构造出和或积的定值,再利用均值不等式求最值.(3)函数法:若利用均值不等式时等号取不到,无法利用均值不等式求最值时,则可将要求的式子看成一个函数求最值.【训练3】 (1)已知2a +b =1,a >0,b >0,则1a +1b 的最小值是( ) A.2 2 B.3-2 2 C.3+2 2D.3+ 2(2)已知a ,b ,c 都是正数,且a +2b +c =1,则1a +1b +1c 的最小值是( ) A.3+2 2 B.3-2 2 C.6-4 2D.6+4 2解析 (1)1a +1b =(2a +b )⎝ ⎛⎭⎪⎫1a +1b =3+b a +2a b ≥3+2b a ·2a b =3+22,当且仅当b a =2a b ,即a =1-22,b =2-1时,等号成立.∴1a +1b 的最小值是3+2 2.(2)1a +1b +1c =⎝ ⎛⎭⎪⎫1a +1b +1c (a +2b +c )=4+2b a +c a +a b +c b +a c +2bc ≥4+2 2b a ·a b+2c a ·a c +2c b ·2bc =6+42,当且仅当2b a =a b ,c a =a c ,c b =2bc 即a =c =2-22,b =2-12时,等号成立. 答案 (1)C (2)D一、素养落地1.通过运用均值不等式求最值,培养数学运算及逻辑推理素养,通过运用均值不等式解决实际应用问题,提升数学建模素养.2.利用均值不等式求最值(1)利用均值不等式求最值要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号一定能取到.这三个条件缺一不可.(2)利用均值不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用均值不等式的条件. (3)在求最值的一些问题中,有时看起来可以运用均值不等式求最值,但由于其中的等号取不到,所以运用均值不等式得到的结果往往是错误的. 二、素养训练1.当x >0时,12x +4x 的最小值为( ) A.4 B.8 C.8 3D.16解析 ∵x >0,∴12x >0,4x >0. ∴12x +4x ≥212x ·4x =83, 当且仅当12x =4x ,即x =3时取最小值83,∴当x >0时,12x +4x 的最小值为8 3. 答案 C2.已知x >-2,则x +1x +2的最小值为( ) A.-12 B.-1 C.2D.0解析 ∵x >-2,∴x +2>0,∴x +1x +2=x +2+1x +2-2≥2(x +2)·1x +2-2=0,当且仅当x =-1时“=”成立. 答案 D3.已知x >0,y >0,且x +2y =2,那么xy 的最大值是________. 解析 ∵x >0,y >0,∴x +2y =2≥22xy ,∴2xy ≤1, ∴xy ≤12,当且仅当x =2y 即x =1,y =12时“=”成立. 答案124.若不等式x 2-ax +1≥0对一切x ∈(0,+∞)恒成立,则a 的取值范围是________. 解析 x 2-ax +1≥0,x ∈(0,+∞)恒成立ax ≤x 2+1,x ∈(0,+∞)恒成立a ≤x+1x ,x ∈(0,+∞)恒成立. ∵x ∈(0,+∞),x +1x ≥2,∴a ≤2. 答案 (-∞,2]5.已知x >0,y >0,a >0,b >0,a ,b 为常数且满足a +b =10,a x +by =1,x +y 的最小值为18,求a ,b .解 ∵x +y =(x +y )⎝ ⎛⎭⎪⎫a x +b y =a +b +bx y +ay x ≥a +b +2ab =(a +b )2,取“=”的条件为bx y =ayx ,此时x +y 的最小值=(a +b )2=18,即a +b +2ab =18.① 又a +b =10.②联立①②有⎩⎪⎨⎪⎧a =2,b =8,或⎩⎪⎨⎪⎧a =8,b =2.基础达标一、选择题1.若x 2-x +1x -1(x >1)在x =t 处取得最小值,则t 等于( )A.1+ 2B.2C.3D.4解析 ∵x >1,∴x 2-x +1x -1=x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. 答案 B2.已知正数x ,y 满足8x +1y =1,则x +2y 的最小值是( ) A.18 B.16 C.8D.10解析 ∵x >0,y >0且8x +1y =1,∴x +2y =(x +2y )⎝ ⎛⎭⎪⎫8x +1y =10+16y x +x y ≥10+216=18,当且仅当16y x =x y ,即x=12,y =3时,等号成立. 答案 A3.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比.如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( ) A.5千米处 B.4千米处 C.3千米处D.2千米处解析 设仓库与车站的距离为d ,则y 1=k 1d ,y 2=k 2d ,由题意知2=k 110,8=10k 2,∴k 1=20,k 2=0.8.∴y 1+y 2=20d +0.8d ≥216=8,当且仅当20d =0.8d ,即d =5时,等号成立.选A. 答案 A4.设计用32 m 2的材料制造某种长方体车厢(无盖),按交通法规定厢宽为2 m ,则车厢的最大容积是( ) A.(38-373) m 3 B.16 m 3 C.4 2 m 3D.14 m 3解析 设车厢的长为b m ,高为a m.由已知得2b +2ab +4a =32,即b =16-2a a +1,∴V =a ·16-2a a +1·2=2·16a -2a 2a +1.设a +1=t >1,则V =2⎝ ⎛⎭⎪⎫20-2t -18t≤2⎝ ⎛⎭⎪⎫20-22t ·18t =16,当且仅当2t =18t ,即t =3时取“=”,此时a =2.故选B. 答案 B5.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )A.10 mB.20 mC.30 mD.40 m解析 设矩形的另一边长为y .由三角形相似得x 40=40-y40,其中0<x <40,0<y <40,∴40=x +y ≥2xy ,当且仅当x =y =20时,矩形的面积取得最大值.故选B. 答案 B 二、填空题6.设x >-1,则(x +5)(x +2)x +1的最小值是______.解析 ∵x >-1,∴x +1>0, 设x +1=t >0,则x =t -1,于是有(x +5)(x +2)x +1=(t +4)(t +1)t=t 2+5t +4t =t +4t +5≥2t ·4t +5=9,当且仅当t =4t ,即t =2时取“=”,此时x =1. ∴当x =1时,(x +5)(x +2)x +1取得最小值9.答案 97.已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________. 解析 根据题意,3a +b =2ab32b +12a =1,则a +b =⎝ ⎛⎭⎪⎫32b +12a (a +b )=2+3a 2b +b 2a ≥2+23a 2b ·b 2a =2+3,当且仅当b =3a 即a =3+12,b =3+32时等号成立, 则a +b 的最小值为2+ 3. 答案 2+ 3 8.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析 因为x >0,所以x x 2+3x +1=1x +1x+3≤12x ·1x +3=15.当且仅当x =1时,等号成立, 所以x x 2+3x +1的最大值为15.所以a ≥15. 答案⎩⎨⎧⎭⎬⎫aa ≥15三、解答题9.(1)若x >0,求y =x +4x 的最小值,并求此时x 的值; (2)设0<x <32,求y =4x (3-2x )的最大值. 解 (1)当x >0时,x +4x ≥2x ·4x =4,当且仅当x =4x 时, 即x 2=4,x =2时取等号.∴y =x +4x (x >0)在x =2时取得最小值4. (2)∵0<x <32,∴3-2x >0, ∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x , 即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴y =4x (3-2x )⎝⎛⎭⎪⎫0<x <32的最大值为92. 10.某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m 3,深为3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池才能使总造价最低?最低总造价是多少?解 设底面的长为x m ,宽为y m ,水池总造价为z 元. 根据题意,有z =150×4 8003+120(2×3x +2×3y ) =240 000+720(x +y ).由容积为4 800 m 3,可得3xy =4 800. 因此,xy =1 600.故z =240 000+720(x +y )≥240 000+720×2xy =240 000+720×2 1 600=297 600, 当且仅当x =y ,即x =y =40时,等号成立.所以,将水池的底面设计成边长为40 m 的正方形时总造价最低,最低总造价是297 600元.能力提升11.已知x ,y 都是正数.(1)若3x +2y =12,求xy 的最大值; (2)若x +2y =3,求1x +1y 的最小值. 解 (1)∵3x +2y =12,∴xy =16·3x ·2y ≤16×⎝ ⎛⎭⎪⎫3x +2y 22=6,当且仅当3x =2y ,即x =2,y =3时,等号成立. ∴xy 的最大值为6.(2)∵x +2y =3,∴1=x 3+2y3, ∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ⎝ ⎛⎭⎪⎫x 3+2y 3=13+23+x 3y +2y 3x≥1+2x 3y ·2y 3x =1+223,当且仅当x 3y =2y3x ,即x =32-3,y =3-322时取等号, ∴1x +1y 的最小值为1+223.12.某国际化妆品生产企业为了占有更多的市场份额,拟在2020年日本东京奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销费t 万元之间满足3-x 与t +1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件.已知2020年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用.若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完.(1)将2020年的利润y (万元)表示为促销费t (万元)的函数.(2)该企业2020年的促销费投入多少万元时,企业的年利润最大?(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用) 解 (1)由题意可设3-x =k t +1,将t =0,x =1代入,得k =2.∴x =3-2t +1.当年生产x 万件时,∵年生产成本=年生产费用+固定费用,∴年生产成本为32x +3=32(3-2t +1)+3. 当销售x (万件)时,年销售收入为150%[32(3-2t +1)+3]+12t .由题意,生产x 万件化妆品正好销完,由年利润=年销售收入-年生产成本-促销费,得年利润y =150%⎣⎢⎡⎦⎥⎤32⎝ ⎛⎭⎪⎫3-2t +1+3+12t -⎣⎢⎡⎦⎥⎤32⎝ ⎛⎭⎪⎫3-2t +1+3-t =-t 2+98t +352(t +1)(t ≥0).(2)y =-t 2+98t +352(t +1)=50-⎝ ⎛⎭⎪⎪⎫t +12+32t +1 ≤50-2t +12×32t +1=50-216=42(万元),当且仅当t +12=32t +1,即t =7时,y 取最大值42万元,∴当促销费投入7万元时,企业的年利润最大。
2020苏科版八年级第一学期物理学习共同体 第2章汽化、液化实验题提升训练1(无答案)

2020苏科版八年级第一学期物理学习共同体第2章汽化、液化实验题提升训练11、小红同学进行实验探究,发现水蒸发快慢与水的温度、水的表面积和水面上方空气流动快慢有关.在此基础上,小红同学又进行了如下探索:(1)她在相同条件下,将水和酒精同时擦在手臂上,酒精更容易干,于是猜想液体蒸发快慢可能还与▲有关;(2)如图,甲、乙两支相同的温度计,其中甲的玻璃泡上包着沾水的棉花,乙是干燥的.甲、乙两温度计相比,她发现甲温度计的示数▲(选填“较大”或“较小”).老师又告诉她水的蒸发快慢还与周围空气湿度有关.于是小红查阅了资料,并了解到在其它条件相同时,周围空气湿度越小,水的蒸发越快,小红在本次实验中发现甲、乙两支相同的温度计示数相差较小,由此可推断此处的空气湿度▲;(选填“较大”或“较小”)(3)用滴管从瓶中吸取酒精,滴在手上,感觉凉凉的.小红就这一现象产生的原因,提出了两种猜想。
猜想1:酒精的温度低于手的温度;猜想2:酒精蒸发时吸热,有致冷作用.随后,他在烧杯中倒入适量酒精,用相同的温度计分别测量手的温度t1和烧杯中酒精的温度t2,并重复多次,均发现t1>t2.由此,她▲.A.只能验证猜想1 B.只能验证猜想2C.既能验证猜想1,也能验证猜想2 D.既不能验证猜想1,也不能验证猜想22、小强用图甲装置做探究“水沸腾时温度变化的特点”的实验.A B图甲图丁图乙图丙(1)小强在组装器材时,温度计的玻璃泡碰到了烧杯底,应适当将▲(选填“A处向上”或“B处向下”)调整;(2)他调整好器材后,用完全相同的酒精灯加热,当水温为90℃时,每隔1分钟记录一次水温,直到水沸腾后持续几分钟为止,根据记录数据绘制出如图乙所示的水温与间关系图像,实验中小强把水加热到沸腾,所用时间较长,为减少加热时间,下列的做法不可行的是▲A.加大酒精灯火焰 B.用初温较高的水 C.增加烧杯中水量 D.给烧杯加盖(3)同组的小兰改进了小强实验中的不足,在烧杯中加了纸盖,如图丙所示,并重复小强的步骤进行实验操作和描绘图像,实验中,当水沸腾时,水中产生大量的气泡的情况是丁图中的▲图,(选填“A”或“B”),若此时移除酒精灯,水沸腾很快停止,但温度计示数保持不变,由此现象可得液体沸腾的条件是:(1)温度达到沸点;(2)▲;(4)小兰根据实际的实验数据绘制的温度与时间图像是▲,(选填“a”或“b”)由他们所绘制的图像可知,此时周围环境的大气压▲,(选填“>”、“=”或“<”)一标准大气压.(5)0~6分钟a和b图像重合由此可以判断他们实验所用水的质量的大小关系为m a▲ m b.3、小芳在“观察水的沸腾”实验中:(1)图(1)中装置有一处明显错误,请指出来:▲.(2)为了完成实验,除了图(1)中的器材,还需要的测量器材是▲;(3)图(2)中正确的操作方法是▲.(4)水沸腾前后的气泡变化情景如图(3),则表示水沸腾时的是▲图,此时气泡内的主要成份为▲(水蒸气/小液滴/空气)。
第二章 第1节 函数的概念

经纬教育
知识衍化体验
考点聚集突破
经纬教育
解析 (1)错误.函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同, 故不是同一函数. (2)错误.值域C⊆B,不一定有C=B. (3)错误.f(x)= x-3+ 2-x中 x 不存在. (4)错误.若两个函数的定义域、对应法则均对应相同时,才是相等函数. 答案 (1)× (2)× (3)× (4)×
经纬教育
知识衍化体验
考点聚集突破
经纬教育
第1节 函数的概念
考试要求 1.了解构成函数的要素,能求简单函数的定义域;2.在实际情境中, 会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解 函数图象的作用;3.通过具体实例,了解简单的分段函数,并能简单应用.
知识衍化体验
考点聚集突破
知识衍化体验
考点聚集突破
经纬教育
角度2 分段函数与方程、不等式问题
【例 3-2】
(1)设函数 f(x)=32xx,-xb≥,1x.<1,若 f
f
56=4,则 b=(
)
7
3
1
A.1
B.8
C.4
D.2
(2)设函数 f(x)=x2+x,1x,>0x,≤0,则满足 f(x)+f x-12>1 的 x 的取值范围是________.
知识衍化体验
考点聚集突破
(3)在 f(x)=2f
1 x·
x-1
中,
将 x 换成1x,则1x换成 x,得 f 1x=2f(x)· 1x-1,
f(x)=2f 由
1 x·
f 1x=2f(x)·
x-1, 解得
1x-1,
f(x)=23
第二章 一元一次不等式与一元一次不等式组B卷压轴题考点训练(原卷版)

第二章 一元一次不等式与一元一次不等式组B 卷压轴题考点训练1.如图,在Rt ABC △中,90304ACB B AC D Ð=°Ð=°=,,,为BC 上一动点,EF 垂直平分AD 分别交AC 于E 、交AB 于F ,则BF 的最大值为_______.2.如图,在平面直角坐标系中,若直线13y x a =+,直线25y bx =-+相交于点()1,2A ,则关于x 的不等式()35b x a +£-的解集是________.3.若关于x 的一元一次不等式组2013212x a x x ->ìïí+-<ïî无解,则a 的取值范围______.4.若关于x 的不等式组23123342x x a x -ì-<ïíï-<-î有且仅有3个整数解,a 的取值范围是_____.5.已知关于x ,y 的二元一次方程组325x y a x y a -=+ìí+=î的解满足x y >,且关于x 的不等式组212216x a x +<ìí-³î无解,那么所有符合条件的整数a 的个数为_______.6.如图,直线y x m =-+与()40y nx n n =+¹的交点的横坐标为2-.下列结论:①0m <,0n >;②直线4y nx n =+一定经过点()4,0-;③m 与n 满足22m n =-;④当2x >-时,4x m nx n -+>+.其中正确的有________.(只填序号)7.关于x 的一元一次方程235()13x k x k -=-+的解是正数,则k 的取值范围是_____.8.若关于x 和y 的二元一次方程组24232x y x y m -=ìí-=-+î,满足>0x y -,那么整数m 的最大值是______.9.若121x a x a >-ìí<+î有解,则a 的取值范围______.10.如图,在平面直角坐标系中,一次函数1y kx b =+()0k ¹的图象与x 轴交于点()5,0A ,与一次函数2223y x =+的图象交于点()3,B n .(1)求一次函数1y kx b =+()0k ¹的解析式;(2)C 为x 轴上点A 右侧一个动点,过点C 作y 轴的平行线,与一次函数1y kx b =+()0k ¹的图象交于点D ,与一次函数2223y x =+的图象交于点E .当3CE CD =时,求DE 的长;(3)直线y kx k =-经过定点()1,0,当直线与线段AB (含端点)有交点时k 的正整数值是 .11.某企业举办职工足球比赛,准备购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多60元,三套队服与五个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过60套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若购买100套队服和()10y y >个足球,请用含y 的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?12.我校八年级组织“义卖活动”,某班计划从批发店购进甲、乙两种盲盒,已知甲盲盒每件进价比乙盲盒少5元,若购进甲盲盒30件,乙盲盒20件,则费用为600元.方案评价表方案等级评价标准评分合格方案仅满足购进费用不超额1分良好方案盲盒全部售出所得利润最大,且购进费用不超额3分优秀方案盲盒全部售出所得利润最大,且购进费用相对最少4分(1)求甲、乙两种盲盒的每件进价分别是多少元?(2)该班计划购进盲盒总费用不超过2200元,且甲、乙盲盒每件售价分别为18元和25元.①若准备购进甲、乙两种盲盒共200件,且全部售出,则甲盲盒为多少件时,所获得总利润最大?最大利润为多少元?②因批发店库存有限(如下表),商家推荐进价为12元的丙盲盒可供选择.经讨论,该班决定购进三种盲盒,其中库存的甲盲盒全部购进,并将丙盲盒的每件售价定为22元.请你结合方案评价表给出一种乙、丙盲盒购进数量方案.盲盒类型甲乙丙批发店的库存量(件)1007892进货量(件)100______________________13.如图,在平面直角坐标系中,直线34y x m =-+ 分别与 x 轴、y 轴交于点 B 、A ,其中B 点坐标为(12,0).直线38y x =与直线AB 相交于点C .(1)求点A 的坐标.(2)求△BOC 的面积.(3)点D 为直线 AB 上的一个动点,过点D 作 x 轴的垂线,与直线 OC 交于点 E ,设点D 的横坐标为t ,线段DE 的长度为d .①求d 与t 的函数解析式(写出自变量的取值范围).②当动点D 在线段 AC 上运动,以DE 为边在DE 的左侧作正方形DEPQ ,若以点H (12,t )、G (1,t )为端点的线段与正方形DEPQ 的边只有一个交点时,请直接写出t 的 取值范围 .14.在平面直角坐标系中,点(,1),(,3)A a B b |1|0a b +-=.(1)求a 、b 的值;(2)若点(3,)P n 满足三角形ABP 的面积等于3,求n 的值;(3)点(,0)M m 在x 轴上,记三角形ABM 的面积为S ,若15S <<,请直接写出m 的取值范围.。
新教材高考数学第二章直线和圆的方程章末复习练习含解析新人教A版选择性必修第一册

章末复习一、两直线的平行与垂直 1.判断两直线平行、垂直的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2. (2) 若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (讨论两直线平行、垂直不要遗漏直线斜率不存在的情况)2.讨论两直线的平行、垂直关系,可以提升学生的逻辑推理素养. 例1 (1)已知A ⎝⎛⎭⎪⎫1,-a +13,B ⎝ ⎛⎭⎪⎫0,-13,C (2-2a ,1),D (-a ,0)四点,若直线AB 与直线CD 平行,则a =________.答案 3解析 k AB =-13+a +130-1=-a3,当2-2a =-a ,即a =2时,k AB =-23,CD 的斜率不存在.∴AB 和CD 不平行;当a ≠2时,k CD =0-1-a -2+2a =12-a.由k AB =k CD ,得-a 3=12-a,即a 2-2a -3=0.∴a =3或a =-1.当a =3时,k AB =-1,k BD =0+13-3=-19≠k AB ,∴AB 与CD 平行.当a =-1时,k AB =13,k BC =1+134=13,k CD =1-04-1=13,∴AB 与CD 重合.∴当a =3时,直线AB 和直线CD 平行.(2)若点A (4,-1)在直线l 1:ax -y +1=0上,则l 1与l 2:2x -y -3=0的位置关系是________. 答案 垂直解析 将点A (4,-1)的坐标代入ax -y +1=0, 得a =-12,则12·l l k k =-12×2=-1,∴l 1⊥l 2. 反思感悟 一般式方程下两直线的平行与垂直:已知两直线的方程为l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为0),l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2-A 2B 1=0且C 1B 2-C 2B 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.跟踪训练1 (1)已知直线l 1:ax -3y +1=0,l 2:2x +(a +1)y +1=0.若l 1⊥l 2,则实数a 的值为________. 答案 -3(2)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,若l 1∥l 2,则m =________. 答案 -1解析 因为直线x +my +6=0与(m -2)x +3y +2m =0平行,所以⎩⎪⎨⎪⎧1×3-m m -2=0,2m ≠6m -2,解得m =-1.二、两直线的交点与距离问题1.两条直线的位置关系的研究以两直线的交点为基础,通过交点与距离涵盖直线的所有问题. 2.两直线的交点与距离问题,培养学生的数学运算的核心素养.例2 (1)若点(1,a )到直线y =x +1的距离是322,则实数a 的值为( )A .-1B .5C .-1或5D .-3或3答案 C解析 ∵点(1,a )到直线y =x +1的距离是322,∴|1-a +1|2=322,即|a -2|=3,解得a =-1或a =5,∴实数a 的值为-1或5.(2)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0, 解得a =4,即点A (4,0)在直线l 上, 所以直线l 的方程为x +4y -4=0. 反思感悟跟踪训练2 (1)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是关于x 的方程x 2+x -2=0的两个实数根,则这两条直线之间的距离为( ) A .2 3 B. 2 C .2 2 D.322答案 D解析 根据a ,b 是关于x 的方程x 2+x -2=0的两个实数根,可得a +b =-1,ab =-2, ∴a =1,b =-2或a =-2,b =1,∴|a -b |=3, 故两条直线之间的距离d =|a -b |2=32=322.(2)已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则这样的直线l 的条数为( ) A .0 B .1 C .2 D .3 答案 C解析 方法一 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,即直线l 过点(1,2).设点Q (1,2),因为|PQ |=1-02+2-42=5>2,所以满足条件的直线l 有2条.故选C.方法二 依题意,设经过直线l 1与l 2交点的直线l 的方程为2x +3y -8+λ(x -2y +3)=0(λ∈R ),即(2+λ)x +(3-2λ)y +3λ-8=0.由题意得|12-8λ+3λ-8|2+λ2+3-2λ2=2,化简得5λ2-8λ-36=0,解得λ=-2或185,代入得直线l 的方程为y =2或4x -3y +2=0,故选C.三、直线与圆的位置关系 1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离. 2.研究直线与圆的位置关系,集中体现了直观想象和数学运算的核心素养. 例3 已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0. (1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长. (1)证明 直线的方程可化为y +3=2m (x -4), 由点斜式可知,直线恒过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0, 所以点P 在圆内,故直线l 与圆C 总相交. (2)解 圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =-3--64-3=3,所以直线l 的斜率为-13,则2m =-13,所以m =-16.在Rt△APC 中,|PC |=10,|AC |=r =5. 所以|AB |=2|AC |2-|PC |2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.反思感悟 直线与圆问题的类型(1)求切线方程:可以利用待定系数法结合图形或代数法求得.(2)弦长问题:常用几何法(垂径定理),也可用代数法结合弦长公式求解. 跟踪训练3 已知圆C 关于直线x +y +2=0对称,且过点P (-2, 2)和原点O . (1)求圆C 的方程;(2)相互垂直的两条直线l 1,l 2都过点A (-1, 0),若l 1,l 2被圆C 所截得的弦长相等,求此时直线l 1的方程.解 (1)由题意知,直线x +y +2=0过圆C 的圆心,设圆心C (a ,-a -2). 由题意,得(a +2)2+(-a -2-2)2=a 2+(-a -2)2, 解得a =-2.因为圆心C (-2,0),半径r =2, 所以圆C 的方程为(x +2)2+y 2=4.(2)由题意知,直线l 1,l 2的斜率存在且不为0, 设l 1的斜率为k ,则l 2的斜率为-1k,所以l 1:y =k (x +1),即kx -y +k =0,l 2:y =-1k(x +1),即x +ky +1=0.由题意,得圆心C 到直线l 1,l 2的距离相等, 所以|-2k +k |k 2+1=|-2+1|k 2+1,解得k =±1, 所以直线l 1的方程为x -y +1=0或x +y +1=0. 四、圆与圆的位置关系1.圆与圆的位置关系:一般利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. 2.圆与圆的位置关系的转化,体现直观想象、逻辑推理的数学核心素养. 例4 已知圆C 1:x 2+y 2+4x -4y -5=0与圆C 2:x 2+y 2-8x +4y +7=0. (1)证明圆C 1与圆C 2相切,并求过切点的两圆公切线的方程; (2)求过点(2, 3)且与两圆相切于(1)中切点的圆的方程.解 (1)把圆C 1与圆C 2都化为标准方程形式,得(x +2)2+(y -2)2=13,(x -4)2+(y +2)2=13.圆心与半径长分别为C 1(-2,2),r 1=13;C 2(4,-2),r 2=13.因为|C 1C 2|=-2-42+2+22=213=r 1+r 2,所以圆C 1与圆C 2相切.由⎩⎪⎨⎪⎧x 2+y 2+4x -4y -5=0,x 2+y 2-8x +4y +7=0,得12x -8y -12=0,即3x -2y -3=0,就是过切点的两圆公切线的方程. (2)由圆系方程,可设所求圆的方程为x 2+y 2+4x -4y -5+λ(3x -2y -3)=0.点(2, 3)在此圆上,将点坐标代入方程解得λ=43.所以所求圆的方程为x 2+y 2+4x -4y -5+43(3x -2y -3)=0,即x 2+y 2+8x -203y -9=0.反思感悟 两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练4 (1)已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A , B 两点,则线段AB 的中垂线方程为________. 答案 x +y -3=0解析 AB 的中垂线即为圆C 1、圆C 2的连心线C 1C 2. 又C 1(3,0),C 2(0,3), 所以C 1C 2所在直线的方程为x +y -3=0.(2)已知圆C 1:x 2+y 2-4x +2y =0与圆C 2:x 2+y 2-2y -4=0. ①求证:两圆相交;②求两圆公共弦所在直线的方程.①证明 圆C 1的方程可化为(x -2)2+(y +1)2=5,圆C 2的方程可化为x 2+(y -1)2=5, ∴C 1(2,-1),C 2(0,1),两圆的半径均为5, ∵|C 1C 2|=2-02+-1-12=22∈(0,25),∴两圆相交.②解 将两圆的方程相减即可得到两圆公共弦所在直线的方程, (x 2+y 2-4x +2y )-(x 2+y 2-2y -4)=0,即x -y -1=0.1.(2019·天津改编)设a ∈R ,直线ax -y +2=0和圆x 2+y 2-4x -2y +1=0相切,则a 的值为________. 答案 34解析 由已知条件可得圆的标准方程为(x -2)2+(y -1)2=4,其圆心为(2,1),半径为2,由直线和圆相切可得|2a -1+2|a 2+1=2,解得a =34. 2.(2017·北京改编)在平面直角坐标系中,点A 在圆C :x 2+y 2-2x -4y +4=0上,点P 的坐标为(1,0),则||AP 的最小值为________. 答案 1解析 x 2+y 2-2x -4y +4=0, 即(x -1)2+(y -2)2=1, 圆心坐标为C (1,2),半径长为1. ∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上,∴|AP |min =|PC |-1=2-1=1.3.(2017·天津改编)已知点C 在直线l :x =-1上,点F (1,0),以C 为圆心的圆与y 轴的正半轴相切于点A . 若∠FAC =120°,则圆的方程为________________. 答案 (x +1)2+(y -3)2=1解析 由圆心C 在l 上,且圆C 与y 轴正半轴相切,可得点C 的横坐标为-1,圆的半径为1,∠CAO =90°.又因为∠FAC =120°, 所以∠OAF =30°,所以|OA |=3, 所以点C 的纵坐标为 3.所以圆的方程为(x +1)2+(y -3)2=1.4.(2019·江苏改编)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA .规划要求:线段PB ,QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A ,B 到直线l 的距离分别为AC 和BD (C ,D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由. 解 (1)如图,过O 作OH ⊥l ,垂足为H .以O 为坐标原点,直线OH 为y 轴,建立如图所示的平面直角坐标系. 因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,-3. 因为AB 为圆O 的直径,AB =10, 所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (-4,-3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为-43,直线PB 的方程为y =-43x -253.所以P (-13,9),|PB |=-13+42+9+32=15.所以道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (-4,0),则EO =4<5, 所以P 选在D 处不满足规划要求.②若Q 在D 处,连接AD ,由(1)知D (-4,9),又A (4,3), 所以线段AD :y =-34x +6(-4≤x ≤4).在线段AD 上取点M ⎝⎛⎭⎪⎫3,154,因为|OM |=32+⎝ ⎛⎭⎪⎫1542<32+42=5,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.。
高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质(2)课后训练1新人教A版必
2.2.2 对数函数及其性质课后训练1.函数y =2+log 2x (x ≥1)的值域为( ).A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞)2.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N 等于( ).A .B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3}3.函数y 12log (43)x -( ).A .(0,1] B.3,4⎛⎫+∞ ⎪⎝⎭ C.3,24⎛⎫ ⎪⎝⎭ D.3,14⎛⎤ ⎥⎝⎦ 4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ).A .log 2x B.12x C .12log x D .2x -2 5.小华同学作出的a =2,3,12时的对数函数y =log a x 的图象如图所示,则对应于C 1,C 2,C 3的a 的值分别为( ).A .2,3,12 B .3,2,12 C.12,2,3 D.12,3,2 6.不等式13log (5+x )<13log (1-x )的解集为______. 7.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.8.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f 12⎛⎫ ⎪⎝⎭=0,则不等式f (log 4x )<0的解集是______.9.已知函数f (x )=log a (x +1),g (x )=log a (4-2x )(a >0,且a ≠1).(1)求函数f (x )-g (x )的定义域;(2)求使函数f (x )-g (x )的值为正数的x 的取值范围.10.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl)来描述声音的大小:把声压P 0=2×10-5帕作为参考声压,把所要测量的声压P 与参考声压P 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区.(1)根据上述材料,列出分贝值y与声压P的函数关系式.(2)某地声压P=0.002帕,试问该地为以上所说的什么区?(3)2011年春节联欢晚会中,赵本山、王小利、小沈阳等表演小品《同桌的你》时,现场多次响起响亮的掌声,某观众用仪器测量到最响亮的一次音量达到了90分贝,试求此时中央电视台演播大厅的声压是多少?参考答案1. 答案:C ∵x ≥1,∴log 2x ≥0,∴y ≥2.2. 答案:D 由log 2x >1,得x >2,∴M N ={x |2<x <3}.3. 答案:D 由题意列不等式组12log (43)0,(1)430.(2)x x -≥⎧⎪⎨⎪->⎩ 对于①有12log (4x -3)≥12log 1,解得x ≤1;对于②有4x >3,解得x >34.所以34<x ≤1. 4. 答案:A 函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2,故f (x )=log 2x .5. 答案:C 直线y =1与函数y =log a x 的图象交点的横坐标是底数a ,则由图象得对应C 1的a 的值为12,对应C 3的a 的值为3,对应C 2的a 的值为2. 6. 答案:{x |-2<x <1} 原不等式等价于50,10,51,x x x x +>⎧⎪->⎨⎪+>-⎩解得-2<x <1.7. 答案:4 由log 2x ≤2,得0<x ≤4,所以A =(0,4].又A B ,则a >4,所以c =4.8. 答案:122x x ⎧⎫<<⎨⎬⎩⎭由题意可知,f (log 4x )<012-<log 4x <12124log 4-<log 4x <1241log 42⇔<x <2. 9. 答案:解:(1)由题意可知,f (x )-g (x )=log a (x +1)-log a (4-2x ),要使函数f (x )-g (x )有意义,自变量x 的取值需满足10,420,x x +>⎧⎨->⎩解得-1<x <2. 故函数f (x )-g (x )的定义域是(-1,2).(2)令f (x )-g (x )>0,得f (x )>g (x ),即log a (x +1)>log a (4-2x ),当a >1时,可得x +1>4-2x ,解得x >1.由(1)知-1<x <2,∴1<x <2;当0<a <1时,可得x +1<4-2x ,解得x <1,由(1)知-1<x <2,∴-1<x <1.综上所述,当a >1时,x 的取值范围是(1,2);当0<a <1时,x 的取值范围是(-1,1).10. 答案:解:(1)由已知,得y =20lg 0p p .又P 0=2×10-5,则y =20lg 5210p -⨯. (2)当P =0.002时,y =20lg 50.002210-⨯=20lg 102=40(分贝). 由已知条件知40分贝小于60分贝,所以该地区为无害区.(3)由题意,得90=20lg0p p ,则0p p =104.5, 所以P =104.5P 0=104.5×2×10-5=2×10-0.5≈0.63(帕).。
2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析
函数的概念及其表示考试要求 1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数. 3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( × ) (2)函数y =f (x )的图象可以是一条封闭曲线.( × ) (3)y =x 0与y =1是同一个函数.( × ) (4)函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x 2,x <0的定义域为R .( √ )教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )答案 C2.(多选)下列各组函数是同一个函数的是( ) A .f (x )=x 2-2x -1,g (s )=s 2-2s -1B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案 AC3.(2022·长沙质检)已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12等于( )A .-1B .2C.3D.12答案 D解析 ∵f ⎝ ⎛⎭⎪⎫12=log 312<0, ∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域例1 (1)(2022·武汉模拟)函数f (x )=1ln x +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 要使函数有意义,则需⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,解得-1<x ≤2且x ≠0, 所以x ∈(-1,0)∪(0,2].所以函数的定义域为(-1,0)∪(0,2].(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案 [1,3]解析 ∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3].延伸探究 将本例(2)改成“若函数f (x +1)的定义域为[0,2]”,则函数f (x -1)的定义域为________. 答案 [2,4]解析 ∵f (x +1)的定义域为[0,2], ∴0≤x ≤2, ∴1≤x +1≤3, ∴1≤x -1≤3, ∴2≤x ≤4,∴f (x -1)的定义域为[2,4]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是( ) A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案 B解析 由题意,得⎩⎪⎨⎪⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞).2.已知函数f (x )=x1-2x ,则函数f x -1x +1的定义域为( )A .(-∞,1)B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案 D解析 令1-2x>0, 即2x<1,即x <0.∴f (x )的定义域为(-∞,0).∴函数f x -1x +1中,有⎩⎪⎨⎪⎧x -1<0,x +1≠0,解得x <1且x ≠-1.故函数f x -1x +1的定义域为(-∞,-1)∪(-1,1).思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1 (1)函数f (x )=11-4x2+ln(3x -1)的定义域为( )A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12C.⎣⎢⎡⎭⎪⎫-12,14 D.⎣⎢⎡⎦⎥⎤-12,12 答案 B解析 要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎪⎨⎪⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12. (2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x的定义域为__________. 答案 [-1,0]解析 由条件可知,函数的定义域需满足⎩⎪⎨⎪⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2 (1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )的解析式为________.答案 f (x )=lg2x -1(x >1) 解析 令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg 2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________. 答案 x 2+2x +1解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b ,∴2ax +b =2x +2, 则a =1,b =2.∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1.(3)已知函数对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________. 答案 23x解析 ∵f (x )-2f (-x )=2x ,① ∴f (-x )-2f (x )=-2x ,② 由①②得f (x )=23x .教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案 -2x 3-43x解析 ∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x.思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2 (1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案 -x 2+2x ,x ∈[0,2] 解析 令t =1-sin x , ∴t ∈[0,2],sin x =1-t ,∴f (t )=1-sin 2x =1-(1-t )2=-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )=__________.答案 x 2-2,x ∈[2,+∞)解析 ∵f ⎝⎛⎭⎪⎫x 2+1x 2=⎝⎛⎭⎪⎫x 2+1x22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3 (1)已知f (x )=⎩⎪⎨⎪⎧cosπx ,x ≤1,f x -1+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f⎝ ⎛⎭⎪⎫-43的值为( ) A.12B .-12C .-1D .1 答案 D解析 f ⎝ ⎛⎭⎪⎫43=f⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3=cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知f (x )=⎩⎪⎨⎪⎧2x+3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________. 答案 1或-3 [-5,-1]解析 ①当a >0时,2a+3=5,解得a =1; 当a ≤0时,a 2-4=5, 解得a =-3或a =3(舍). 综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1. 由-3≤f (a )≤1,解得-5≤a ≤-1. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于( )A .-32B.22C.32D. 2 答案 B解析 f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22. 2.(2022·百校联盟联考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案 0解析 当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3 (1)(2022·河北冀州一中模拟)设f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+1,x <1.则f (f (-1))=________,f (x )的最小值是________. 答案 0 22-3 解析 ∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3.(2)(2022·重庆质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案 ⎝ ⎛⎭⎪⎫-12,+∞解析 当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立.综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3]答案 D解析 ∵f (x )=3-xlg x,∴⎩⎪⎨⎪⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎪⎨⎪⎧4x -12,x <1,a x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于( ) A.12 B.34 C .1 D .2答案 D解析 f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=f (3)=a 3,得a 3=8,解得a =2.4.设函数f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x1-x(x ≠-1) B.1+xx -1(x ≠-1) C.1-x1+x(x ≠-1) D.2xx +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t 1+t ,即f (x )=1-x1+x(x ≠-1).5.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是( )答案 A解析 由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.6.(多选)下列函数中,与y =x 是同一个函数的是( ) A .y =3x 3B .y =x 2C .y =lg10xD .y =10lg x答案 AC解析 y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =3x 3=x 的定义域为x ∈R ,故是同一函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是同一函数;对于C 选项,函数y =lg10x=x ,且定义域为R ,故是同一函数;对于D 选项,y =10lg x=x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是同一函数.7.(多选)(2022·张家界质检)设函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤a ,2x,x >a ,若f (1)=2f (0),则实数a可以为( ) A .-1B .0C .1D .2 答案 AB 解析 若a <0,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若0≤a <1,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若a ≥1,则f (0)=1,f (1)=0,f (1)=2f (0)不成立. 综上所述,实数a 的取值范围是(-∞,1).8.(多选)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是( ) A .f (x )=x -1xB .f (x )=ln1-x1+xC .f (x )=1ex x-D .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1答案 AD解析 对于A ,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足题意; 对于B ,f (x )=ln1-x1+x,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于C ,f ⎝ ⎛⎭⎪⎫1x =111e xx -=ex -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于D ,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x )满足“倒负”变换,故选AD.9.已知f (x 5)=lg x ,则f (100)=________. 答案 25解析 令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案 (1,4]解析 依题意⎩⎪⎨⎪⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.(2022·广州质检)已知函数f (x )=⎩⎪⎨⎪⎧1-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-1,12 解析 ∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0).故⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎪⎨⎪⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案 [-2,0)∪(0,1] 解析 当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(-∞,-1] B .(0,+∞) C .(-1,0) D .(-∞,0)答案 D解析 当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0.14.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1λ∈R,2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案 [2,+∞) 解析 当a ≥1时,2a≥2. ∴f (f (a ))=f (2a)=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a ,∴λ-a ≥1,即λ≥a +1恒成立, 由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.(多选)若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中具有H 性质的是( )A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0) D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2 答案 ACD解析 若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝⎛⎭⎪⎫其中a =f⎝ ⎛⎭⎪⎫x 1+x 22,b =f x 1+f x 22.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.16.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )=⎩⎪⎨⎪⎧2x +a ,-1<x <0,b e 2x,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,则a b 的取值范围为________. 答案 (2e ,+∞)解析 因为f (x +2)=2f (x ),所以f ⎝ ⎛⎭⎪⎫92=f⎝ ⎛⎭⎪⎫12+4=(2)2f ⎝ ⎛⎭⎪⎫12=2e b ,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12+2=2f ⎝ ⎛⎭⎪⎫-12 =2⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-12+a =2(a -1), 因为f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,所以2(a -1)=2e b , 所以a =2e b +1, 因为b 为正实数, 所以a b=2e b +1b=2e +1b∈(2e ,+∞),故a b的取值范围为(2e ,+∞).。
第二章 一元二次函数、方程和不等式 本章总结 - 副本(1)
2. 已知2<a<3,-2<b<-1,求ab,a的取值范围。
要点二一元二次不等式的解法1. 已知函数y=4x+x(x>0,a>0)在x=3 时取得最小值,则a=________ 。
第二章章末复习专题要点一不等式的性质【例1】(2019·浙江高考)若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【变式训练1】1 如果a,b,c满足c<b<a且ac<0,那么下列选项中不一定成立的是( )A.ab>ac B.c(b-a)>0C.cb2 <ab2 D.ac(a-c)<02【例2】 1.解关于x的不等式ax2 -(2a+3)x+6>0(a∈R) 。
【变式训练2】1. 已知常数a∈R,解关于x的不等式ax2-2x+a<0 。
2. (2021·四川德阳·高一期末) 若关于的不等式的解集为,则的取值范围为( )A.B.(0,1) C.D.(-1,0)例31. (2021·安徽省定远中学高一阶段练习) 已知关于的不等式的解集为,则不等式的解集是( ) A.或B.C.或D.2. (2022·江西宜春) 已知,q:方程有两个不相等的实数根,则p是q的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【变式训练3】1. (2022·江苏·高一 ) 已知关于x的不等式的解集是,则关于x的不等式的解集是 ( )2. (2022·广东·汕头市潮阳区河溪中学高一期中) (多选)已知关于x的不等式的解集为则( )B.不等式D.不等式基本不等式的应用a【变式训练4】已知实数x,y满足x2-xy+y2=1,则x+y的最大值为________ 。
人教版八年级上册物理 第二章 声现象 计算题训练(一)解析版
第二章声现象计算题训练(一)1.一辆汽车以20m/s的速度驶向一座山崖,司机在一桥头鸣笛,4s后听到回声(已知声音的传播速度为340m/s),则:(1)4s内汽车走过的路程是多少?(2)4s内声音传播的距离是多少?(3)该桥头离山崖多远?2.一辆汽车以某一速度正对山崖匀速行驶,司机在距山崖355m处鸣笛后2s听到回声,已知声音在空气中的传播速度是340m/s。
求:(1)从司机鸣笛到听到回声,声音所走过的总路程:(2)汽车的速度v。
3.某人站在正对着悬崖行驶的船上朝着远处的悬崖高喊一声,经过2s后听到回声,若船行驶的速度是5m/s,空气中的声速是340m/s,求:(1)从人发声到听到回声的过程中,船行驶的距离;(2)人发声时船离悬崖多远;(3)人听到回声时,船离悬崖多远。
4.蛟龙号潜水器是我国自行研制的深海探测潜水器,最大下潜深度7000m。
蛟龙号下潜到某一深度,用声呐垂直向海底发射一束频率为30KHz声波,声波在海水中的传播速度约为1500m/s,经1.2s后接收到反射波。
计算蛟龙号距离海底的深度是多少?(不考虑海水密度变化对声音传播速度的影响)5.甲、乙两地的距离是900km,一列火车从甲地开往乙地,途中停靠了4个车站,每个次停车30min,最终经过9h到达乙地;火车行驶途中要经过一个隧道,离隧道口还有一段距离时火车驾驶员鸣笛,他发现2s后听到隧道口的山崖的回声,若火车从鸣笛开始直至通过隧道,速度恒为144km/h。
(已知声音在空气中传播速度为340m/s)求:(1)火车从甲地开往乙地的平均速度是多少千米每小时?(2)火车鸣笛时离隧道口多少米?6.渔用声呐是一种水声探测仪器,专供渔船对鱼群进行搜索、跟踪、识别、定位和测距,实现瞄准捕捞之用,如图所示。
某渔船在某次寻找鱼群时,声呐发出超声波后1.2s接到回波,若已知此时声音在水中的传播为1500m/s,则鱼群距离声呐的距离大约为多少?7.人们利用回声来测定发声体与远处物体的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章力
训练1力重力
[概念规律题组]
1.下列说法正确的是() A.拳击手一拳击出,没有击中对方,这时只有施力物体,没有受力物体
B.力离不开受力物体,但可以没有施力物体.例如:向上抛出的小球在上升过程中受到向上的力,但找不到施力物体
C.只有相互接触的物体间才会有力的作用
D.一个力必定联系着两个物体,其中任意一个物体既是受力物体,又是施力物体
2.在世界壮汉大赛上有拉汽车前进的一项比赛,如图1是某壮汉正通过绳索拉汽车运动.则汽车所受拉力的施力物体和受力物体分别是()
图1
A.壮汉、汽车B.壮汉、绳索
C.绳索、汽车D.汽车、绳索
3.一个物体所受的重力在下列情形下要发生变化的有() A.把它从赤道拿到南极
B.把它送到月球上去
C.把它从地面上浸入水中
D.把它置于向上加速的电梯内
4.关于物体的重心,下列说法正确的是() A.物体的重心一定在物体上
B.用线竖直悬挂的物体静止时,线的方向一定通过重心
C.一块砖平放、侧放或立放时,其重心在砖内的位置不变
D.舞蹈演员在做各种优美的动作时,其重心在体内位置不变
5.关于如图2所示的两个力的图示,下列说法正确的是()
图2
A.F1=F2,因为表示两个力的线段一样长
B.F1>F2,因为表示F1的标度大
C.F1<F2,因为F1只有两个标度,而F2有三个标度
D.无法比较,因为两个力标度的大小未知
6.足球运动员已将足球踢向空中,如图3所示,下列描述足球在向斜上方飞行过程中某时刻的受力图中,正确的是(G为重力,F为脚对球的作用力,F阻为阻力) ()
图3
[方法技巧题组]
7.如图4所示,“马踏飞燕”是汉代艺术家集高度智慧、丰富想象、浪漫主义精神和高超的艺术技巧的结晶,是我国古代雕塑艺术的稀世之宝,飞奔的骏马之所以能用一只蹄稳稳地踏在飞燕上,是因为()
图4
A.马跑得快的缘故
B.马蹄大的缘故
C.马的重心在飞燕上
D.马的重心位置和飞燕在一条竖直线上
8.如果一切物体的重力都消失了,则将会发生的情况有() A.天不会下雨,也不会刮风
B.一切物体都没有质量
C.河水不会流动
D.气泡在液体中将不上浮
9.一人站在体重计上称体重,保持立正姿势时称得体重为G,当其缓慢地将一条腿平直伸出台面,体重计指针稳定后读数为G′,则() A.G>G′B.G<G′
C.G=G′D.无法判断
10.把一根直木棒放在水平桌面上,当它的中点被推出桌边时() A.直木棒一定翻倒
B.直木棒不一定翻倒
C.在直木棒中点没有推出桌边时,就有可能翻倒
D.以上说法均不正确
11.在图5甲中木箱的P点,用与水平方向成30°角斜向右上方的150 N的力拉木箱;在图乙中木块的Q点,用与竖直方向成60°角斜向上的20 N的力把木块抵在墙壁上,试作出甲、乙两图中所给力的图示.
图5
12.如图6所示,各物体的质量相等且都处于静止状态,在图上分别画出它们所受重力的示意图.
图6
[创新应用]
13.(1)把一条盘在地上的长为L的匀质链条向上刚好拉直时,它的重心位置升高了多少?
(2)把一个边长为L的匀质立方体,绕bc棱边翻倒,使对角面AbcD处于竖直位置,如图
7所示,则重心位置升高了多少?
图7
答案
1.D 2.C 3.AB 4.BC 5.D 6.B 7.D 8.ACD 9.C 10.BC 11.如图所示
12.见解析图
解析 画重力的示意图,特别要注意重力的方向,重力的方向总是竖直向下,竖直向下是垂直于水平面,而不是垂直于支持面,它们所受重力的示意图如图所示:
13.(1)质量分布均匀的链条重心在中点,链条拉直时,重心位置升高L /2 (2)AbcD 面处于竖直位置时,立方体重心位置升高1
2
(2-1)L .。