《对数函数及其性质》第一课时教学设计

合集下载

2.2.2对数函数及其性质

2.2.2对数函数及其性质

2.2.2对数函数及其性质(第一课时)一、教材分析:1、对数函数及其性质为必修内容,而且对数函数及其相关知识历来是高考的重点,既有中档题,又能和其它知识相结合、综合性较强、考查也比较深刻。

2、对数函数是函数中一类重要的基本初等函数,它是在学生已经学过指数函数、对数与对数运算基础上引入的,是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。

3、对数函数是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

4、对数函数及其性质的学习使学生的知识体系更加完整、系统,同时又是对数和函数知识的拓展与延伸。

5、学生容易忽视函数的定义域,在进行对数函数定义教学时要结合指数式来强调对数函数的定义域,加强对对数函数定义域为(0, )的理解。

在理解对数函数概念的基础上掌握对数函数的图像和性质是本节课的教学重点,而理解底数a的值对函数值变化的影响是教学的一个难点,教学时要充分利用图像,数形结合,帮助学生理解。

二、教学设计:三、教学目标:1、知识与技能目标:(1)理解对数函数定义;掌握对数函数的图像和性质及其简单的应用。

(2)通过具体实例,直观感受对数函数模型所刻画的数量关系;通过具体的函数图像结合认识对数函数的图像特征,模拟指数函数的研究得出对数函数的性质。

2、过程与方法:采用师生共同讨论法来充分调动学生积极性。

通过对对数函数内容的学习,渗透数形结合的数学思想和经历从特殊到一般的过程;3、情感态度与价值观:在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力四、教学重、难点重点:理解掌握对数函数的概念与性质;难点:对数函数的图像和性质与底数的关系;五、教学用具:三角板、黑板六、教学方法:启发式讲解法七、教学过程2log y x =4log y x = log y =。

对数函数及其性质教案设计

对数函数及其性质教案设计

对数函数及其性质教案设计一、教学目标1. 知识与技能:(1)理解对数函数的定义,掌握对数函数的性质。

(2)学会运用对数函数解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳对数函数的性质,培养学生的逻辑思维能力。

(2)利用信息技术,展示对数函数的图像,增强学生的直观感受。

3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的探究精神。

(2)培养学生运用数学解决实际问题的能力,提高学生的综合素质。

二、教学重点与难点1. 教学重点:(1)对数函数的定义及其性质。

(2)运用对数函数解决实际问题。

2. 教学难点:(1)对数函数的性质的理解与运用。

(2)对数函数在实际问题中的应用。

三、教学过程1. 导入新课:(1)复习指数函数的性质。

(2)提问:指数函数与对数函数有何关系?2. 自主学习:(1)学生自主探究对数函数的定义。

(2)学生归纳总结对数函数的性质。

3. 课堂讲解:(1)讲解对数函数的定义,解释对数函数的性质。

(2)举例说明对数函数在实际问题中的应用。

4. 课堂练习:(1)巩固对数函数的基本性质。

(2)运用对数函数解决实际问题。

5. 课堂小结:(1)回顾本节课所学内容,总结对数函数的性质。

(2)强调对数函数在实际问题中的应用。

四、课后作业1. 完成课后练习题,巩固对数函数的基本性质。

2. 选择一个实际问题,运用对数函数解决。

五、教学反思1. 反思教学过程,检查教学目标是否达成。

2. 针对学生的反馈,调整教学方法,提高教学效果。

3. 关注学生的学习兴趣,激发学生的探究精神。

六、教学活动设计1. 课堂互动:通过提问、讨论等方式,让学生积极参与课堂,提高课堂氛围。

2. 小组合作:学生分组探讨对数函数在实际问题中的应用,分享解题心得。

3. 案例分析:分析实际问题,引导学生运用对数函数解决问题。

七、教学评价1. 课堂练习:评价学生对对数函数基本性质的掌握程度。

2. 课后作业:评价学生运用对数函数解决实际问题的能力。

对数函数及其性质(第1课时)教学设计

对数函数及其性质(第1课时)教学设计

对数函数及其性质(第1课时)教学设计柏秀芳沁县实验中学一、教材分析本节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。

对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。

对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

对数函数是以指数函数作为基础知识。

本节课的主要任务是抓住对数函数与指数函数的互为反函数的关键,掌握对数函数的概念、图像性质并由对数函数的图像归纳出性质,能运用性质解决比较对数值大小。

为了能使学生理解和掌握教学内容,培养学生自主学习能力和数学建构思想,本节课使用多媒体教学,通过计算机辅助教学课件和网络系统良好的交互性能,适时得到学生的反馈信息,实现教学目标。

二、学情分析对数函数的学习以对数运算和指数函数作为基础,部分学生前面知识不熟练,加之函数概念的抽象性,学生对函数的理解比较困难,对于对数函数学习或多或少有些恐惧感。

学生又是从初中升入高一不久,在学习方法上还保留着初中的学习方法,考虑问题常常以形象思维为主,在教学中,注意培养学生由特殊到一般的归纳能力,让学生多观察,通过数形结合,来感受对数函数的图像和性质的关系。

三、设计思想:本节是在学生已经学过对数,与常用对数以及指数函数的基础上,借助生活中典型实例引出对数函数的概念,借助多媒体辅助手段,创设问题情境,让学生通过分析、推理、归纳、类比等活动过程,从中了解和体验对数函数图象和性质。

因而让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。

对数函数第一课时教案

对数函数第一课时教案

对数函数第一课时教案教案标题:对数函数第一课时教案教学目标:1. 了解对数函数的定义和基本特性;2. 能够应用对数函数解决实际问题;3. 培养学生的逻辑思维和问题解决能力。

教学重点:1. 对数函数的定义和基本特性;2. 对数函数与指数函数的联系;3. 对数函数的应用。

教学准备:1. 教材:包含对数函数的相关知识点;2. 已准备好的板书内容:对数函数的定义、性质和公式。

教学过程:引入:1. 创设情境:通过一个问题引入对数函数的概念,例如,“假设你要破解一道密码锁,每次输入的密码错误会提示你与正确密码之间的差距越来越小,但你无法直接知道正确密码是多少。

这种情况下,你会如何解决问题?”2. 引导学生思考:需要哪些工具或方法来逐渐逼近正确的密码?学生可以提出一些解决方案,如“多次尝试并观察提示差距的变化”等。

探究:3. 引导学生发现规律:通过上述情境引导学生思考,让他们逐渐意识到问题中涉及到指数函数,而对数函数可以用来解决这类问题。

4. 定义对数函数:向学生介绍对数函数的定义,即loga x = b表示a 的b次方等于x,其中a称为底数,b称为对数,x称为真数。

5. 探索对数函数的基本性质:通过数值计算和实例分析,引导学生发现对数函数的基本性质,如幂运算、换底公式等。

拓展:6. 对数函数与指数函数的联系:让学生比较对数函数和指数函数的定义及特点,强调它们之间的互逆性和对数函数在解决指数函数问题中的作用。

7. 对数函数的应用:给出一些对数函数在实际问题中的应用场景,并引导学生运用对数函数解决相关问题。

总结:8. 总结对数函数的定义和性质:复习并总结本节课学习的内容,强调对数函数的定义、基本性质和应用。

9. 检测学生掌握情况:通过课堂练习、小组活动或讨论等方式,检测学生对对数函数的理解和应用能力。

10. 鼓励学生思考:提出一些拓展性问题,鼓励学生深入思考对数函数的更多应用。

教学反思:评估本节课教学效果,总结教学中好的地方和需要改进的地方,为后续相同或类似内容的教学做出调整和改进。

对数函数及其性质教案1

对数函数及其性质教案1

对数函数及其性质(2)一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。

函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。

必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。

二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。

学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。

三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。

通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。

高一数学对数函数及其性质(第一课时)

高一数学对数函数及其性质(第一课时)

诚西郊市崇武区沿街学校对数函数及其性质〔第一课时〕【教学目的】一.知识与技能目的1.掌握对数函数的概念,图象。

2.能由对数函数的图象探究、理解对数函数的性质并学会简单应用。

二.过程与方法目的1.用联络的观点分析问题,通过对对数函数的学习,浸透数形结合的数学思想。

2.培养学生的数学应用意识。

三.情感态度与价值观1.通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联络,认识事物之间的互相转化,用联络的观点分析、解决问题,激发学生的学习兴趣。

2.在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维才能以及数学交流才能,增强学习的积极性。

【教学重点】对数函数的定义、图象和性质。

【教学难点】底数a对对数函数性质的影响。

【教学过程】一.创设情景,引入新课材料1:回忆学习指数函数时用的实例。

某种细胞分裂时,一个分裂成为原来的两个。

细胞的个数y 是分裂次数x 的函数:y=x2。

假设要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,根据下表:对于每一个细胞个数y ,通过对应关系y x2log =,都有唯一确定的分裂次数x 与它对应,所以分裂次数x 就是分裂后要得到的细胞个数y 的函数。

材料2:课本73页2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用P t573021log=估算出土文物或者者古遗迹的年代。

根据下表:对于每一个碳14含量P ,通过对应关系573021,都有唯一确定的年代t 与它对应,所以生物死亡年数t 是其体内碳14含量P 的函数。

根据材料1、2,可以得到生活中的又一类与指数函数有着亲密关系的函数模型——对数函数。

二.讲解新课 (一)对数函数的概念1.根据材料1、2中的两个函数x y 2log =,P t 573021log =,我们据此抽象出一个更具有一般性的函数模型:x y a log =结合指数的定义可得函数式x y a log =中的底数a 必须满足a ﹥0且a ≠1。

高中数学必修一《对数函数及其性质》教学设计(第一课时)

高中数学必修一《对数函数及其性质》教学设计(第一课时)

对数函数及其性质(第一课时)一、教材分析本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教A版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。

对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。

二、学情分析刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。

由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。

教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。

三、学法.教法分析教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,在积极的双边活动中,学生找到了解决疑难的方法。

整个过程贯穿“怀疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意。

思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四、教学目标1知识与技能(1)对数函数的概念,对数函数的图象。

2.2.2对数函数及其性质教案(1)

2.2.2对数函数及其性质教案(1)

2.2.2对数函数及其性质教案(1)2.2.2对数函数及其性质(一)教学目标(一)教学知识点1.对数函数的概念;2.对数函数的图象与性质.(二)能力训练要求1.认知对数函数的概念;2.掌握对数函数的图象、性质;3.培养学生数形结合的意识.(三)德育渗透目标1.重新认识事物之间的广泛联系与相互转变;2.用联系的观点看看问题;3.了解对数函数在生产生活中的简单应用.教学重点对数函数的图象、性质.教学难点对数函数的图象与指数函数的关系.教学过程一、复习引入:1、对数的概念:如果ax=n,那么数x叫作以a为底n的对数,记作logan=x(a>0,a≠1)2、指数函数的定义:函数y=ax(a>0,且a≠1)叫作指数函数,其中x就是自变量,函数的定义域就是r.3、我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数y就是对立次数x的函数,这个函数可以用指数函数y=2则表示.现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个??细胞,那么,分裂次数x就是要得到的细胞个数y的函数.根据对数的定义,这个函数可以写成对数的形式就是x?log2y.如果用x则表示自变量,y则表示函数,这个函数就是y?log2x.带出新课--对数函数.二、新授内容:1.对数函数的定义:函数y?logax(a?0且a?1)叫做对数函数,定义域为(0,??),值域为(??,??).x第1页共11页例1.求下列函数的定义域:(1)y?logax2;(2)y?loga(4?x);(3)y?loga(9?x2).分析:此题主要利用对数函数y?logax的定义域(0,+∞)解.求解:(1)由x>0得x?0,∴函数y?logax2的定义域就是?x|x?0?;2(2)由4?x?0得x?4,∴函数y?loga(4?x)的定义域是?x|x?4?;2(3)由9?x?0得-3?x?3,∴函数y?loga(9?x2)的定义域是?x|?3?x?3?.2.对数函数的图象:通过列表、描点、连线作y?log2x与y?log1x的图象:232.532.5221.51-11.510.51110.50-0.512345678-101-0.512345678-1-1-1.5-1.5-2-2-2.5-2.5思索:y?log2x与y?log1x的图象存有什么关系?23.练习:教材第73页练习第1题.1.图画出来函数y=log3x及y=log1x的图象,并且表明这两个函数的相同性质和相同性质.3解:相同性质:两图象都位于y轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.不同性质:y=log3x的图象是上升的曲线,y=log1x的图象3就是上升的曲线,这表明前者在(0,+∞)上就是增函数,后者在(0,+∞)上就是减至函数.4.对数函数的性质由对数函数的图象,观察得出对数函数的性质.32.52a>132.520<a<11.51.5图象1-111110.50.50-0.512345678-101-0.512345678-1-1-1.5-1.5-2-2-2.5-2.5性定义域:(0,+∞)第2页共11页质值域:r过点(1,0),即当x=1时,y=0x?(0,1)时y?0x?(1,??)时y?0在(0,+∞)上是增函数三、讲解范例:基准2.比较以下各组数中两个值的大小:x?(0,1)时y?0x?(1,??)时y?0在(0,+∞)上是减函数⑴log23.4,log28.5;⑵log0.31.8,log0.32.7;⑶loga5.1,loga5.9(a?0,a?1).解:⑴考查对数函数y?log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4?log28.5.⑵考查对数函数y?log0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上就是减至函数,于是log0.31.8?log0.32.7.小结1:两个同底数的对数比较大小的一般步骤:①确认所必须考查的对数函数;②根据对数底数推论对数函数多寡性;③比较真数大小,然后利用对数函数的多寡性推论两对数值的大小.⑶当a?1时,y?logax在(0,+∞)上就是增函数,于是loga5.1?loga5.9;当0?a?1时,y?logax在(0,+∞)上就是减至函数,于是loga5.1?loga5.9.小结2:分类探讨的思想.对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.四、练1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●创新整合点◇运用几何画板软件的作图功能、动态演示功能、反射功能,突出学习重点、突破学习难点。

设计“动手实践1”,运用作图功能,使学生在同一坐标系中绘出多个对数函数图像,提高学生动手实践能力,加深对对数函数定义的认识,突出学习重点;设计“动手实践2”,运用动态演示功能,呈现对数函数图像随底数的变化情况,验证底数取定义范围内任意值时,对数函数所具备的性质,增强学生对图像的直观感知,突破学习难点;设计课件,运用反射功能,验证函数与函数(且)图像间的对称性。

◇运用学霸机房管理系统,借助“广播教学”、“文件分发”、“学生演示”功能,实现图像共享,提高学习效率,突破学习难点。

“广播教学”功能,实现教师集中授课与学生自主学习相结合;“文件分发”功能,将教师机课件分发至学生机D盘,快速便捷,避免一一拷贝;“学生演示”功能是小组代表发言活动得以实施的关键。

如果没有学霸机房管理系统,学生所绘图像只能呈现在自己的计算机上,无法实现共享,而“学生演示”功能的使用,使得全班同学能快速共享大量图像,提高了学生对研究过程的参与程度,学习效率明显提高。

●教材分析本节课是《普通高中课程标准实验教科书?数学1(必修)》(人教A版)第二章第一节第二课《对数函数及其性质》。

本节课的内容在教材中起到了承上启下的关键作用。

一方面,对数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上,进行研究的第一个重要的基本初等函数。

作为基本初等函数,它是继指数函数之后对高中函数概念及性质的又一次应用;另一方面,对数函数是后续学习幂函数的基础,对于研究幂函数及其他基本初等函数,在研究方法上起到示范作用。

●学生分析从学生的知识上看,学生已经学习了函数的定义、图像、性质,对函数的性质和图像的关系已经有了一定的认识。

学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。

从学生现有的学习能力看,通过初中对函数的认识与理解,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,初步具备了抽象、概括的能力。

通过教师启发式引导,学生能自主探究完成本节课的学习,会进行几何画板的基本操作。

●教学目标知识与技能目标:①通过具体实例了解对数函数模型的实际背景;②初步理解对数函数的概念、图像和性质。

过程与方法目标:①借助几何画板绘制对数函数图像,加深对定义的认识,增强对对数函数图像的直观感知;②学生观察对数函数图像,通过小组讨论,代表发言等活动,探究对数函数性质;③通过对对数函数的研究,体会数形结合、由具体到一般及类比思想。

情感态度与价值观目标:通过小组讨论、代表发言活动,培养合作交流意识。

●教学环境与准备多媒体网络教室、几何画板课件、学霸机房管理软件。

●教学过程1.创设情境观察事例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……依此类推,一个细胞分裂次后,得到的细胞个数为个,思考与的函数解析式:;指数式化对数式:,用表示自变量:。

观察事例2:一根1米长的绳子,第一次剪掉绳长的一半,第二次剪掉剩余绳长的一半,……剪了次后,剩余绳子的长度为米,思考与的函数解析式:;指数式化对数式:,用表示自变量:。

观察事例3:已知一个正方形的面积是1,第一次取其四分之一生成正方形,再取的四分之一生成,以此类推,求第次取后生成的正方形的面积与截取次数之间的函数解析式:;指数式化对数式:,用表示自变量:。

设计意图:课上播放PPT动画,回顾“指数函数及其性质”一节的三个观察示例:“细胞分裂”、“剪绳动画”、“截纸动画”,引出对数函数定义,同时使学生体会到对数函数与指数函数的联系。

2.探究新知(1)归纳定义问题1:上述观察事例中的三个函数解析式有什么共同特征?学生思考得出,三个函数解析式,结构都是对数的形式,自变量在真数位置,定义域为。

设计意图:通过对三个实例函数解析式的分析,突出对底数取值的认识,引导学生把解析式概括为的形式,为形成对数函数定义作铺垫。

对数函数的定义:一般地,形如(且)的函数叫做对数函数,其中是自变量,函数的定义域为。

师生共同分析定义要点:①定义域为;②对数函数是形式化的定义;③且。

教师引导学生将指数函数定义与对数函数定义作对比。

练习1:根据对数函数定义,判断下列函数是否为对数函数。

设计意图:通过题目判断加深学生对对数函数定义的认识和理解,为学生自主选择底数,应用几何画板绘制对数函数图像作铺垫。

(2)作图探究问题2:我们研究函数的一般过程是什么?教师启发学生思考:归纳定义,画出图像,观察图像,总结性质,继而进行性质应用。

设计意图:对数函数作为基本初等函数,是继指数函数后对高中函数概念及性质的再次应用,学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。

作图1:画出函数的图像。

学生独立在坐标纸上作图,教师巡视个别辅导,正投对比展示学生作图结果,总结作图要点,规范列表、描点、连线的每一步。

设计意图:描点法作图是画函数图像的基本方法,用正投呈现学生作图结果,培养学生画图基本功。

作图2:自主选择底数绘制对数函数的图像。

教师:为了研究对数函数性质,我给同学们传送了几何画板课件“动手实践1”,在D盘,这里有两个任务,请相继完成。

对于任务1,全班同学分为6组,小组中每位同学设想一个具体的对数函数解析式,小组汇总,每位同学在同一坐标系中,绘制每组所确定的对数函数的图像,之后完成任务2(如图1)。

设计意图:设计任务1,是为了加深学生对对数函数定义的认识,增强对图像的直观感知。

设计任务2,是将本节课的重点以任务形式呈现,使任务1的实施更具方向性,使课堂教学更具灵活性和机动性。

每位学生自主选择底数,确定一个对数函数解析式,小组汇总。

设计意图:学生自选底数,确定对数函数解析式,加深对对数函数定义的认识。

学生小组讨论之后,每位同学打开D盘,双击进入几何画板课件“动手实践1”,在同一坐标系中,绘制每组确定的对数函数图像。

设计意图:学生通过几何画板课件“动手实践1”,在同一坐标系中,绘制多个对数函数图像,在绘制过程中,可以更加直观地感知底数对对数函数图像的影响,能更好地观察图像特征,总结图像性质。

学生自主选择底数,绘制对数函数图像,完成“任务1”之后,思考、讨论“任务2”,各小组根据所绘制的对数函数图像,观察图像特征,总结性质,每组自荐一名代表发言。

教师适时发问、点拨,引导学生总结,师生、生生互动交流。

设计意图:应用学霸机房管理系统,“学生演示”功能,逐个呈现每组学生作图结果,快速大量共享图像,加深学生对对数函数图像特征的认识,有助于攻克教学难点,课堂效率明显提高。

小组学生发言,师生交流过程中,解决问题3、问题4和问题5。

问题3:观察图像,你认为如何对对数函数进行分类研究?各小组学生共提出两类标准:①按图像上升和下降分两类;②按底数分两类。

经教师引导,学生发现这两类标准可以统一:与图像上升统一;与图像下降统一。

问题4:你能结合屏幕上所呈现的对数函数图像,观察它们的图像特征,并总结其性质吗?各组学生从图像位置、特殊点、图像变化趋势等方面总结图像特征,概括性质如表1。

设计意图:学生通过观察具体对数函数图像,应用数形结合思想,归纳概括性质。

问题5:函数与(且)的图像之间有什么关系?有的小组作出和的图像,观察、猜想两个函数图像关于轴对称;有的小组作出3对对数函数图像(如图2),观察猜想图像关于轴对称,进而猜想与(且)关于轴对称。

对于学生猜想和的图像关于轴对称,教师引导学生从坐标角度理解,并用几何画板进行验证。

在函数图像和函数的图像上,分别取横坐标相同的两个点,点和随之运动,观察纵坐标关系,发现纵坐标相反,点和关于轴对称,所以和的图像关于轴对称。

继而,教师操作课件验证:当取定义范围内的任意值时,图像间的对称关系(如图3)。

设计意图:通过具体底数的两个对数函数图像间的关系,观察、归纳、概括一般的两个对数函数与(,且)图像间关系,体会由特殊到一般思想的应用。

各小组总结图像特征,概括函数性质之后,教师总结呈现整理结果。

问题6:我们由具体对数函数分析出它们的图像特征和所具备的性质,所有的对数函数都具备这样的性质吗?教师操作几何画板软件,通过拖动点,改变底数的大小,得到(且)的对数函数的图像,验证底数取定义范围内所有值时,对数函数的性质。

在几何画板课件“动手实践2”中,学生自己拖动点“”,亲身体验图像随底数的变化情况,进而归纳性质(如图4)。

设计意图:通过几何画板课件的动态演示,学生更直观地观察到对数函数图像随底数的变化情况,以及为什么要把底数分为和两类,有利于学生由图像归纳性质,从而突破本节课的难点。

(3)归纳性质学生观察图像,讨论总结性质,如下页表2。

设计意图:学生总结性质,培养学生归纳概括能力。

师生共同对学习内容进行总结:①研究函数的一般过程是:定义→图像→性质→应用。

②借助图像研究性质,应用了数形结合思想;由具体对数函数入手,到一般对数函数总结性质,应用由特殊到一般思想方法;对数函数对底数分类进行研究性质,应用了分类讨论思想,类比指数函数研究对数函数,应用了类比思想。

3.例题讲解师:刚才我们共同探究得出性质,下边看性质应用。

例1:比较下列各组中两个值的大小:①;②;③。

设计意图:通过例题使学生体会对数函数单调性应用,设计三题,使学生体会分类讨论思想。

第一题教师引导讲解,示范解答过程,第二题、第三题学生正投讲解。

设计意图:通过学生正投讲解题目做法,培养学生学习数学的信心和勇气,同时,对于出现的错误及时纠错,起到示范作用。

4.归纳总结◇这节课你学到哪些知识?◇这节课你体会到哪些数学思想方法?5.分层作业◇必做题:P73,2、3;◇选作题:函数和的图像间有何关系?●教学反思1.设计问题系列,驱动教学问题是数学的心脏,本节课以6个问题为主线贯穿始终,以问题解决为教学线索,在教师的主导与计算机的辅助下,学生思维由问题开始,由问题深化。

2.借助信息技术突出重点、突破难点本节课的学习重点是对数函数的概念、图像和性质;学习难点是用数形结合方法从具体到一般地探索概括对数函数性质,为突出重点、突破难点,使用了以下信息技术:◇探究对数函数概念:课上播放“细胞分裂”、“剪绳动画”、“截纸动画”三个PPT课件,学生总结三个“观察事例”中函数解析式的共同特征,概括到的形式,从而形成概念,突出学习重点。

◇绘制对数函数图像:作图1,学生动手画图,初步感知对数函数图像,教师个别辅导,正投展示,对比分析作图结果,纠正作图错误,总结作图要点,培养学生作图基本功;作图2,设计课件,全体学生参与,自选底数绘制对数函数图像,从而加深了学生对定义的认识,增强了对图像的直观感知,突出学习重点。

◇探究对数函数性质:对数函数性质的获得,需要借助对数函数图像。

设计“动手实践2”,教师运用几何画板的动态演示功能,验证底数取定义范围内所有值时,对数函数的性质,学生操作课件“动手实践2”,通过拖动点“”,改变底数的值,观察对数函数图像随底数的变化情况,学生的亲身体验,提高了对研究过程的参与程度,有效突破学习难点。

相关文档
最新文档